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Abstract

We develop a general equilibrium model of self-fulfilling bank runs in a setting without

aggregate risk. The key novelty is the way in which the banking system’s assets and

liabilities are connected. Banks issue loans to entrepreneurs who sell goods to households,

which in turn pay for the goods by redeeming bank deposits. The return on bank assets

is thus contingent on households being able to withdraw their deposits. In a run, not all

households that wish to consume manage to withdraw, since part of banks’ cash reserves

end up in the hands of households without consumption needs. This lowers revenues of

entrepreneurs, which causes some of them to default on their loans and thereby rationalises

the run in the first place. Interventions that restrict redemptions in a run – such as deposit

freezes – can be self-defeating due to their negative effect on demand in goods markets.

We show how runs may be prevented with combinations of deposit freezes and redemption

penalties as well as with the provision of emergency liquidity by central banks.
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1 Introduction

Systemic bank runs have long been an important topic in macro-financial economic re-

search, and the financial crisis of 2007-2009 has only highlighted their importance further.

However, we believe that the understanding of how systemic runs affect the real economy,

how they may trigger solvency crises, and what this implies for the prevention of runs is

still incomplete. Empirical observations show that systemic bank runs usually occur sim-

ultaneously with downturns in economic activity.1 While a recession might increase the

probability of a bank run, we argue that causality may also go the other way: a systemic

bank run leads to a misallocation of liquidity, which hinders economic activity and causes

the downturn. The fact that returns on assets held by banks decrease in the downturn

may then rationalise the run in the first place. Thus, financial crises and recessions may

arise endogenously and reinforce each other.

In this paper, we propose a model that captures this mechanism. The main innovation

of our model relative to other bank run papers is that the return on some of the assets held

by banks is endogenous and varies with aggregate demand. Specifically, banks make loans

to entrepreneurs who sell goods to households, which in turn use bank deposits to purchase

these goods. If a bank run occurs, some households who would like to consume early

(impatient households) are unable to obtain liquid funds from the bank, which reduces

aggregate demand in the goods market. This causes some entrepreneurs to default on

their loans, which rationalises the bank run: patient households who wait do not receive

the payouts they were promised due to the reduced return on bank assets, making it

optimal for them to withdraw early. Importantly, running the bank is rational for patient

households even if banks react to bank runs with (full or partial) deposit freezes. Thus,

linking the return on bank assets to the conditions in the real economy overturns the

result from the literature following Diamond and Dybvig (1983) that full suspension of

convertibility prevents belief-driven runs if there are no fundamental shocks.2,3

We show that the banking system is prone to runs due to this mechanism unless the

supply of assets unaffected by the shortfall in aggregate demand (e.g., government bonds)

is high enough. We then show that if banks can use combinations of redemption penalties

and deposit freezes, runs can always be stopped once they are observed, and they may also

be prevented – however, even if banks observe runs immediately, there are cases where no

1See for example Reinhart and Rogoff (2008) or Gorton (1988).
2To the best of our knowledge, only two other papers exist that overturn this result, but for different

reasons. See our literature review for a discussion of these.
3We want to stress here that the basic mechanism in our paper is different from fire sales, even though in

both cases, asset prices fall during a run. With fire sales, the fundamental asset value remains unchanged,

but banks may need to liquidate assets at a loss because of the run. In contrast, in our paper, the run

causes a reduction in the fundamental value of assets. This difference also explains why deposit freezes do

not prevent runs in our paper, while they typically do so in a model of fire sales.
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such policy exists that prevents runs. Finally, we study emergency liquidity provided by

a central bank that buys illiquid assets from banks in case of a run. This policy prevents

runs if and only if the central bank purchases the assets at or close to face value. If the

central bank instead buys these assets at a discount, some demand shortfall and thus some

default by entrepreneurs is inevitable, meaning that running the bank is still rational for

patient depositors. In a sense, these results go against Bagehot (1873), who advocated for

central banks that lend to solvent, but illiquid banks at a high rate of interest.4 While

doing so seems natural especially when the line between insolvency and illiquidity is blurry,

it turns out that the liquidity problem turns into a solvency problem if and only if the

central bank charges a sufficiently high penalty on its provision of emergency liquidity.

Before we explain the model and our results in more detail, we want to discuss the

empirical relevance of our results and the particular mechanism they hinge on. In our

model, bank runs are situations where depositors demand physical cash from banks, and

if a run occurs, it hinders economic activity in sectors relying on cash transactions. Thus,

our model is of particular relevance to cash-intensive economies, i.e. developing economies

today, or historical episodes in the U.S. and Western European countries. However, we do

believe that our model may also apply to situations where physical cash is not involved,

for example, the run on shadow banks in the financial crisis of 2007-2009 or runs on banks

in small-open economies, such as in Cyprus in 2012-2013. As long as a run hinders access

to liquid assets by agents who would like to consume, our mechanism applies.

While it seems plausible that our mechanism is at play to some extent in many bank

run scenarios, we want to highlight an episode where it may have been particularly im-

portant, namely the deposit freeze in Argentina in 2001-2002.5 The deposit freeze was

enacted in late 2001 out of fear of bank runs, and it restricted cash withdrawals from

banks; however, deposits could still be used to make payments. Since the Argentinian

economy was relatively cash-intensive at the time, the restricted access to cash had neg-

ative effects on economic activity and contributed to a sharp drop in GDP. Even with the

deposit freeze in place, pressure on banks did not stop, such that stronger measures were

enacted at the beginning of 2002, including the forced conversion of dollar deposits to

pesos and an exchange rate depreciation. While we do not want to claim that this episode

was purely caused by belief-driven bank runs, it seems likely that the mechanism discussed

in our paper amplified the crisis in Argentina, as it features all the relevant aspects of our

mechanism.

Model summary. Our model builds on Diamond and Dybvig (1983), Lagos and

4Bagehot (1873) is about lending while we study the provision of liquidity through asset purchases.

However, we show that the results are equivalent for collateralised lending.
5See, e.g. Torre et al. (2003) for a detailed account of the episode, including a description of the

disruptive effects the crisis had on the Argentinian payment system.
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Wright (2005), and Aruoba et al. (2011). As usual in bank run models, households are

uncertain about their idiosyncratic liquidity demand, and as usual in New Monetarist

models, periods are divided into two subperiods, called DM and CM. If households turn

out to be impatient, they want to consume during the DM, but to do so they need money,

which pays a (weakly) lower return than illiquid assets. Banks insure households against

this liquidity risk by offering an optimal deposit contract in the spirit of Diamond and

Dybvig (1983), where households who withdraw late receive weakly higher payouts. Be-

sides holding money to satisfy withdrawals by impatient households, banks invest some of

the deposits in illiquid assets that cannot be liquidated prematurely, namely government

bonds and loans to entrepreneurs. Goods in the DM are produced by entrepreneurs using

their own labour and capital as inputs, as in Aruoba et al. (2011). Since entrepreneurs

have no funds of their own, they need loans in order to purchase capital.

We proceed by first discussing run-free steady states, and then we study whether the

steady-state equilibria we find are prone to unexpected runs. We show that three steady-

state banking equilibria may exist in this economy: a full liquidity-insurance equilibrium

(FLI) where households are fully insured against liquidity risk; a zero-lower bound equi-

librium (ZLB) where all assets pay the same return as money, such that banks cannot

offer liquidity insurance but capital investment and therefore DM consumption is higher

than in an economy without banks; and a partial liquidity-insurance equilibrium (PLI),

which is an intermediate case. FLI (ZLB) equilibria are more likely to exist if the share

of impatient households and the supply of government bonds is high (low), but all three

equilibria may coexist for some parameter values.

Turning to the analysis of runs, we show that even if banks react to a run with full

or partial deposit freezes, an unexpected bank run is always a Nash equilibrium if the

economy is in a ZLB or PLI equilibrium. If the economy is in an FLI equilibrium, a

run is a Nash equilibrium if the real supply of government bonds is not too large. To

reiterate, running is rational for patient households even with deposit freezes because if

other patient households run the bank, some impatient households end up with less money

than expected in the DM, which leads some entrepreneurs to default and thus lowers the

value of the banks’ assets – the run triggers a solvency crisis, which in turn rationalises

the run. If banks can impose any combination of redemption penalties and deposit freezes

once they observe the run, runs can be prevented if the policy satisfies three criteria:

(i) it must be suboptimal for patient depositors to continue running once the policy is

implemented; (ii) it must be optimal for impatient depositors to withdraw early once the

policy is implemented; (iii) given that the run is stopped once the policy is implemented,

it must be suboptimal for patient depositors to run in the first place. It turns out that for

certain parameters, no such policy exists, even if banks observe the run immediately.

Finally, we study what happens if the government purchases illiquid assets from banks
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in case of a run. Note that in our model, banks cannot liquidate illiquid assets early

unless the government is willing to purchase them. Thus, in the absence of government

intervention, banks implement a full deposit freeze by default once they run out of cash.6

This provision of emergency liquidity always stops runs, and prevents them if and only

if the government buys the assets at or close to face value. In this case, banks can con-

tinue paying out the promised amount to impatient depositors, which stabilises aggregate

demand, thereby preventing defaults by entrepreneurs and thus giving patient depositors

no reason to run in the first place. If the government buys these assets at a sufficiently

large discount however, banks will run into a solvency crisis unless they reduce payouts

to impatient depositors. This leads to a shortfall in demand and some default by entre-

preneurs, such that running the bank remains rational for patient depositors ex ante. In

ZLB and PLI equilibria, any discount imposed will lead to defaults and fails to prevent

runs. In FLI equilibria, runs might still be prevented with positive but small discounts.

Importantly, our results on the provision of emergency liquidity are derived under the

assumption that the central bank cannot guarantee that the injected liquidity increases

real purchasing power. This is because it cannot withdraw money from circulation with

lump-sum taxation. In our model, effective stabilisation therefore does not require fiscal

backing for a central bank.

Existing literature. The core of our model is based on Aruoba et al. (2011), who

introduced a setting in which a neoclassical production technology (with capital and labour

as inputs) is used to produce goods sold against fiat money.7 The model of Aruoba et al.

(2011) is itself based on the New Monetarist framework (Kiyotaki and Wright (1989),

Lagos and Wright (2005)). Similarly to our paper, Geromichalos and Herrenbrueck (2021)

introduce random liquidity needs into a setting based on Aruoba et al. (2011). Rather

than focusing on the role of banks as we do in the present paper, Geromichalos and

Herrenbrueck (2021) study the role of secondary asset markets (from which we abstract)

in satisfying agents’ liquidity needs.8

Our paper contributes to a literature studying how banks can (or cannot) eliminate

panic equilibria, in particular with regard to the role of deposit freezes. A key result of

Diamond and Dybvig (1983) is that in the absence of aggregate uncertainty, bank runs can

6This is not an assumption, but a result of microfounding the return on illiquid assets. In our model,

nobody holds the cash required to purchase these assets before maturity.
7In New Monetarist terminology, capital is used as an input in DM production. This is in contrast to

e.g. Aruoba and Wright (2003) and Lagos and Rocheteau (2008) where capital is used as a production

input in the frictionless CM but not in the DM.
8In Geromichalos and Herrenbrueck (2021), capital can be sold against cash and thus has ‘indirect’

liquidity value. In our paper, capital investment by firms backs interest-paying demand deposits issued by

banks.
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be prevented at no cost if banks fully freeze deposits after a certain number of depositors

have withdrawn.9 This suggests that bank runs are only a difficult problem to overcome

in the presence of aggregate uncertainty. Up to this point, two main objections to this

result have been raised in the theoretical literature. First, Engineer (1989) showed that

in a riskfree Diamond-Dybvig setting with more periods, deposit freezes can give rise

to run equilibria where depositors withdraw preemptively out of fear of not being able

to access their deposits when needed. Second, Ennis and Keister (2009) showed that

Diamond and Dybvig’s result hinges crucially on the assumption that banks can commit

to fully freeze deposits even if this severely hurts some of their depositors ex post. With

limited commitment, deposit freezes are much less effective in preventing runs, even in

the absence of aggregate uncertainty.10 The present paper adds a third, distinct reason

why deposit freezes may not eliminate panic equilibria in settings without (exogenous)

aggregate uncertainty, even if banks can fully commit to any payout policy. Specifically,

the present paper highlights a general equilibrium effect of freezing deposits: by restricting

access to cash for households that wish to consume, deposit freezes have a negative effect

on aggregate demand, which – through its effect on the return to banks’ assets – can

rationalise the run in the first place.11

Our paper is related to a broader literature studying self-fulfilling systemic bank panics

in general equilibrium. The previous literature on the topic, starting with the seminal

contribution by Gertler and Kiyotaki (2015), has mostly focused on the case where general

equilibrium effects of bank runs occur through the effect of runs on asset prices.12 In these

models, banks that are hit by runs liquidate assets, which depresses asset prices and has

repercussions on the entire economy and financial system. The present paper does not

feature fire sales but instead focuses on a different type of general equilibrium effect of

bank runs, namely the misallocation of cash caused by runs. Two closely related papers

are Robatto (2019) and Carapella (2015), both of which study general equilibrium effects

9It is well known that full deposit freezes are generally not desirable in the presence of aggregate

uncertainty, i.e. if either the investment technology is risky or liquidity needs of depositors are stochastic.

Wallace (1990) provides a detailed discussion of full and partial deposit freezes for the case with random

liquidity needs and a riskfree investment technology. Matta and Perotti (2021) show that full deposit freezes

are generally not optimal when depositors’ liquidity needs are known but the investment technology is risky.
10Relatedly, even if not explicitly focusing on deposit freezes, Keister and Mitkov (2019) show that it

may be privately optimal for banks to refrain from imposing measures that stop a run if they expect to

receive a government bailout when hit by a run.
11The idea that early withdrawals negatively affect the long-run return on banks’ assets is shared

by Andolfatto and Nosal (2020) and Kashyap et al. (2020), although for very different reasons that in

our paper. In Andolfatto and Nosal (2020), banks’ investment technology exhibits increasing returns to

scale, such that the average return decreases if banks scale down investment as a result of withdrawals. In

Kashyap et al. (2020), early withdrawals negatively affect bank profitability, which in turn reduces bankers’

incentive to monitor loans.
12See also Liu (2019) and Goldstein et al. (2020) for models of systemic bank panics with fire sales.
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of runs that are similar to our paper. In both papers, runs reduce the amount of liquid

assets (cash or deposits) in the hands of those who wish to consume, which has deflationary

effects and thus reduces banks’ net worth. Similar to our paper, the feedback effect from

impaired liquidity provision by banks to asset prices can lead to self-fulfilling (systemic)

run equilibria. Crucially, as both of these papers study endowment economies, they cannot

speak to the mutually reinforcing effects of financial crises and real recessions. They also

do not study whether deposit freezes may stop or prevent runs.

Further, our contribution is part of a literature that studies the role of banks in provid-

ing liquidity insurance – and the fragility of these arrangements – within the New Monet-

arist framework. In our model, banks issue interest-paying demand deposits, which allows

to insure depositors against random liquidity needs in a way that is reminiscent of Berent-

sen et al. (2007) and of Williamson (2012).13 As we do in our paper, both Sanches (2018)

and Andolfatto et al. (2020) combine the Lagos-Wright and Diamond-Dybvig frameworks.

In Sanches (2018), a bank run impairs the use of bank deposits as a means of payment in

DM trades. The negative effect on DM activity may persist over and above the period in

which the run takes place due to liquidation losses incurred by banks in the run.14 Andol-

fatto et al. (2020) study a model where banks and markets coexist and examine how the

presence of markets affects banks’ ability to provide liquidity insurance, a topic that is not

the focus of our paper. Gu et al. (2019) highlight the inherent fragility of various aspects

of banking in a wide variety of models, including one where banks act as a provider of a

means of payment in a Lagos-Wright setting.

Finally, our paper is related to a theoretical literature studying the public sector’s role

in providing emergency liquidity in a run. The previous literature on the topic (e.g. Gor-

ton and Huang (2006), Martin (2006), Rochet and Vives (2004), Farhi and Tirole (2020))

has largely focused on the trade-off between preventing inefficient runs on the one hand

and avoiding the creation of moral hazard on the other hand. Compared to these papers,

we highlight banks’ role in providing a means of payment and how this affects the way

in which emergency liquidity needs to be provided in order to eliminate self-fulfilling panics.

Outline. The rest of this paper is structured as follows: Section 2 presents the environ-

ment, Section 3 discusses the planner’s solution, and Section 4 discusses the decentralized

economy without banks. Section 5 introduces banks and discusses the steady-state bank-

ing equilibrium without runs. Section 6 discusses bank runs, Section 7 discusses what the

13In Berentsen et al. (2007), banks intermediate cash between agents with and without consumption

needs. In our model, as in Williamson (2012), banks pool agents’ cash and assets and issue demand

deposits.
14The persistent negative effects of runs in Sanches (2018) are due to the fact that liquidation losses

incurred in period t affect the deposit contracts banks can offer in period t+ 1. Our model abstracts from

such dynamic effects of runs, as the economy reverts to steady state in the period following the run.
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banking system can do to stop or prevent runs, and Section 8 discusses how the central

bank may stop or prevent runs. Finally, Section 9 concludes.

2 Environment

The environment is based on Lagos and Wright (2005), Rocheteau and Wright (2005),

and in particular on Aruoba et al. (2011). In Section 5 we add banks in the tradition of

Diamond and Dybvig (1983). Time is discrete, indexed by t = 0, 1, 2, .., and continues

forever. Each period t is divided into two subperiods, called CM and DM.15 The CM

opens at the beginning of each period, and once it closes, the DM opens and remains open

until the period ends. Both markets are competitive. There are two types of agents in the

economy, a measure one of households and a measure n of entrepreneurs. Households are

infinitely-lived, whereas entrepreneurs of generation t are born at the beginning of the CM

of period t and live until the end of the CM of period t+ 1, when they are replaced by a

new generation of entrepreneurs. In the CM, a good x can be produced by households at

linear disutility l, where one unit of l yields one unit of x. Good x cannot be stored, but

it can be converted into capital k by young entrepreneurs one to one in order to produce

another nonstorable good q in the DM. This good is produced according to

q = f(k, h), (1)

where k denotes the amount of capital owned by the entrepreneur, h denotes his labour

effort, and f(k, h) satisfies the CRS property. Capital fully depreciates after production.

We assume that fk(k, h) > 0, fkk(k, h) < 0, fh(k, h) > 0, fhh(k, h) < 0, fkh > 0, and

f(0, h) = f(k, 0) = 0. By inverting f(k, h), we can rewrite it as

h = c(q, k), (2)

where c(q, k) represents the amount of labour required to produce q units of the con-

sumption good given k. From our assumptions on f(k, h) it follows that cq(q, k) > 0,

cqq(q, k) > 0, ck(q, k) < 0, ckk(q, k) > 0, and cqk(q, k) < 0.

During the DM, a fraction θ of households get utility u(q) out of consuming the good

q. We call these agents impatient households. The remaining fraction 1− θ get no utility

from consumption during the DM and are called patient households. Each household’s

type during period t is revealed to them at the beginning of the DM of period t and is

private information. The realisation of types is i.i.d. across periods and households. In the

15This terminology follows standard conventions in the literature, whereby each time period is usually

divided into two submarkets, a frictionless CM (which may stand for ‘centralized market’) and a DM

(which may stand for ‘decentralized market’) in which trades need to be settled with fiat money.

8



CM, all households get utility U(x) from consuming the CM good. The expected lifetime

payoff of households is

E0

∞∑
t=0

βt {U(xt)− lt + θu(qt)} . (3)

U(x) and u(q) are both strictly increasing, concave functions satisfying the Inada condi-

tions. Additionally, we impose u(0) = 0.

Entrepreneurs get linear disutility from working during the DM and linear utility x

from consuming during the CM when they are old. In the interest of symmetry with

households, we assume entrepreneurs also discount the next period by a factor β. The

utility function of a young entrepreneur at the beginning of the CM is thus given by

Et {−ht + βxt+1} . (4)

As is standard in the literature, we assume that agents are anonymous during the DM,

that there is no record-keeping technology, and that households cannot credibly commit to

any future payments.16 These assumptions rule out unsecured credit, so households need

liquid assets in order to purchase consumption goods from entrepreneurs during the DM.

We assume that the only liquid asset in the sense that entrepreneurs can recognize it and

distinguish it from counterfeited assets is intrinsically worthless fiat money m, which is

issued by the government. Thus, households who want to consume in the DM are subject

to the constraint

ptqt ≤ mt, (5)

where pt denotes the price of the DM good in period t. We denote the stock of fiat money

at the beginning of period t as Mt and the value of fiat money in terms of good x during

the CM of period t as φt, i.e. mt units of fiat money buy φtmt units of good x. This

implies that the gross inflation rate is given by 1 + πt+1 ≡ φt
φt+1

.

Since young entrepreneurs do not have resources of their own, they need to borrow

from households in order to invest in capital. We denote by `t nominal loans extended

by households to entrepreneurs. To purchase kt units of capital in the CM of period t,

a young entrepreneur needs to take out a nominal loan of `t = kt/φt. The net nominal

interest rate on loans extended in period t is denoted by ĩ`,t+1, that is, an entrepreneur

receiving a nominal loan of `t in the CM of period t is due to repay (1+ ĩ`,t+1)`t units of fiat

money in the CM of t+ 1. We assume entrepreneurs are able to commit to repayment, in

the sense that they always repay their loans if they have the funds to do so. If their funds

are insufficient to repay the loan in full, they will repay all they have. Notice however that

entrepreneurs cannot be forced to work in the DM.17

16The assumption that entrepreneurs can commit to repayment while households cannot may be mo-

tivated by assuming a record-keeping technology is available in the CM but not during the DM.
17The amount of cash that entrepreneurs have in the CM when they are old (and with which they can
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In addition to issuing fiat money, the government also issues nominal bonds B. A

household holding an amount b of bonds issued in period t receives (1 + ib,t+1)b units of

fiat money in period t+ 1. Thus, the government budget constraint is given by

φt(Bt +Mt) + ∆t = φt(Mt−1 + (1 + ib,t)Bt−1), (6)

where ∆t denote lump-sum taxes (or subsidies if ∆t < 0) imposed on households in the

CM of period t. We assume that the money supply grows at a constant net rate µ, that

the government targets a real debt level B = φtBt, and that lump-sum taxes ∆t adjust

such that the budget constraint holds given these targets.

For future reference, we denote the Fisher rate (i.e. the nominal interest rate that fully

compensates for inflation and discounting) as 1 + ιt+1 ≡ 1+πt+1

β .

3 Planner’s Problem

Before turning to market outcomes, we solve the planner’s problem to determine the op-

timal quantities of CM consumption x, DM consumption q, and capital investment k. We

denote by xt and xet the CM consumption levels in period t by households and entrepren-

eurs respectively. Further, we denote by qet the amount of DM good produced by each

entrepreneur, whereas qt denotes the amount consumed by each (impatient) household.

A planner maximises the expected lifetime utility of households and entrepreneurs, giving

equal weight to all agents:

max
{lt,ht,qt,xt,xet}∞t=0

∞∑
t=0

βt{U(xt)− lt + θu(qt) + n(−ht + xet )}

s.t. lt = xt + nxet + nkt

ht = c(qet , kt)

θqt = nqet

The first constraint says that households’ labour effort in the CM must equal consumption

of the CM good by households and entrepreneurs plus capital investment. The second

constraint is the DM production function, and the third constraint is market clearing

in the DM. Inserting the constraints into the objective function, we can reformulate the

planner’s problem as

max
{xt,xet ,kt,qt}∞t=0

∞∑
t=0

βt
{
U(xt)− nkt − xt − nxet + θu(qt) + n

[
−c(qt

θ

n
, kt) + xet

]}
,

repay the loan) depends on their labour effort in the preceding DM. Notably, entrepreneurs can always

choose not to work at all in the DM, in which case they receive zero revenue and thus will default on their

entire loan.
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Defining κt ≡ nkt
θqt

= kt
qet

as the ratio of capital per DM good produced, we get the following

first-order conditions, with an asterisk (∗) denoting the (unique) first-best quantities.18,19

U ′(x∗) = 1 (7)

u′(q∗) = cq (1, κ∗) (8)

1 = −ck (1, κ∗) . (9)

Condition (7) pins down households’ optimal CM consumption x∗. Impatient households’

optimal DM consumption q∗ as well as optimal capital investment κ∗ are determined jointly

by (8) and (9). Condition (8) states that the marginal utility from consuming the DM

good must equal the marginal disutility of labour incurred from producing it. Condition

(9) states that the marginal benefit from increasing the amount of capital used in the

production of the DM good (through reduced hours worked) must equal the disutility of

producing more capital.

4 Equilibrium without Banks

Let us now turn to the allocation resulting in a market economy without banks. In

this and the next section, we will restrict attention to monetary steady-state equilibria,

i.e. equilibria where φt > 0 for all t and where all real quantities are constant.20 In a

monetary steady-state, the Fisher rate equals 1 + ι = 1+µ
β , where µ is the constant money

growth rate.

Households. In the CM, households solve21

max
xt,qt,`t,bt

U(xt)− xt + θu(qt) + [β(1− θ)φt+1 − φt]ptqt + [βφt+1(1 + i`,t+1)− φt]`t

+ [βφt+1(1 + ib,t+1)− φt]bt, (10)

where `t denotes loans made by households to entrepreneurs, 1+i`,t+1 denotes the effective

nominal interest rate on loans (taking expected defaults into account), and ptqt = mt. In

(10), the first two terms capture the utility and opportunity cost from CM consumption,

18Since the first-best quantities are constant, time subscripts are left out. Note also that any amount of

CM consumption by entrepreneurs (xe) is optimal. This results from the fact that both marginal utility of

CM consumption by entrepreneurs as well as the marginal disutility of producing the CM good are equal

to 1.
19In introducing κ, we have made used of the constant-returns-to-scale property of f(k, h), which is

inherited by c(q, k). We thus have c(qe, k) = qec(1, κ), cq(q
e, k) = cq(1, κ), and ck(qe, κ) = ck(1, κ).

20There is always an equilibrium with φt = 0 ∀t in this class of models. In this equilibrium, q = k = 0

due to the lack of an accepted means of payment to settle DM transactions.
21The households’ problem is standard for models based on Lagos and Wright (2005), so we keep the

exhibition brief here. For readers interested in the details, we discuss the derivation of the problem in

Appendix A.1.
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respectively; the third term captures the utility from DM consumption in case the house-

holds turns out impatient; and the final three terms capture the portfolio choice regarding

m, `, and b, where in each bracket, the first term captures the utility from bringing the

respective asset to the CM in t + 1 (which only happens if the household turns out to

be patient for m), and the second term in the bracket captures the cost of acquiring the

asset in period t. Defining ρt ≡ βφt+1pt ≡ φtpt
1+ιt+1

as the real price of the DM good, the

first-order conditions to this problem are given by

U ′(xt) = 1 (11)

u′(qt) = ρt

(
1 +

ιt+1

θ

)
(12)

ιt+1 = i`,t+1 (13)

ιt+1 = ib,t+1. (14)

Note that equations (13) and (14) give the only values of the loan and bond interest rate

that allow for interior solutions. At i`,t+1 < ιt+1 (i`,t+1 > ιt+1), demand for loans is zero

(infinity), and the same holds for bonds. However, since the supply of these assets in a

monetary equilibrium is non-zero and finite, the loan and bond markets only clear if the

interest rate on these assets equals the Fisher rate, i.e. if equations (13) and (14) hold.

At these interest rates, households are willing to hold any amount of ` and b.

Entrepreneurs. Entrepreneurs born in the CM of period t choose the loan taken

out when young (`et ), capital investment when young (kt), DM labour input (ht) and CM

consumption when old (xet+1). Since entrepreneurs do not get utility from consumption

when young, they will spend their entire loan to invest in capital; choosing a given loan

size thus implies the choice of a given capital stock and vice versa. We first take it as given

that entrepreneurs will repay their loan in full, and then show that this will indeed be the

case in equilibrium. The entrepreneurs’ optimisation problem can then be expressed as:

max
{kt,ht,xet+1}

{−ht + βxet+1}

s.t. xet+1 = φt+1

[
ptq

e
t − (1 + ĩ`,t+1)`

e
t

]
kt = φt`

e
t

ht = c(qet , kt)

The first constraint represents the entrepreneurs’ budget constraint, saying that CM con-

sumption when old equals the revenue from selling DM good minus the loan repayment.

The second constraint says that the capital stock must be financed with a corresponding

nominal loan. The last condition follows from the DM production function. Inserting the

constraints into the objective function, we can reformulate this problem as

max
kt,qet

ρtq
e
t − c(qet , kt)−

1 + ĩ`,t+1

1 + ιt+1
kt.

12



The first-order conditions with respect to kt and qet are

−ck(1, κt) =
1 + ĩ`,t+1

1 + ιt+1
(15)

ρt = cq(1, κt). (16)

Finally, we need to check whether entrepreneurs are willing to work in the DM and repay

their loan given their choice of kt, which is the case if and only if

max
qet

ρtq
e
t − c(qet , kt)−

1 + ĩ`,t+1

1 + ιt+1
kt ≥ 0, (17)

i.e. if and only if the maximised return from production is enough to cover the cost of

the loan and the disutility of working. If (17) is violated, entrepreneurs are better off not

producing at all, defaulting on their entire loan. In Appendix A.2, we verify that condition

(17) is indeed slack given the FOCs (15)-(16).22

Equilibrium. Note first that there is no default in equilibrium, since under rational

expectations, all agents know how large the demand for good q will be in the DM. House-

holds will thus never extend loans to entrepreneurs that are so large that entrepreneurs

would not be willing to repay them. Therefore, we have ĩ`,t+1 = i`,t+1 in equilibrium, i.e.

the expected nominal loan rate equals the contractual rate. Then, market clearing for

loans is

nkt = φt`t, (18)

while market clearing in the DM is

nqet = θqt. (19)

Combining conditions (12), (13), (15) and (16), and using the fact that ĩ`,t+1 = i`,t+1, we

obtain that the equilibrium levels of q and κ in steady state are determined by

u′(q)

cq (1, κ)
= 1 +

ι

θ
(20)

−ck (1, κ) = 1. (21)

It is easy to see that the Friedman rule (ι = 0) implements the first-best allocation. Away

from the Friedman rule, ι
θ creates a wedge between the marginal utility of consuming the

DM good and the marginal disutility of producing it. The higher inflation and the lower

the probability that a household turns out to be impatient are, the further q is below its

first-best level. The opportunity cost of holding money ι is compounded by the fact that

households do not know ex ante whether they actually want to consume in the DM – the

lower θ, the larger the cost resulting from this uncertainty. Comparing (21) with (9) shows

22To be more precise, the constraint is just slack, with the Lagrange multiplier being zero while the

constraint holds at equality. This is due to entrepreneurs making zero profits in equilibrium, which in turn

follows from the constant returns to scale property of f(k, h).
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that κ is optimal in equilibrium, i.e. a given q will be produced with the socially optimal

mix of capital and labour. This results from the fact that the equilibrium real loan rate

equals agents’ rate of time preference, leading them to coordinate on the efficient level of

capital investment to produce a given DM output.

5 Banking Equilibrium

To overcome the uncertainty about their consumption preferences, households can form

coalitions during the CM which we call banks, à la Diamond and Dybvig (1983). Banking

coalitions maximise the expected utility of their participating households, which we call

depositors, with each depositor depositing an identical amount in the bank when it is

formed.23 Banks act as price takers, in the sense that they take equilibrium loan and

bond rates, the value of money, and DM prices as given. They exist for one period, from

CM to the next CM, after which they dissolve and are replaced by a new set of banks.

In this section, we solve for steady-state banking equilibria without runs, which also

implies no defaults by entrepreneurs. We then investigate whether the banking equilibria

we find are prone to unexpected runs in the subsequent sections.

Banks issue deposits in the CM when they are formed and invest the proceeds in cash

(mb
t), loans (`bt) and government bonds (bbt), where we use the superscript b to denote

portfolio choices made by banks. We denote by abt ≡ `bt + bbt a bank’s total holdings of

illiquid assets. Since expected loan defaults are zero, the nominal return on loans and

bonds needs to be the same in equilibrium, i.e. i`,t = ib,t ≡ it ∀t. Thus, when we refer to

the interest rate in the economy, this covers both of these rates.24 Note, however, that this

interest rate may differ from the Fisher rate ιt, which is the opportunity cost of holding

cash. A bank formed in the CM of period t promises to pay out dIt units of money to

impatient depositors in the following DM, and dPt+1 units of money to patient depositors

in CM next period.25 The bank’s problem is given by

max
mbt ,a

b
t ,d

I
t ,d

P
t+1

θu(qt) + β(1− θ)φt+1d
P
t+1 − φ(mb

t + abt)

23While banks issue nominal claims, it is immaterial whether deposits are made in cash or in CM goods.
24From the previous section, we know that i`,t = ib,t = ιt must hold in an economy without banks.

Households are only willing to hold illiquid assets at these rates outside of banks also in the economy with

banks. Banks might be willing to hold them at lower rates, but if i`,t 6= ib,t, they would strictly prefer to

hold whichever asset pays the higher interest rate. Further, no asset can pay a higher interest rate than

ιt, as otherwise demand from households would be infinite.
25The assumption that impatient (patient) depositors are only paid out in the DM (CM) is without

loss of generality. First, it is straightforward to show that paying out patient depositors in the DM would

not increase expected utility, since patient depositors would only hold on to such payouts until the next

CM anyway. Second, if the bank had leftover funds to pay out impatient depositors in the CM, depositors

would have been (weakly) better off making smaller deposits in the first place. For similar reasons, it is

never efficient for the bank to pay out more to impatient depositors than they plan to spend in the DM.
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subject to:

dIt = ptqt (22)

mb
t ≥ θdIt (βφt+1ζt) liquidity const. (23)

mb
t + abt(1 + it+1) ≥ θdIt + (1− θ)dPt+1 (βφt+1ξt) solvency const. (24)

dPt+1 ≥ dIt (βφt+1(1− θ)ψt)) patient IC const. (25)

u(qt)− u(0) ≥ βφt+1d
P
t+1, impatient IC const. (26)

where the terms in brackets denote the Lagrange multipliers on the constraints. Equation

(22) states that choosing dI is equivalent to choosing the DM consumption of impatient

households (qt) as banks take the DM price pt as given. Equation (23) is a liquidity

constraint, which says that the bank must hold enough cash to make payments to early

withdrawers. In contrast to individual households, banks can economise on cash holdings

by exploiting the law of large numbers. Equation (24) is a solvency constraint, which says

that the total value of the banks’ assets must be at least as high as the total promises

it makes to depositors. Equation (25) is an incentive compatibility constraint for patient

depositors, which states that DM payouts cannot exceed CM payouts. Finally, equation

(26) denotes the incentive compatibility constraint for impatient depositors, which states

that the difference in utility from consuming qt in the DM instead of nothing should exceed

the utility they obtain from withdrawing in the CM. We will ignore this constraint for now

and check later whether or not it binds.26

Before moving on, we want to highlight the role illiquid asset holdings play for banks.

From the constraints (24) and (25), it can be seen that the sole reason banks hold these

assets is to satisfy the IC constraint for patient agents. If types were observable, banks

could just invest in cash; but since types are private information, banks must hold illiquid

assets to make payments to patient households that are large enough to satisfy incentive

compatibility.27

We refer to Appendix A.3 for a derivation of the optimality conditions of the bank’s

problem. For the Lagrange multipliers, we get that

ζt =
it+1(1 + ιt+1)

1 + it+1
, ξt =

1 + ιt+1

1 + it+1
, and ψt =

ιt+1 − it+1

1 + it+1
, (27)

i.e. the liquidity constraint is binding unless the nominal rate is zero, the solvency con-

straint is always binding (which just means that banks make zero profits) and patient

depositors’ IC constraint is binding unless the nominal rate equals the Fisher rate. Intuit-

ively, the latter is the case because, if assets pay the Fisher rate, buying additional assets

26We assume here that households hold no money outside the bank. This is without loss of generality,

as households would never find it optimal to hold money outside of the bank when a bank exists.
27Our finding that incentive compatibility for patient households limits banks’ ability to provide liquidity

insurance is similar to Peck and Setayesh (2022), where banks can only provide optimal liquidity insurance

if households deposit a large enough share of their endowment in the bank.
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in order to increase CM payouts and relax patient depositors’ IC constraint entails no

opportunity cost for banks. Further, we get that consumption in the DM is characterised

by

u′(qt) = ρt

[
1 +

θιt+1(1 + it+1) + (1− θ)(ιt+1 − it+1)

θ(1 + it+1)

]
, (28)

and the asset demand schedule of the bank is

mb
t ≥ θptqt with equality if it+1 > 0 (29)

mb
t + abt(1 + it+1) ≥ ptqt with equality if it+1 < ιt+1. (30)

Condition (29) implies that banks only hold excess cash if the nominal interest rate is zero.

Condition (30) means that promised DM payouts cannot exceed the return the bank earns

on its portfolio of cash and loans, which follows from patient depositors’ IC constraint.

The entrepreneur’s problem is unchanged compared to the economy without banks.

Thus, the relevant equilibrium conditions are still given by equations (15) and (16).

Market clearing in the loan market is now

nkt = φt(`t + `bt), (31)

and market clearing in the bond market is

Bt = bt + bbt . (32)

Assuming that all households participate in the banking coalition, DM clearing is

nqet = θqt.

Combining (15), (16) and (28), and using the fact that ĩ`,t+1 = it+1 = i, we get that q and

κ in a monetary steady state satisfy

u′(q)

cq (1, κ)
= 1 +

θι(1 + i) + (1− θ)(ι− i)
θ(1 + i)

(33)

−ck(1, κ) =
1 + i

1 + ι
. (34)

Taking nominal rates i and ι as given, this system has a unique solution. Condition (34)

shows that the capital stock per DM good produced (κ) is uniquely determined through

i and ι. Comparing (34) with (9), we get that κ is at its efficient level if i = ı and is

inefficiently high whenever i < ı. Furthermore, from (16), we have that

ρ = cq(1, κ) = c(1, κ)− κck(1, κ) (35)

in steady state, so that the real price of the DM good (ρ) is uniquely determined through

κ. It is easy to see that κ depends negatively on i, while ρ depends positively on i (through

κ). From (33) and (35), we can see that changes in i have two opposing effects on DM
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output q. On the one hand, an increase in i increases ρ which taken by itself has a negative

effect on q. On the other hand, the right-hand side of (33) is strictly decreasing in i for

any θ < 1, capturing the fact that higher i allows banks to pay higher interest on deposits,

thereby decreasing the effective cost of liquidity, which taken by itself has a positive effect

on q.

Next, we denote by A the real supply of illiquid assets, which equals the aggregate

capital stock plus real government debt:

A ≡ φtat = nk + B = κqθ + B. (36)

Combining aggregate asset supply (36) with the bank’s asset demand schedule (29)-(30),

we get that the asset market clears if and only if:28

A


≥ (1− θ)ρq if i = ι

= 1+ι
1+i(1− θ)ρq if i ∈ (0, ι)

≤ (1 + ι)(1− θ)ρq if i = 0

. (37)

Definition 1. A stationary monetary equilibrium (SME) is given by (q, κ, ρ, i,A) satisfy-

ing (33)-(37).

The existence proof for SME is given in Appendix A.4:

Proposition 1. A stationary monetary equilibrium exists.

In the following, we will distinguish between three equilibrium cases: (i) full liquidity

insurance equilibria (FLI), defined as equilibria with i = ι; (ii) zero lower bound equilibria

(ZLB), defined as equilibria with i = 0 and (iii) partial liquidity insurance equilibria (PLI),

defined as equilibria with i ∈ (0, ι). Roughly speaking, condition (37) shows that an FLI

equilibrium exists if the aggregate asset supply is plentiful, a ZLB equilibrium exists if

assets are scarce, and a PLI equilibrium exists if the asset supply is within an intermediate

range.

In an FLI equilibrium, we have κ = κ∗, i.e. capital investment is efficient given q, and

DM production satisfies u′(q)
ρ = 1 + ι. Thus, the probability of being impatient θ does

not affect the consumption level, and therefore, q is larger in an FLI equilibrium than

in an economy without banks. Depositors face no liquidity risk in an FLI equilibrium as

banks are able to fully insure them against the risk of turning out to be impatient. This

is possible because in an FLI equilibrium, banks are saturated with assets, so that asset

prices fall to the point where assets pay the Fisher rate. A large B increases the supply of

illiquid assets and thus makes the existence of an FLI equilibrium more likely. A larger θ

makes an FLI equilibrium more likely as well, for two reasons. First, it increases activity

28Recall that all assets in the economy are held by banks whenever i < ι.
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in the DM, causing entrepreneurs to invest more in capital, thereby increasing the supply

of assets. Second, it decreases banks’ demand for illiquid assets due to the smaller share

of patient households.

In a ZLB equilibrium, we have κ > κ∗, i.e. capital per DM good produced is higher

than optimal. Equation (33) reduces to u′(q)
ρ = 1 + ι

θ , which is the same condition as that

in the economy without banks. However, since κ is higher in a ZLB equilibrium than in

an economy without banks (where κ = κ∗), the real price of the DM good ρ is lower, and

DM production q is higher than in the no-bank equilibrium.29 A ZLB equilibrium exists

if a relatively low supply of illiquid assets coincides with a relatively large demand for

illiquid assets by banks, e.g. due to a large share of patient depositors. Banks’ demand

for illiquid assets then drives the interest rate down to the zero-lower bound, where banks

are indifferent between holding illiquid assets or cash. A ZLB equilibrium is more likely to

exist if B and/or θ are low. Finally, PLI equilibria represent an intermediate case between

FLI and ZLB equilibria, in which banks are able to eliminate some but not all of the cost

associated with uncertain liquidity needs.30

Let us now return to the question whether the IC constraint for impatient depositors

(equation (26)) is indeed fulfilled in equilibrium, as we have assumed so far. In ZLB and

PLI equilibria the IC constraint for patient depositors binds, which makes it straightfor-

ward to show that the IC constraint for impatient depositors will be slack. In an FLI

equilibrium, the IC constraint for impatient depositors is satisfied as long as

φab ≤ Ā ≡ (1− θ)u(q), (38)

i.e., as long as the banks’ holdings of illiquid assets do not exceed the threshold Ā. Thus,

for an FLI equilibrium to exist for some parameters, we need the lower bound on the total

supply of illiquid assets for which an FLI equilibrium exists (see (37)) to be below the

upper bound on the banks’ holdings of illiquid assets given in (38). This is the case if

1

1 + ι
u′(q)q ≤ u(q),

which is always strictly satisfied given the properties of u(q). From here on, we assume

that banks hold all illiquid assets if A ≤ Ā and that they hold Ā if A > Ā.

29Whether welfare is higher in a ZLB equilibrium than in the no-bank equilibrium is unclear. While q

may move closer to its efficient level in a ZLB equilibrium, q is also produced with an inefficient mix of

capital and labour.
30The effects of changes in ι on which equilibrium the economy is in are subtle. An increase in ι reduces

DM activity in all three equilibrium cases, which in turn lowers capital investment by entrepreneurs,

decreasing the asset supply. At the same time, a lower q also reduces demand for illiquid assets since it

becomes easier for banks to satisfy patient depositors’ IC because of lower payouts to impatient depositors.

It can be shown that the second effect weakly dominates in FLI equilibria. The same is not true in ZLB

and PLI equilibria, where an increase in ι has the additional effect of decreasing κ, which has a negative

effect on asset supply.
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While it is immaterial for the results we present in the remainder of this paper, we show

in an Online Appendix that all three equilibrium cases may coexist for certain functional

forms and parametrisations.

6 Bank Runs

We now consider whether a banking equilibrium is prone to self-fulfilling runs. To define

what we mean by this, and what other underlying assumptions we are making, this section

discusses the necessary preliminaries. We then discuss whether the banking system is prone

to runs without (with) the provision of emergency liquidity in Section 7 (Section 8).

A run denotes a situation where all depositors, both patient and impatient, rush to the

banks in order to withdraw their deposits in the DM. We treat runs as zero-probability

events, which therefore have no effect on the steady-state allocation studied previously.

Throughout Sections 6-8, we will use subscript S to denote the steady-state values of

variables. Following Diamond and Dybvig (1983) and much of the banking literature,

we assume sequential service, i.e. depositors arrive at their bank in random order in the

DM and need to be paid out on the spot. Depositors who wish to redeem in the DM

form a queue, with each depositor being assigned each place in the queue with identical

probability independent of a depositor’s true type. Patient depositors run iff they expect

that withdrawing in the DM gives them a strictly higher payout compared to not with-

drawing.31 We will say that the banking system is fragile if steady state DM payouts dIS

are strictly higher than CM payouts in a situation where all depositors run.

In a run, some cash ends up in the hands of running patient depositors, who will not

spend it until the next CM. This means that impatient depositors will hold less cash in

aggregate than in the no-run steady state. We denote by MRE the total cash paid out

to impatient depositors in a run. Without loss of generality, we will take it as given that

0 < MRE ≤ θdIS , where θdIS is the total cash paid out to impatient depositors in the

steady state. Further, we denote by χ the share of entrepreneurs that choose to produce

in the DM and thus repay their loans in a run.

Market clearing in the DM requires that aggregate real spending on the DM good by

impatient depositors equals aggregate real revenues for entrepreneurs. Active entrepren-

eurs optimally choose their supply given the real price of the DM good, ρ. Denoting qe(ρ)

as the supply by an active entrepreneur, DM clearing in a run therefore requires

1 + πS
1 + π

MRE

θdIS
=

χρqe(ρ)

ρSqe(ρS)
, (39)

i.e. the change in aggregate real cash holdings by impatient households relative to the

31We assume patient depositors do not redeem in the DM (they ‘stay home’) in case of indifference.
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steady state (the LHS) equals the relative change in aggregate real revenues for entrepren-

eurs (the RHS).

Given that the economy reverts to its steady state after a run, the inflation rate is

unaffected as long as no additional money is injected in a run. In this case, a run does

not affect the real price of the DM good, and we obtain a particularly simple expression

for the share of active entrepreneurs:

Proposition 2. If the amount of currency in circulation does not change when a run

occurs, the real purchasing power of money remains unchanged (π = πS). Then,

(i) the real price of DM goods remains at the steady state level (ρ = ρS), and

(ii) the share of active entrepreneurs equals χ =
MRE

θdIS
.

Proof. The first part of this proposition follows because runs are assumed to be zero-

probability events, and because steady-state inflation is determined through the money

growth rate. To see why ρ cannot deviate from its steady state value, recall first that,

given kS and ρS , entrepreneurs’ payoff-maximizing DM labour effort yields them a payoff

of zero. Given that the run does not affect the inflation rate, the real indebtedness of

entrepreneurs stays the same, which in turn implies that ρ cannot fall below its steady

state value. The reason for the latter is that a decrease in the DM price shifts the payoff

schedule downwards, such that any DM price below ρS would imply a strictly negative

payoff from production to entrepreneurs. A real DM price below ρS would thus imply

zero production of the DM good, which cannot be consistent with market clearing (39).

Next, ρ > ρS cannot be consistent with DM clearing (39) either, as it would lead to an

increase in the aggregate supply of DM goods while the aggregate demand for the DM

good decreases. Finally, given ρ = ρS and π = πS , item (ii) in Proposition 2 follows

immediately from (39). �

For banks, the effective gross nominal return on loans in a run equals χ(1 + iS).32 Notice

that the return to an individual bank’s portfolio depends on the redemption behaviour of

depositors at all banks, making runs inherently systemic events. We want to highlight here

that the link between the occurrence of a run and the return on illiquid assets captured

by item (ii) in Proposition 2 is the main innovation in our model compared to the existing

literature.33

32Since runs and thus defaults are unexpected, ĩ` = i` = iS still holds.
33Note that we do not allow entrepreneurs to renege on their debt contracts. If entrepreneurs could

renege, Proposition 2 would not necessarily hold anymore, as entrepreneurs might be willing to sell DM

goods at lower prices if their repayment burden is reduced. While this could mitigate the macroeconomic

effects of a bank run, it would not help the banking system in stopping or preventing runs, since as long as

entrepreneurs repay less than was initially promised, run incentives for patient depositors remain intact.
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Consider now the more general case where a run may affect the price level and hence

the real price of the DM good, ρ. Remember that this is relevant only for the analysis

in Section 8, where we consider emergency liquidity provision by the government. The

share of entrepreneurs who repay their loan then depends both on the cash paid out to

impatient depositors relative to the steady state as well as on changes in the capital share

caused by the run:34

Proposition 3. Given any real price of the DM good ρ in a run, the share of active

entrepreneurs equals

χ = min

{
α(ρ)

α(ρS)

MRE

θdIS
, 1

}
, (40)

where

α(ρ) =
ρqe(ρ)− c(qe(ρ), kS)

ρqe(ρ)
(41)

denotes the capital share, i.e. the share of an active entrepreneur’s revenue left after

compensating the entrepreneur for his labour disutility of production.

Proof. Active entrepreneurs choose their supply to maximise real profits before repay-

ments, i.e. ρqe − c(qe, kS). Supply by an active entrepreneur is therefore set according

to qe = qe(ρ) ≡ c−1q (ρ, kS), which implies that qe(ρ) is a strictly increasing function of ρ.

Based on the maximised profits before repayment, entrepreneurs determine whether they

produce in the DM and repay their loans, or default and produce nothing. An entrepreneur

is willing to produce and repay his loan if and only if

max
qe
{ρqe − c(qe, kS)} ≡ ρqe(ρ)− c(qe(ρ), kS) = ρα(ρ)qe(ρ) ≥ β 1 + iS

1 + π
kS , (42)

i.e. if and only if the maximized real profits before repayment weakly exceed the real debt

burden. If the relationship imposed by (42) holds with strict inequality, entrepreneurs

strictly prefer to be active in the DM and thus repay their loans, whereas if it holds with

equality, entrepreneurs are indifferent between repayment and default. Exploiting that

(42) holds with equality in the steady state, we find

ρα(ρ)qe(ρ)

ρSα(ρS)qe(ρS)
≥ 1 + πS

1 + π
, with equality if χ < 1, (43)

i.e. to incentivize entrepreneurs to produce in the DM, their real revenue left after com-

pensating them for their labour disutility cannot decrease by more than the reduction in

the real debt burden caused by an increase in inflation. Combining (39) and (43) then

leads to the result in Proposition 3. �

34One implication of the result in Proposition 3 is that changes in inflation have no direct effect on

entrepreneurs’ incentive to default. The reason is that inflation acts as a double-edged sword: a reduction

in the value of cash reduces both the real purchasing power of the impatient depositors and the real debt

burden of the entrepreneurs. Notice that inflation may in principle still affect defaults indirectly through

its effect on ρ and hence on α.
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Whether the banking system is fragile ex ante depends on the banks’ and the government’s

ex post reaction to runs. We start in Section 7 with the banks’ potential ex post reactions

by focusing on two measures: deposit freezes and penalties on early redemptions. These

are arguably the most widely used measures to stop or prevent runs that do not rely on

a public backstop such as a lender of last resort or deposit insurance. In line with the

bulk of the bank run literature, we assume the banking system reacts to runs as a single,

consolidated entity.35 The speed at which the queue is served is the same at all banks, i.e.

whenever a bank has served some fraction of queuing depositors in the DM, all other banks

will have served the same fraction of their queue. In Section 8, we widen the scope of our

analysis by also considering public provision of emergency liquidity, where the government

stands ready to purchase illiquid assets from the banks, possibly at a discount.

We assume for the remainder of the paper that all banks and the government real-

ise simultaneously that a run is underway after a fraction λ ∈ [0, θ] of depositors have

withdrawn in the DM, at which point banks may jointly impose a deposit freeze and/or

penalties on redemptions, or the government starts to inject emergency liquidity.36 Since

the share of impatient depositors is known to equal θ, banks always know that a run is

going on if more than a fraction θ of depositors wish to redeem in the DM. λ = 0 means

that the run is immediately spotted, i.e. after a measure zero of patient depositors have

withdrawn.

In case banks impose a partial freeze or penalties on redemptions after realising that

a run is underway, depositors who were not among the first λ to show up can choose

whether they still want to redeem in the DM or whether they want to leave the queue and

be paid out in the CM instead. If patient depositors leave the queue once the measures

are in place, we will say that these measures stop runs. Finally, if the banking system is

not fragile given that banks impose deposit freezes and / or redemption penalties and /

or the government provides emergency liquidity after observing a run (off the equilibrium

path), we will say that these measures prevent runs.

35One may imagine that banks jointly commit to reacting in a certain way if they realize that a run

is underway. Ennis and Keister (2009, 2010) interpret the concerted action by banks as the result of a

centralized banking authority stepping in once a systemic run has started, where the banking authority

could be regarded as a reduced-form representation of the banking system together with the relevant

regulatory agencies. Importantly, unlike the banking authority in Ennis and Keister (2009, 2010), the

consolidated banking system does not suffer from limited commitment in our model.
36We do not model explicitly how banks realise that a run is underway. As has been shown by Andolfatto

et al. (2017) and Cavalcanti and Monteiro (2016), mechanisms exist which may help banks to learn about

a bank run. We consider the case of λ = 0 to model the effects of such mechanisms in a reduced-form

way. Note also that, as long as the government does not provide emergency liquidity, banks will impose

a full deposit freeze by default once they run out of cash in the DM since assets cannot be liquidated

prematurely.
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7 Deposit Freezes and Redemption Penalties

Suppose that, upon realising that a run is underway, banks can freeze any fraction 1−η ∈
(0, 1] of deposits. If deposits are (partially) frozen, depositors can only redeem a fraction

η of their deposit in the DM, thus receiving a DM payout of ηdIS , while the remaining

part of the deposit is locked in until the CM. In the CM, depositors are paid out pro-rata,

i.e. if depositors who did not withdraw anything in the DM receive some amount d in the

CM, then depositors who redeemed a fraction η of their deposit in the DM receive (1−η)d

in the CM. The standard full deposit freeze studied by Diamond and Dybvig (1983) and

others corresponds to η = 0 and λ = θ.

Recall that at the point in time when banks impose a deposit freeze, a fraction λ of

depositors have already withdrawn their deposit. Denoting ω as the share of depositors

that successfully redeem in the DM after a partial freeze with η > 0 has been imposed,

the banks’ liquidity constraint implies

ω ≤ ω(η) ≡ min

{
1− λ,

mb
S − λdIS
ηdIS

}
. (44)

For future reference, we define

η ≡ min

{
mb
S − λdIS

(1− λ)dIS
, 1

}
and η ≡ min

{
η

θ
, 1

}
, (45)

so that ω(η) = 1−λ and ω
(
η
)

= θ(1−λ). That is, after realizing that a run is underway,

banks’ cash reserves are just sufficient to convert a fraction η of all remaining deposits

into cash in the DM; and cash reserves are just sufficient to convert a fraction η > η of all

remaining deposits held by impatient depositors into cash.37

In addition to partially freezing deposits, banks may impose a penalty (or haircut) on

early redemptions, which we denote by σ. Depositors who redeem a fraction η of their

deposit in the DM then forgo a fraction σ ∈ [0, 1−η] of their deposit. That is, if depositors

who do not redeem in the DM receive some amount d in the CM, those redeeming a fraction

η of their deposit receive (1 − η − σ)d in the CM.38 Note that we express banks’ payout

policy in terms of (σ, η) for notational convenience. An equivalent formulation would be

to say that, after realizing a run is underway, banks pay some amount (dDM , dCM ) to

depositors who withdraw in the DM, where dDM is paid out in the DM and dCM in the

DM, and banks then distribute the CM revenue not pledged to depositors who withdrew

in the DM equally among depositors who did not withdraw in the DM.

37Since mb
S < dIS holds in all banking equilibria, we have η < 1 as well as

∂η

∂λ
< 0 and

∂η

∂λ
≤ 0.

38The term ‘partial suspension’ has sometimes been used in the literature to describe the case with

σ = 1− η. We find it useful to explicitly distinguish between deposit freezes, where funds are ‘frozen’ but

not lost, and penalties on redemptions.
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We denote by dPR the CM payouts to depositors who did not withdraw in the DM after

banks imposed a given combination of deposit freezes and redemption penalties. The

banks’ solvency constraint in a run then writes

mb
S + (1 + iS)(bbS + χ`bS) = λdIS + ω(ηdIS + (1− η − σ)dPR) + (1− λ− ω)dPR, (46)

so that we can express CM payouts as:

dPR(χ, ω; η, σ) =
[mb

S − (λ+ ηω)dIS ] + (1 + iS)(bbS + χ`bS)

1− λ− ω(η + σ)
. (47)

The numerator in (47) equals the total resources of a bank in the CM given that a run

occurred in the DM; the first term in the numerator equals left-over cash not paid out in

the DM and the second term equals the proceeds from a bank’s portfolio of government

bonds and loans. The denominator is the measure of outstanding deposits in the CM.

7.1 Deposit Freezes

In this subsection we will focus on pure deposit freezes, setting σ = 0. Findings in the

previous literature suggest that deposit freezes are effective in preventing runs in economies

without (extrinsic) aggregate uncertainty and with full commitment. We show that this

is not the case once general equilibrium effects of deposit freezes are taken into account.

We start by noting that a partial deposit freeze with η ∈ (0, 1) cannot stop a run

that has already started, in the following sense: if redeeming the entire deposit is patient

depositors’ (strictly) best response, then so is redeeming any fraction η > 0 of the deposit.

To see this, note that redeeming the allowed fraction η is patient depositors’ best response

iff ηdIS + (1− η)dPR(·) > dPR(·), which is equivalent to dIS > dPR(·).
To understand whether the banking system is fragile, we need to determine how many

entrepreneurs default in a run. Consider deposit freezes with η ≥ η, in which case banks

pay out their entire cash holdings to redeeming depositors in a run. In this case, a share λ

of depositors manages to withdraw in full in a run, a fraction ω(η) manages to withdraw a

fraction η of their deposit, while the remaining fraction 1− λ− ω(η) of depositors cannot

redeem anything in the DM. By a law of large numbers, a fraction θ of depositors who

manage to withdraw in the DM will be impatient, which implies that the total cash paid

out to impatient depositors equals θmb
S . By Proposition 2, we then have

χ =
mb
S

dIS
∈ (0, 1) (48)

for η ≥ η.39 Combining (47) and (48), we get that the banking system is fragile under any

39If banks instead impose a stricter freeze with η < η, not all cash will be paid out in the DM in a run.

The total cash paid out to impatient depositors in a run will then be strictly below θmb
S , so that χ will be

lower than in (48). Since the incentive to run for patient depositors is increasing in the share of defaulting

entrepreneurs (1 − χ), a freeze with η < η unambiguously exacerbates incentives to run compared to a

freeze with η ≥ η, which allows us to focus on η ≥ η without loss.
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deposit freeze satisfying η ≥ η iff

dIS > dPR

(
mb
S

dIS
, ω(η); η, 0

)
⇔ dIS > mb

S + (1 + iS)

(
bbS +

mb
S

dIS
`bS

)
. (49)

In words, the banking system is fragile under deposit freezes whenever DM payouts are

higher than the value of banks’ portfolios after taking into account loan defaults caused

by a run. This leads us to the following result:

Proposition 4. For any λ ∈ [0, θ] and any deposit freeze η ∈ [0, 1), the banking system

is fragile in all zero lower bound (ZLB) and partial liquidity insurance (PLI) equilibria,

as well as in full liquidity insurance (FLI) equilibria where the real aggregate asset supply

satisfies AS < min{Ā, ĀF }, where ĀF ≡ (1− θ)qS(ρS + κ∗θ).

Proof. Consider first ZLB and PLI equilibria. In these equilibria, we have dIS = dPS =

mb
S + (1 + iS)(bbS + `bS). Since mb

S/d
I
S < 1, it follows immediately from condition (49) that

the banking system is fragile in ZLB and PLI equilibria. Consider next FLI equilibria.

In FLI equilibria, we have θdIS = mb
S . Substituting this and dIS = pSqS into condition

(49) and rearranging yields the condition (1 − θ)pSqS > (1 + ı)(bbS + θ`bS). Substituting

ρ ≡ φ

1 + ι
p, φ`b = θqκ, A ≡ φ(bb+`b) and using the fact that κ = κ∗ in an FLI equilibrium

yields that, assuming banks hold all assets in the economy (which is the case if AS ≤ Ā),

they are fragile iff AS ≤ ĀF .40 �

The fragility of the banking system in ZLB and PLI equilibria is closely related to the

fact that the incentive constraint for patient depositors binds in these equilibria. Even

slight losses on banks’ investments cause CM payouts to fall below DM payouts, making

it optimal for patient depositors to run. In FLI equilibria, patient depositors receive

strictly higher payouts than impatient depositors in the steady state, such that banks

have a buffer to absorb a certain amount of losses on their loans. Losses caused by a

run on banks’ asset portfolios are decreasing in the share of government bonds in banks’

portfolios and increasing in the share of impatient depositors; keeping all else the same,

the minimum buffer sufficient to prevent runs, ĀF , is thus decreasing in Bq and increasing

in θ.

A remarkable result of Proposition 4 is that as long as banks’ buffer to absorb losses

is sufficiently small, deposit freezes can neither prevent runs nor stop them from starting,

independent of how quickly banks can react to runs and independent of the fraction of

deposits they freeze. Even if banks can impose a (partial) deposit freeze immediately

after a run has started, the fact that impatient depositors can withdraw less cash due to

40If A > Ā then not all assets in the economy are held by banks. Whether banks are fragile depends

then additionally on how illiquid assets are allocated between households and banks; the larger the share

of government bonds (loans) in banks’ portfolios is, the less (more) likely it is that banks are fragile.
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the freeze makes running optimal for patient depositors. This latter point is the major

difference between our paper and other papers in the literature, where the final return on

illiquid assets is given exogenously and thus can be protected by freezing deposits, as this

prevents banks from early liquidation of illiquid assets. In our model, the return on illiquid

assets is tied to the conditions in the real economy. While a (partial) freeze saves some of

the banks’ assets for late withdrawals, it also implies that even less cash ends up in the

hands of impatient depositors who would like to consume early and thus hurts aggregate

demand, which in turn lowers the return on illiquid assets and increases the incentive for

patient depositors to run.

The reason that the exact values of λ and η have no effect on whether deposit freezes

can prevent runs is that DM activity and loan defaults in a run depend only on the total

amount of cash paid out to impatient depositors. This payout equals θmb
S independent

of λ and η. However, different values of λ and η do affect the distribution of cash among

impatient depositors in a run. Keeping all else the same, a higher λ makes payouts to

impatient depositors in a run more unequal since a larger share of depositors manages to

redeem their deposit in full in a run, implying that less cash will be left for those impatient

depositors not among the first λ to arrive. Similarly, keeping λ fixed, ex post payouts in

a run will become more unequal as banks increase η: while those (relatively) early in line

can withdraw a larger amount, a larger share of depositors cannot withdraw anything in

the DM since banks run out of cash before all depositors can be served.

Assuming that preventing runs with pure deposit freezes is not feasible, how should

banks set η in order to minimize ex post welfare losses caused by a run? Given that

aggregate DM production and loan defaults are the same for all η ≥ η, and given that

DM preferences are strictly concave, it is straightforward that the best banks can do is

to distribute all the cash as evenly as possible to the impatient depositors who did not

manage to withdraw their deposit in full. This leads to the following proposition, which

we state without separate proof:

Proposition 5. With pure deposit freezes, the ex post welfare loss of a run is minimised

if banks impose a deposit freeze with η = η once they realize that a run is underway.

7.2 Penalties on Redemptions

We now turn to the case where, in addition to freezing part of deposits, banks can impose

penalties on early redemptions after noticing that a run is underway. To streamline the

exposition, we will take it as given that banks set η ∈ [η, η].41

41Footnote 39 discusses why ignoring η < η̄ is without loss; for η > η, banks’ cash reserves would not

be sufficient to pay out all impatient depositors in the DM, even if patient depositors stop running after

banks impose the partial freeze. Banks could then always adjust (η, σ) in such a way that CM payouts

and hence run incentives are not affected but that the available cash is distributed more evenly among
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A given mix of deposit freezes and penalties on redemptions is said to stop a run if a

patient depositor (who is not among the first λ of depositors in the queue) is better off

not withdrawing in the DM even if (hypothetically) all other depositors continue running

after banks impose (η, σ).42 If all depositors continue to redeem in the DM after banks

impose (η, σ), we have that ω = ω(η) and χ = mb
S/d

I
S (for the latter, see the discussion in

the previous subsection). From (47), we obtain that CM payouts in such a situation equal

dPR

(
mb
S

dIS
, ω(η); η, σ

)
≡ dPR(η, σ). (50)

Banks’ reaction to a run thus stops the run iff

ηdIS + (1− η − σ)dPR(η, σ) ≤ dPR(η, σ) with η ∈ [0, 1] and σ ∈ [0, 1− η]. (51)

Proposition 6. There always exists a policy (η, σ) with η > η that stops a run.

This proposition shows that banks can always stop a run, even without completely

freezing deposits (which trivially stops the run). Specifically, they can do so by setting η

low enough and σ high enough. We show in Appendix A.5.1 that the condition in (51) can

be reformulated as a lower bound on the redemption penalty, σ ≥ σ(η), and that there

exists a value η̃max > η such that σ(η) ∈ [0, 1− η] for all η ∈ [η, η̃max].

Banks’ reaction to runs prevents a run if the prospect of banks imposing (η, σ) after

realizing that a run is underway eliminates patient depositors’ incentives to redeem dIS in

the first place. While stopping a run ex post is necessary to prevent a run ex ante, it is

not sufficient. Different to pure deposit freezes, stopping and preventing runs are thus not

equivalent with redemption penalties.

Suppose banks’ reaction to runs satisfies condition (51), such that it stops the run.

Suppose also for the moment that all impatient depositors redeem after banks impose

(η, σ). We then have that ω = θ(1 − λ) and MRE = θ [λ+ (1− λ)η] dIS . By Proposition

2, the share of non-defaulting entrepreneurs then equals

χ = λ+ (1− λ)η (52)

and, by (47), CM payouts are given by

dPR
(
λ+ (1− λ)η, θ(1− λ); η, σ

)
≡ dPR(η, σ). (53)

Of course, impatient depositors must be willing to redeem in the DM (and incur the

impatient depositors in the event of a run. See also Footnote 44 below.
42Since withdrawal decisions of patient depositors are strategic complements, this is the same as saying

that not withdrawing ηdIS in the DM must be the dominant strategy for patient depositors.
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redemption penalty) rather than to wait until the CM, which requires43

u(ηqS) +βφ+(1− η−σ)d
P
R(η, σ) ≥ βφ+d

P
R(η, σ) ,with η ∈ [0, 1] and σ ∈ [0, 1− η], (54)

where φ+ denotes the value of money next period. In Appendix A.5.2, we show that

the condition in (54) can be rewritten as an upper bound on the redemption penalty,

σ ≤ σ(η). Finally, given that banks’ reaction to runs satisfies conditions (51) and (54),

patient depositors’ incentive to run in the first place will be eliminated iff

dIS ≤ d
P
R(η, σ) with η ∈ [0, 1] and σ ∈ [0, 1− η]. (55)

In Appendix A.5.3, we show that the condition in (55) can be rewritten as a lower bound

on the redemption penalty, σ ≥ σ̂(η). Notice that the lower bounds on the redemption

penalty resulting from conditions (51) and (55) are distinct. The first says that the

redemption penalty must be high enough to deter patient depositors from running after

the penalty has been imposed; the latter says that the redemption penalty incurred by

impatient depositors must be high enough to deter patient depositors from running in the

first place.

In sum, in order to prevent runs, banks’ reaction to runs, (η, σ), must satisfy conditions

(51), (54) and (55).44

Proposition 7. Even with λ = 0, there may be no policy (η, σ) that prevents a run.

We prove this proposition by providing in Appendix A.7 an example where there is

no (η, σ) preventing runs even if λ = 0. However, in many cases, as long as λ is low

enough, banks can prevent runs by setting (η, σ) appropriately; we provide an example

for this case below. Note in particular that the redemption penalty σ has a redistributive

function, in the sense that it redistributes funds from (impatient) depositors who redeem

in the DM to (patient) depositors who redeem in the CM. If (η, σ) is such that defaults

caused by a run are kept sufficiently low and the redistribution towards patient depositors

implemented by the redemption penalty in the event of a run is sufficiently large, patient

depositors’ incentives to participate in the run in the first place will be eliminated.

43Since defaults are decreasing (and hence CM payouts are increasing) in the number of impatient

depositors who redeem in the DM, withdrawal decisions of impatient depositors in the DM are strategic

substitutes. Condition (53) is thus the same as saying that withdrawing in the DM after banks have

imposed the redemption penalty must be the dominant strategy for impatient depositors.
44In conditions (55) and (54), we have implicitly required that banks’ reaction to runs should be such

that all impatient depositors are able and willing to redeem in the DM. This is without loss of generality,

as none of the constraints that need to be fulfilled in order to prevent runs could be relaxed by setting

(η, σ) in such a way that some impatient depositors cannot or do not want to redeem in the DM. If (η, σ) is

such that the run is stopped and the remaining impatient depositors do not receive uniform payouts, then

banks could always change (η, σ) in such a way as to distribute the same aggregate payout to impatient

depositors uniformly among them. This would increase the payoff for impatient depositors (as a result

of strictly concave DM preferences) and would leave run incentives for patient depositors unaffected since

CM payouts depend only on the aggregate payout to impatient depositors.
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Minimizing Welfare Losses Caused by Runs

As with pure deposit freezes, we can ask how banks should set (η, σ) such as to minimize

ex post losses caused by runs, assuming preventing runs is not feasible. Note first that if

banks do not stop the run, the situation is equivalent to the one with pure deposit freezes.

Independent of the exact value of (η, σ), the total cash paid out to impatient depositors in

a run then equals θmb
S , which in turn pins down DM activity and loan defaults. However,

with penalties on redemptions, banks can do better by deterring patient depositors from

withdrawing once the run has been detected. This allows to increase the aggregate amount

of cash paid out to impatient depositors.

The fact that we restrict attention to η ≤ η means that all impatient depositors who

are not among the first λ of depositors to arrive in a run receive identical DM payouts

whenever (η, σ) is such that patient depositors are deterred from withdrawing once the run

is detected. Minimizing welfare losses caused by a run is then equivalent to maximizing DM

activity in a run, which is achieved by maximizing the cash paid out to impatient depositors

(i.e. maximizing η) subject to the relevant constraints (51) and (54). Specifically, DM

activity in a run will be maximized by setting η to the highest level within (η, η] consistent

with stopping the run while ensuring that impatient depositors are willing to withdraw.

We denote this level with ηmax.

Proposition 8. Suppose λ < θ. Let ηmax ≡ min{η, η̃max, η̂max}, where η̃max is the unique

value of η solving σ(η) = 1− η, and η̂max is the unique strictly positive value of η solving

σ(η) = σ(η). Then ηmax ∈ (η, 1) and the ex post welfare loss of a run is minimized if

banks set η = ηmax and σ ∈ [σ(ηmax), σ(ηmax)].

We refer to Appendix A.6 for the proof and the derivations related to Proposition 8.

Intuitively, the maximum amount that can be paid out to impatient depositors in the DM

in case of a run can be constrained for three different reasons. It can be constrained by

the fact that banks have limited cash left once they notice that a run is underway (in

which case ηmax = η), it can be constrained by the fact that patient depositors must be

deterred from continuing running while the redemption penalty cannot exceed the fraction

of frozen deposits (in which case ηmax = η̃max), or it can be constrained because patient

depositors must be deterred from continuing running while impatient depositors must still

find it attractive to withdraw (in which case ηmax = η̂max).

Example where Runs can be Prevented

Figure 1 provides a numerical example illustrating how (η, σ) needs be set in order to both

stop and prevent runs. We assume that the DM utility function equals u(q) = qν and that

DM production follows a Cobb-Douglas technology, i.e.

f(k, h) = kαh1−α. (56)
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Figure 1: Example where runs can be prevented.

The parameters used for this example are summarized in Table 1. They are such that the

economy is in a zero lower bound steady state equilibrium.45 The grey area in Figure 1

depicts the set of (σ, η) that both stop and prevent runs. The fact that σ(η) is strictly

increasing in η while σ̂(η) is strictly decreasing in η is not specific to the example at

hand; as we show in Appendix A.5, this is always the case if banks are fragile under pure

deposit freezes. Higher DM payouts η increase the incentive for patient depositors to

continue running, which is why the redemption penalty required to stop the run increases

in η. Furthermore, given that the redemption penalty stops runs, higher DM payouts

to impatient depositors lead to more DM activity and less defaults, thereby decreasing

patient depositors’ incentives to participate in the run in the first place. For this reason,

the minimum redemption penalty necessary to prevent a run is decreasing in η. This is

a characteristic property of our model – increasing payouts to impatient depositors can

lower patient depositors’ incentives to run due to the tight connection between banks’

liquidity provision and the return to banks’ assets.

Table 1: Parameter values for Figure 1.

α ν θ n λ ι B qS ρS κS

0.6 0.65 0.6 0.6 0.45 0.05 0 0.037 1.904 1.199

45We show in the Online Appendix that with a Cobb-Douglas production function, B = 0 and θ < 1
1+α

,

the economy is in a ZLB equilibrium.
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8 Emergency Liquidity

We now turn to the role of policy in stopping and preventing runs. For expositional con-

venience, we assume the government provides emergency liquidity to the banking system

by purchasing assets from banks. We show in Appendix A.11 how the intervention can be

reinterpreted as the provision of collateralized loans to banks without changing any of the

results.

We assume that the government cannot increase its real indebtedness, which restricts

the ability to provide liquidity in real terms.46 Specifically, we have

M + (1 + iS)B

MS + (1 + iS)BS
≤ 1 + π

1 + πS
, (57)

where M + (1 + iS)B denotes the government’s nominal liabilities at the beginning of

the next CM, just after entrepreneurs have repaid loans, and 1 + π = φt/φt+1 is the

inflation rate given the government’s provision of emergency liquidity. The condition

imposes that nominal liabilities cannot grow faster than inflation, implying that the real

value of the government’s liabilities is bounded from above.47 It implies that the provision

of emergency liquidity will be inflationary whenever it leads to an increase in nominal

government liabilities beyond the point at which the assets purchased by the government

mature.

To provide emergency liquidity, the government stands ready to convert government

bonds with a gross face value (i.e. principal plus interest) of one dollar into δb ≤ 1 dollars

of cash. Similarly, a loan with a promised gross repayment of one dollar can be converted

into δ` ≤ 1 dollars of cash. Here δb < 1 and δ` < 1 can be interpreted as discounts. For

simplicity, we assume throughout this section that λ = θ, i.e. the government provides

emergency liquidity after a measure θ of depositors has withdrawn. Furthermore, we

assume δ` < δb, as bonds are safer assets than loans. Based on the discounts and the

banks’ asset holdings, the total amount of liquidity a bank can access once the run is

detected is

mb
S − θdIS + δb(1 + iS)bbS + δ`(1 + iS)`bS . (58)

Following the results established in Section 7, we assume that once banks notice a run is

underway, they charge a redemption penalty that reflects the cost of obtaining emergency

46This constraint can be motivated in various ways. For instance, it may capture the central bank’s

inability to raise taxes, or it may capture political constraints such as a limit on real government debt.
47The reason why condition (57) is written as an inequality is that the government can always increase

inflation by injecting additional money in the CM. However, once money has been injected in the DM, the

government cannot withdraw it from circulation in the CM by increasing lump-sum taxation. Note also

that the government may use part of the money injected in the DM to purchase government bonds from

banks, such that B may be lower than BS .
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liquidity:48

η = 1− σ = min

{
mb
S − θdIS + δb(1 + iS)bbS + δ`(1 + iS)`bS

(1− θ)dIS
, 1

}
. (59)

In the following, we limit our attention to cases where σ is sufficiently small so that

impatient depositors still withdraw in the DM even if they are subject to the redemption

penalty. Regardless of whether the run continues or stops after a measure θ of depositors

have withdrawn, the aggregate amount of cash held by impatient depositors then equals

MRE = θ [θ + η(1− θ)] dIS . (60)

8.1 Inflation and Defaults with Emergency Liquidity

Let us first consider the implications of the provision of emergency liquidity for inflation.

These depend on the type and quantity of assets purchased by the government. Let τb

and τ` denote the fraction of bonds and loans that banks sell to the government, and let

I ∈ {0, 1} be an indicator variable that takes a value of one when the run continues after

a measure θ of depositors have withdrawn. If mb
S − θdIS < η(1 − θ)[θ + I(1 − θ)]dIS , the

bank needs to sell assets in order to meet withdrawals, and the asset sales are such that

η(1− θ) [θ + I(1− θ)] dIS − (mb
S − θdIS) = τbδb(1 + iS)bbS + τ`δ`(1 + iS)`bS . (61)

The LHS in equation (61) equals the additional money needed by the bank to pay out

withdrawing depositors, and the RHS equals the money obtained from selling assets to

the government. Nominal liabilities of the government at the beginning of the next CM

just after the active entrepreneurs have repaid their loans then become

MS + [τbδb(1 + iS)bbS + τ`δ`(1 + iS)`bS ]− τ`χ(1 + iS)`bS

+ (1− τb)(1 + iS)bbS + (1 + iS)(BS − bbS). (62)

The first two terms in (62) are the total money in circulation after the injection of emer-

gency liquidity, the third term is the money withdrawn from circulation in the beginning

of the CM through loan repayments by entrepreneurs on the loans purchased by the gov-

ernment, and the last two terms are government bonds held by banks and households,

48If the bank charges a redemption penalty (59), depositors who redeem internalize the cost of obtaining

emergency liquidity. If the run continues, all remaining 1 − θ depositors receive the same payout. Note

that this is the lowest redemption penalty (i.e. the highest η) that may potentially stop the run. If banks

set a higher η, then a run cannot be stopped once it has started since the depositors in the end of the

queue receive nothing in the DM and also nothing in the CM (the bank has sold off all its assets before

all depositors are served).
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respectively. Combining (62) with (57), we obtain49

1 + π

1 + πS
= max

{
1 +

(1 + iS)(δ` − χ)τ``
b
S − (1 + iS)(1− δb)τbbbS

MS + (1 + iS)BS
, 1

}
. (63)

It is immediate from (63) that the provision of emergency liquidity may only be inflationary

if χ < δ`, i.e. if loan defaults exceed the discount imposed on asset purchases. Put

differently, emergency liquidity can only be inflationary if the government makes losses

from its intervention. As long as there are no losses, the amount of money withdrawn

from circulation when assets mature is at least as large as the amount injected in the run,

such that the provision of emergency liquidity does then not increase the long-run amount

of nominal government liabilities in circulation.

Our next result shows that the government never makes losses on its asset purchases,

implying that the provision of emergency liquidity has no effect on inflation:

Proposition 9. With the provision of emergency liquidity, we have (i) δ` ≤ χ, with strict

inequality when δ` < 1, and (ii) π = πS.

The proof of Proposition 9 can be found in Appendix A.8. The intuition is as follows.

In the steady-state, only part of entrepreneurs’ DM revenue goes towards loan repayments,

since entrepreneurs keep part of the revenue as compensation for their labor effort. As long

as the share of entrepreneurs’ revenue going to loan repayments (the capital share) remains

constant, a given decrease in aggregate DM spending thus translates into a less than 1:1

decrease in loan repayments. This in turn means that a shortfall in DM spending caused by

a given discount on asset purchases translates into a smaller increase in defaults, such that

the government incurs no losses from its asset purchases. The government’s intervention

can thus only cause losses if it is accompanied by a decrease in the capital share. As it

turns out, such a decrease in the capital share is inconsistent with equilibrium. To see

this, note that a decrease in the capital share needs to go together with a corresponding

increase in inflation reducing entrepreneurs’ real debt burden. Otherwise, entrepreneurs’

real debt burden reduces by less than the revenue left after compensating them for their

labour effort, implying that all entrepreneurs are better off not producing in the DM.

However, for similar reasons as those described above, a given decrease in the capital

share will not translate into sufficiently large losses for the government that create the

amount of inflation required to reduce entrepreneurs’ debt burden enough to allow for the

decreasing capital share.

Interestingly, the implications of the provision of emergency liquidity on the price level

are independent of how loan contracts are denoted:

49In (63) we take it as given that the government wants to stabilise prices. In particular, the government

can always prevent its intervention from being deflationary by printing money in the CM, whereas inflation

cannot be prevented because of the upper bound on real government liabilities.

33



Proposition 10. π = πS also holds in case of a run if entrepreneurs’ gross repayment is

fixed in real terms.

The proof for Proposition 10 is in Appendix A.9. The intuition is that with real loan

contracts being bought by the government, inflation acts as a double-edged sword on the

government’s balance sheet: on the one hand, inflation reduces the real purchasing power

of impatient depositors. Due to a fixed real repayment burden, this inevitably leads to

default by entrepreneurs and hence to lower repayments to the government. On the other

hand, inflation increases the nominal repayment by active entrepreneurs. Keeping the

capital share α constant, these two forces cancel each other out. Thus, the effects of

emergency liquidity provision are the same with nominal and real debt contracts.

Finally, we obtain from (60) and from our results in Propositions 2 and 9 that the

share of active entrepreneurs in a run with provision of emergency liquidity equals

χ =
MRE

θdIS
= θ + η(1− θ). (64)

A run therefore leads to defaults if and only if η = 1 − σ < 1, i.e. if and only if banks

charge a penalty on DM redemptions. According to (59), whether or not banks charge a

redemption penalty depends on the discounts (δ`, δb) that the government imposes on its

asset purchases. In particular, we have

η < 1 ⇔ mb
S + (1 + iS)(δ``

b
S + δbb

b
S) < dIS . (65)

Recall that dIS = dPS = mb
S + (1 + iS)(`bS + bbS) in ZLB and PLI equilibria and that

dIS ≤ mb
S +(1+ iS)(`bS +bbS) in FLI equilibria, with strict inequality except for a knife-edge

case. The following result then follows immediately:

Corollary 1. With the provision of emergency liquidity, a run leads to defaults in ZLB

and PLI equilibria if and only if δ` < 1, i.e. if and only if the government imposes a

discount on its asset purchases. In FLI equilibria, a run leads to defaults if and only if

discounts are sufficiently high and/or banks hold few illiquid assets.

Intuitively, a discount on asset purchases implies that the bank may not be able to satisfy

its steady-state promises, especially in cases where steady state DM payouts are relatively

high compared to CM payouts. It thus uses the redemption penalty to pass on the costs

of liquidating bonds and loans to depositors. In turn, the penalty leaves the impatient

depositors who withdraw after the run has been detected with less cash compared to the

steady state. This causes a drop in aggregate demand, which leads some entrepreneurs to

default on their loans. If no discounts are imposed however, banks are still solvent even

with steady-state promises, so they do not impose redemption penalties, and in turn all

impatient depositors can obtain dIS in the DM even in a run. Given this and since there

are no inflationary implications associated with providing emergency liquidity, the real

economy is unaffected by the bank run.
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8.2 Preventing Runs with Emergency Liquidity

Let us now examine whether the provision of emergency liquidity can stop a run after it has

been detected, and whether the prospect of emergency liquidity provision prevents runs

from starting in the first place. Without loss of generality, we suppose τb = τ` = θ+(1−θ)I,

i.e. the fraction of bonds and loans sold to the government equals the fraction of remaining

depositors that continue to run once the run is detected. The bank’s CM payout to non-

withdrawing depositors after a run occurred in the DM is then given by

mb
S − θdIS + (1 + iS)(bbS + χ`bS)

1− θ
.

Note that the discounts (δ`, δb) imposed on asset sales have no (direct) effect on CM

payouts since the redemption penalty ensures that depositors who withdraw in the DM

internalize the cost of liquidating assets. A run stops once it has been detected if and only

if

ηdIS ≤
mb
S − θdIS + (1 + iS)(bbS + χ`bS)

1− θ
, (66)

i.e. if and only if patient depositors are better off not withdrawing in the DM once the

redemption penalty is imposed. Combining (66) with (59) yields the following result:

Proposition 11. Runs can always be stopped with the provision of emergency liquidity,

independent of the discounts imposed on asset purchases.

Proof. Suppose first that the discounts (δ`, δb) are such that banks do not need to impose

a redemption penalty, i.e. η = 1. By (64), this implies χ = 1. Condition (66) then reduces

to dIS ≤ mb + (1 + iS)(bbS + `bS), which is always fulfilled since dIS ≤ dPS , i.e. since steady

state DM payouts cannot exceed CM payouts. Suppose next that the discounts (δ`, δb)

are such that banks need to impose a redemption penalty, i.e. η < 1. Substituting for η,

condition (66) then becomes δbb
b
S + δ``

b
S ≤ bbS + χ`bS , which is always fulfilled since δb ≤ 1

and δ` ≤ χ (for the latter, see Proposition 9). �

The reason why the provision of emergency liquidity always stops runs is closely related to

our previous result that δ` ≤ χ, i.e. the drop in aggregate demand is always smaller than

the discount on asset purchases imposed by the government. This ensures not only that

the government does not make losses on its asset purchases but also that the reduction in

the value of illiquid assets held by banks is always smaller than the redemption penalty,

such that withdrawing late is more lucrative for patient depositors than running the bank.

Finally, the provision of emergency liquidity prevents a run if and only if

dIS ≤
mb
S − θdIS + (1 + iS)(bbS + χ`bS)

1− θ
, (67)

i.e. if and only if patient depositors are better off not withdrawing their entire deposit in

the DM (before a redemption penalty is imposed) given that emergency liquidity will be

provided in a run. Combining condition (67) with (64) yields the following result:
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Proposition 12. In ZLB and PLI equilibria, emergency liquidity prevents runs if and only

if δ` = 1, i.e. if and only if the government imposes no discount on its asset purchases. In

FLI equilibria where the aggregate real asset supply satisfies AS ≤ Ā,50 emergency liquidity

prevents runs if and only if

(δ` − 1)θqSκ
∗ + (δb − 1)B ≥ −

(
1 +

qS
θκ∗

)
(AS − (1− θ)ρSqS) , (68)

i.e. if and only if the discounts (δ`, δb) are small and/or the aggregate asset supply AS is

large.

The proof of Proposition 12 is given in Appendix A.10. Note that, by condition (37), we

have AS ≥ (1−θ)ρSqS in FLI equilibria, with strict inequality except for a knife-edge case.

The right-hand side of condition (68) is thus negative, meaning that in FLI equilibria, it

is possible to impose strictly positive discounts on asset purchases without making the

banking system fragile, as long as the discounts are not too high.

Intuitively, if discounts are imposed, some impatient depositors may end up with less

cash compared to the steady state; this in turn negatively affects aggregate demand,

which triggers default by some entrepreneurs. These anticipated losses on the loans held

by banks may make it rational for patient depositors to run, unless the bank holds a

sufficiently large amount of assets to absorb such losses. Due to the discounts, a run can

therefore start because of self-fulfilling reasons, just as in our model without emergency

liquidity. If no discounts are imposed however, aggregate demand is stabilised and default

by entrepreneurs is prevented, which in turn eliminates the incentive to run for patient

depositors in the first place.

9 Conclusion

In this paper, we developed a model of the macroeconomy where entrepreneurs borrow

in order to produce goods that impatient households want to consume. We showed that

introducing banks into such an economy improves outcomes by either insuring households

against liquidity risk, i.e. the cost of carrying real balances they may end up not needing,

or by lending to entrepreneurs at lower rates than households would, thereby increasing

aggregate supply. We called the first situation a full liquidity-insurance equilibrium (FLI)

and the second situation a zero lower bound equilibrium (ZLB). A combination of the two

is also a possible outcome, which we call a partial liquidity-insurance equilibrium (PLI).

These three equilibrium cases may coexist for a range of parameters, particularly when

banks are able to invest in government bonds in addition to loans to entrepreneurs.

50If A > Ā then not all assets in the economy are held by banks. As in Proposition 4, whether banks

are fragile depends then additionally on how illiquid assets are allocated between households and banks,

without fundamentally changing the result of Proposition 12; for given discounts, banks are then more

(less) likely to be fragile if they hold a large share of outstanding loans (government bonds).
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We showed that all three equilibria are prone to runs even if the banks know the

share of impatient households in the economy and fully freeze deposits once the expected

number of households has withdrawn their deposits. The reason for this is that a bank run

creates a misallocation of liquidity, which in turn reduces aggregate demand in the goods

market. This demand shortfall then leads to defaults on some loans by entrepreneurs, and

the anticipation of these defaults rationalises the run by patient depositors, which causes

the misallocation of liquidity.

The banking system may be able to prevent runs by using a combination of deposit

freezes and redemption penalties, but even if banks observe runs immediately, there may

be no such policy that prevents runs. If the government provides emergency liquidity by

purchasing illiquid assets from banks, runs can be prevented if and only if the government

is willing to purchase these assets at face value (or close to it if the economy is in an FLI

equilibrium). This result can be interpreted as a violation of Bagehot (1873)’s rule: if

emergency liquidity is provided without a discount (i.e. at market rates), the liquidity

crisis is contained and banks remain solvent. If emergency liquidity is provided at a

discount (i.e. at a penalty rate), banks become insolvent unless they pass on the discount

to depositors – but doing so causes a shortfall in aggregate demand, which in turn reduces

the return on bank assets; as a result, running the banks remains rational for patient

depositors.
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Appendix A Additional Derivations and Proofs

A.1 Deriving the Households’ Problem in the Economy without Banks

Each household chooses hours worked in the CM (lt), consumption of the CM good (xht ), the

portfolio of cash, loans and government bonds carried out of the CM (mt, `t, bt) as well as DM

consumption in case of turning out impatient (qt).

We take it as given that households do not carry more cash than what they need to finance q in

case they turn out to be impatient, that is, we will take it as given that qt = mtpt. It is a standard

result in the literature that households will never choose to hold excess cash if ι > 0, which we take

as given for the moment.51 Furthermore, we denote by i`,t+1 the effective net nominal return on

loans. Since (some) entrepreneurs may (partly of fully) default on their loan, i`,t+1 may be lower

than the contractual interest rate ĩ`,t+1. We assume that each household holds a fully diversified

portfolio of loans, such that all households receive the same effective interest rate on their loan

portfolio. Denoting Vt(m, `, b) as the CM value function in period t,52 we have:

Vt(m, `, b) = max
{xh

t ,lt,mt,`t,bt}

{
U(xht )− lt + θ [u(qt) + βVt+1(0, `t, bt)] + (1− θ)βVt+1(mt, `t, bt)

}
s.t. lt = xht + ∆t + φt

[
(mt −m) + (`t − (1 + i`,t)`) + (bt − (1 + ib,t)b)

]
,

ptqt = mt.

The first constraint is the household’s flow budget constraint and the second constraint is the

liquidity constraint on DM consumption. Inserting the constraints into the objective function, we

can rewrite the value function as:

Vt(m, `, b) = φt [m+ (1 + i`,t)`+ (1 + ib,t)b]−∆t + max
{xh

t ,mt,`t,bt}

{
U(xht )− xht − φt(mt + `t + bt)

+ θu

(
mt

pt

)
+ β

[
θVt+1(0, `t, bt) + (1− θ)Vt+1(mt, `t, bt)

]}
By the usual envelope result, quasi-linear preferences in the CM imply that CM value functions

are linear in asset holdings:

∂Vt(m, `, b)

∂m
= φt,

∂Vt(m, `, b)

∂`
= φt(1 + i`,t),

∂Vt(m, `, b)

∂b
= φt(1 + ib,t).

Moving these one period forward and plugging them back into the above equation allows to write

the CM problem as in (10), where we use q as a choice variable instead of m for simplicity.

A.2 Confirming that the Entrepreneur’s Constraint to Work in the DM

Is Slack

Since f is homogeneous of degree one, c is also homogeneous of degree one. Hence, we can rewrite

the entrepreneur’ objective function as

qet

[
ρt − c

(
1,
kt
qet

)
− 1 + ĩ`,t+1

1 + ιt+1

kt
qet

]
.

51Even if ι = 0, carrying zero excess cash is usually optimal from the point of view of an individual

household, although not necessarily uniquely so.
52That is, Vt(m, `, b) is the maximum attainable continuation utility when starting with a portfolio

(m, `, b) of cash, loans and bonds in the CM of period t.
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Furthermore, the fact that c is homogeneous of degree one implies that the entrepreneurs’ FOC

for qet (16) can be rewritten as

ρt = c

(
1,
kt
qet

)
− kt
qet
ck

(
1,
kt
qet

)
Using this, together with the FOC for kt (15), in the rewritten objective function implies that

qet

[
ρt − c

(
1,
kt
qet

)
− 1 + ĩ`,t+1

1 + ιt+1

kt
qet

]
= qet

[
ρt − c

(
1,
kt
qet

)
+
kt
qet
ck

(
1,
kt
qet

)]
= 0.

That means, the optimized value of the objective function equals zero, which should not come as

a surprise given the fact that f and also c exhibit CRS. This immediately implies that given the

optimal choice of kt, we have that

max
qet

{
ρtq

e
t − c(qet , kt)−

1 + ĩ`,t+1

1 + ιt+1
kt

}
= 0.

This verifies the conjecture that the constraint is slack.

A.3 The Optimality Conditions of the Bank’s Problem

The Lagrangian of the bank’s problem writes:

L = θu

(
dIt
pt

)
+ β(1− θ)φt+1d

P
t+1 − φt(mb

t + abt)

+ βφt+1

[
ζt(mt − θdIt ) + ξt(mt + abt(1 + it+1)− θdIt − (1− θ)dPt+1) + (1− θ)ψt(dPt+1 − dIt )

]
The first-order conditions are

dIt :
u′(qt)

pt
= βφt+1

(
ζt + ξt +

(
1
θ − 1

)
ψt
)

(69)

dPt+1 : ξt − ψt = 1 (70)

mb
t : 1 + ιt = ζt + ξt (71)

abt : ξt =
1 + ιt

1 + it+1
(72)

where we have used 1 + ιt ≡ φt

βφt+1
. From (70)-(72), we get the expressions for the Lagrange

multipliers in (27). Inserting the expressions for the multipliers into (69) yields equation (28).

Finally, the bank’s asset demand schedule (30) follows from the complementary slackness conditions

ζt(m
b
t − θdIt ) = 0 and ψt(d

P
t+1 − dIt ) = 0.

A.4 Proof that a Stationary Monetary Equilibrium Exists

As shown in the main text, i pins down κ, which in turn pins down ρ. Furthermore, ρ and i

together pin down q. To show that an SME always exists, it remains to show that there exists

always an i ∈ [0, ι] such that condition (37) is fulfilled. Note that A, ρ and q can all be expressed

as continuous functions of i. From (37), we get that an equilibrium with i ∈ (0, ι) exists iff:

Q(i) = 1 + i− (1− θ)(1 + ι)ρ(i)q(i)

A(i)
= 0. (73)

We also get from (37) that Q(0) > 0 and Q(ι) < 0 if neither an equilibrium with i = 0 nor one

with i = ι exists. By the intermediate value theorem, an equilibrium with i ∈ (0, ι) then exists,

41



which also proofs that an equilibrium with i ∈ [0, ι] always exists. As a side note, we have that

Q(0) < 0 and Q(ι) > 0 if both an equilibrium with i = 0 and one with i = ι exist. It then follows

again from the intermediate value theorem that there also exists (at least one) equilibrium with

i ∈ (0, ι).

A.5 Derivations of the Thresholds for the Penalty on Early Redemptions

A.5.1 Threshold to Stop a Run

Rewriting the condition in (51) gives

ηdIS ≤ (η + σ)dPR(η, σ). (74)

Since the right-hand side of (74) is strictly increasing in σ while the left-hand side does not change

in σ, there is a unique threshold, denoted σ(η), such that condition (74) is fulfilled iff σ ≥ σ(η).

Substituting for dPR(η, σ) we can rewrite condition (74) as:

ηdIS ≤ (η + σ)
(1 + iS)

(
bbS +

mb
S

dI
S

`bS

)
1− λ− ω(η)(η + σ)

⇔ σ

[
(1 + iS)

(
bbS +

mb
S

dIS
`bS

)
+ ω(η)ηdIS

]
≥ (1− λ)ηdIS − η

[
(1 + iS)

(
bbS +

mb
S

dIS
`bS

)
+ ω(η)ηdIS

]

⇔ σ ≥

 dIS −mb
S − (1 + iS)

(
bbS +

mb
S

dI
S

`bS

)
mb
S − λdIS + (1 + iS)

(
bbS +

mb
S

dI
S

`bS

)
 η ≡ σ(η)

(75)

Notice that σ(0) = 0. Also, σ(η) is strictly increasing in η iff dIS ≥ (1 + iS)
(
bbS +

mb
S

dIS
`bS

)
+ mb

S ,

which is the condition for banks to be fragile under pure deposit freezes (see (49)).

Furthermore, the fact that σ ≤ 1 − η means there is an upper bound on η, denoted η̃max,

defined as the unique value of η solving σ(η) = 1 − η. Note that setting η ≤ η̃max is a necessary

condition to stop a run. Solving for η̃max gives

η̃max =
(1 + iS)

(
bbS +

mb
S

dIS
`bS

)
+mb

S − λdIS
(1− λ)dIS

= η +
(1 + iS)

(
bbS +

mb
S

dIS
`bS

)
(1− λ)dIS

∈ (η, 1), (76)

where η̃max < 1 follows from dIS ≥ (1 + iS)
(
bbS +

mb
S

dIS
`bS

)
+ mb

S . It follows that a run is stopped

whenever (η, σ) satisfies η ∈ [η, η̃max] as well as σ ∈ [σ(η), 1 − η]. Clearly, the set of (η, σ) that

stop a run has positive mass.

A.5.2 Threshold to Satisfy Impatient Depositors’ Incentive Constraint

Note first that we can reformulate condition (54) as

u(ηqS) ≥ φ

1 + ι
(η + σ)d

P

R(η, σ). (77)

Since the right-hand side of (77) is strictly increasing in σ while the left-hand side does not change

in σ, there exists a unique threshold, denoted σ(η), such that condition (77) is fulfilled iff σ ≤ σ(η).

It will be useful to define:

T (η) ≡ mb
S + (1 + iS)(bbS + (λ+ (1− λ)η)`bS)− (λ+ θ(1− λ)η)dIS

1− λ
. (78)
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In words, T (η) denotes banks’ per capita CM revenue in a run, given that the run is stopped and

given that the impatient depositors who were not among the first λ to arrive withdraw fraction η

of their deposit; ‘per capita’ means that the total revenue is divided by the measure of depositors

who did not manage to redeem before the bank imposed the redemption penalty. Notice that we

have T ′(η) = (1 + iS)`bS − θdIS < 0.53 Substituting for d
P

R(η, σ), we can rewrite condition (77) as:

u(ηqS) ≥ (η + σ)

(1− θ(η + σ))

φ

1 + ι
T (η)

⇔ σ

[
θu(ηqS) +

φ

1 + ι
T (η)

]
≤ (1− θη)u(ηqS)− φ

1 + ι
ηT (η)

⇔ σ ≤ u(ηqS)

θu(ηqS) +
φ

1 + ι
T (η)

− η ≡ σ(η)

(79)

Note that we have σ(0) = 0, and

σ′(η) =

φ

1 + ι

(
qST (η)u′(ηqS)− u(ηqS)T ′(η)

)
(
θu(ηqS) +

φ

1 + ι
T (η)

)2 − 1, (80)

with lim
η→0

σ′(η) =
qSu

′(0)
φ

1+ιT (0)
− 1 = +∞, which results from the fact that u(q) satisfies the Inada

conditions. Notice that σ′(η) need not be positive everywhere on η ∈ (0, 1). The reason is that

the return to banks’ asset portfolio increases in η due to lower loan defaults. This makes it more

costly to give up a given share of the deposit. If this effect is strong enough, the haircut which

impatient depositors are willing to pay may decrease in η.

Next, we have σ′′(η) =
f ′g − fg′

g2
, where f and g are defined by σ′(η) ≡ f

g
− 1, and f ′ and g′

denote the derivatives of f and g w.r.t. η respectively. We have

f ′ =

>0︷ ︸︸ ︷
φ

1 + ι
q2ST (η)

<0︷ ︸︸ ︷
u′′(ηqS) < 0 (81)

g′ = 2

[
θu(ηqS) +

φ

1 + ι
T (η)

]
︸ ︷︷ ︸

>0

[
θqSu

′(ηqS) +
φ

1 + ι
T ′(η)

]
︸ ︷︷ ︸

>0 for η∈[0,1]

> 0. (82)

Since f > 0 and g > 0, it follows that σ′′(η) < 0, i.e. σ(η) is strictly concave on η ∈ [0, 1].

Regarding expression (82), note that

θqSu
′(ηqS) +

φ

1 + ι
T ′(η) > 0

⇔ θqSu
′(ηqS) >

φ

1 + ι
(θdIS − (1 + iS)`bS)

⇔ u′(ηqS)

ρS
> 1− φ

1 + ι

(1 + iS)`bS
θρSqS

(83)

where we used T ′(η) = −(θdIS − (1 + iS)`bS), dIS = pSqS and ρS ≡
φ

1 + ι
pS . Since

u′(qS)

ρS
> 1 in

steady state (see (33) and (35)), we know that condition (83) is fulfilled for any η ∈ [0, 1].

53To see why the derivative is negative, recall that θdIS equals the total steady state DM revenue of

entrepreneurs while (1 + iS)`b equals their total loan repayment in steady state. Since entrepreneurs keep

part of their revenue as compensation for their labor effort, we have θdIS > (1 + iS)`bS .
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A.5.3 Threshold to Prevent a Run

Substituting for d
P

R(η, σ) we can rewrite the condition in (55) as:

(1− λ)(1− θ(η + σ))dIS ≤ mb
S + (1 + iS)(bbS + (λ+ (1− λ)η)`bS)− (λ+ θ(1− λ)η)dIS)

⇔ σθ(1− λ)dIS ≥ (λ+ (1− λ))dIS −
[
mb
S + (1 + iS)bbS + (1 + iS)(λ+ (1− λ)η)`bS

]
⇔ σ ≥

[
dIS − (mb

S + (1 + iS)(bbS + λ`bS))

(1− λ)θdIS

]
− (1 + iS)`bS

θdIS
η ≡ σ̂(η)

(84)

Note that we have σ̂(0) ∈ (0, 1), and σ̂′(η) = − (1 + iS)`bS
θdIS

< 0, with
∣∣σ̂′(η)

∣∣ < 1.54

A.6 Proof of Proposition 8

Given that banks set (η, σ) such as to stop the run, DM activity in a run is maximized by setting

η as high as possible subject to the relevant constraints. Since we start from the premise that

runs cannot be prevented, we can disregard constraint (55). The relevant constraints - besides

banks’ liquidity constraint - are thus (51) and (54). We are therefore looking for values (η, σ) that

maximize η subject to the constraint that σ(η) ≤ σ ≤ σ(η) with σ ∈ [0, 1− η], and subject to the

liquidity constraint η ≤ η.

Recall from Appendices A.5.1 and A.5.2 that σ(0) = σ(0) = 0, where σ(η) is linearly increasing

in η, while σ(η) is strictly concave on η ∈ [0, 1] with lim
η→0

σ′(η) = +∞. This implies that whenever

there exist values η ∈ [0, 1] for which σ(η) < σ(η), then there exists a unique strictly positive value

η̂max such that σ(η) ≥ σ(η) iff η ≤ η̂max. If σ(η) ≥ σ(η) for all η ∈ [0, 1], we define η̂max = 1.

Next, we will show that η̂max > η. We have

σ(η) > σ(η)

⇔ 1

θ +
φ

1 + ι

T (η)

u(ηqS)

>
η(1− λ)dIS

(1 + iS)
(
bbS +

mb
S

dIS
`bS

)
+mb

S − λdIS

⇔ T (η) >
φ

1 + ι

ηdIST (η)

u(ηqS)

u(ηqS)

ηqS
> ρS

(85)

where we used dIS = pSqS ≡
1 + ι

φ
ρSqS in the last step. Since u(q) is strictly concave with u(0) = 0,

we have u(q)
q > u′(q). Since u′(qS) > ρS (see (33) and (35)), condition (85) is fulfilled, from which

it follows that η̂max > η.

Finally, from Appendix A.5.1, we know that the highest value of η consistent with σ(η) ≤ 1−η,

i.e. stopping a run, equals η̃max, with η̃max ∈ (η, 1). It then follows that constraints (51) and (54)

can only be jointly satisfied if η ≤ min{η̃max, η̂max} ∈ (η, 1). The fact that banks’ liquidity

constraint requires additionally that η ≤ η then leads to the result in Proposition 8.

A.7 Example with λ = 0 where Runs cannot be Prevented

Figure 2 shows an example where there exists no (η, σ) that prevents runs, despite the fact that

banks can react to runs immediately (λ = 0). The functional forms used here are the same as for

54See Footnote 53 for why the absolute value of the derivative is less than one.
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the example shown in Figure 1, and the parameter values are given by Table 2. As in the example

of Figure 1, parameters imply that the economy is in a zero lower bound equilibrium. We can see

Table 2: Parameter values for Figure 2.

α ν θ n λ ι B qS ρS κS

0.65 0.95 0.6 0.6 0 0.02 0 5.725 ∗ 10−7 1.886 1.251

graphically that the set of values (η, σ) satisfying constraints (51), (54) and (55) is empty. Notice

that the banks’ liquidity constraint is fulfilled for any η ∈ [0, 1] since banks can react to runs

without delay. What is key is that impatient depositors’ willingness to pay a redemption penalty

is low, which results from the fact that the DM utility function is close to linear. In particular,

the redemption penalty cannot be set high enough to deter patient depositors from running, since

impatient depositors would not be willing to incur such a penalty. Nevertheless, banks can stop

runs by partially freezing deposits and charging a modest penalty on redemptions once a run has

started (grey area). DM activity in a run is maximized by setting (η, σ) = (η̂max, σ(η̂max)), where

η̂max corresponds to the highest DM payout consistent with stopping the run.
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0.6 1− η

run stopped

η̂max η (share of deposit
that can be redeemed)

σ
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)

σ(η) (minimum penalty that stops run)

σ̂(η) (minimum penalty that prevents run)

σ(η) (maximum penalty impatient impatient depositors are willing to pay)

Figure 2: Example where runs cannot be prevented.

A.8 Proof of Proposition 9

From (63), we know that π > πS can only occur if χ < δ`. From (40) and (60), we get that

χ < δ` ⇔
α(ρS)

α(ρ)
>
θ + η(1− θ)

δ`
. (86)

Substituting for η using (59), we get:

θ + η(1− θ)
δ`

=


1

δ`
if η = 1

mb
S + (1 + iS)(δ``

b
S + δbb

b
S)

δ`dIS
if η < 1
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Using the fact that δb ≥ δ` and dIS ≤ (1 + iS)(`bS + bbS) (which follows from patient depositors’ IC

constraint, dIS ≤ dPS ), it is easy to see that

θ + η(1− θ)
δ`

≥ 1, with strict inequality if δ` < 1.

Condition (86) thus says that χ < δ` must go together with a sufficiently strong decrease in the

capital share α(ρ) relative to the steady state. Next, from (43), we get

π > πS ⇒ ρα(ρ)qe(ρ) < ρSα(ρS)qe(ρS), (87)

i.e. an increase in inflation implies a decrease in real loan repayments by active entrepreneurs.

From (41), we have ρα(ρ)qe(ρ) = maxqe {ρqe − c(qe, kS)}, and hence ∂[ρα(ρ)qe(ρ)]/∂ρ = qe > 0,

i.e. active entrepreneurs’ real loan repayment increases in the real price of the DM good ρ. Together

with (87), this implies

π > πS ⇒ ρ < ρS , (88)

i.e. an increase in inflation implies a decrease in the real price of the DM good. Note next that,

from (43), we have
α(ρS)

α(ρ)
=

ρqe(ρ)

ρSqe(ρS)

1 + π

1 + πS
. (89)

From (89) and the fact that qe(ρ) is strictly increasing in ρ (see the proof of Proposition 3), we

get that π > πS implies

α(ρS)

α(ρ)
<

1 + π

1 + πS
= 1 +

(1 + iS)
(
δ` − α(ρ)

α(ρS) (θ + η(1− θ))
)
τ``

b
S − (1 + iS)(1− δb)τbbbS

MS + (1 + iS)BS
, (90)

i.e. a decline in the capital share relative to the steady state needs to be accompanied by a

corresponding increase in inflation that reduces entrepreneurs’ real debt burden. Note that we

have used (40), (60) and (63) to substitute for (1+π)/(1+πS) in (90). The last step of the proof is

to show that (86) and (90) are inconsistent with each other. To do this, we first take the derivative

of the RHS in (90) with respect to α(ρS)/α(ρ), which gives

∂[(1 + π)/(1 + πS)]

∂[α(ρS)/α(ρ)]
=

(1 + iS)τ``
b
S

MS + (1 + iS)BS

(
α(ρ)

α(ρS)

)2

(θ + η(1− θ)) < 1, (91)

where we use the fact that aggregate nominal loan repayments in steady state cannot exceed the

steady state money stock, i.e. (1 + iS)`bS < MS . Expression (91) shows that inflation (relative to

the steady state) reacts less than 1:1 to changes in the capital share. Finally, it is easy to see that

(90) is violated for α(ρS)/α(ρ) = [θ + η(1 − θ)]/δ`, i.e. if (86) holds at equality. Together with

(91), this means there exists no α(ρS)/α(ρ) that satisfies both (86) and (91). This completes our

proof that χ ≥ δ` and hence π = πS . Furthermore, if δ` < 1 and we replace the strict inequality in

(86) with a weak inequality, we still get a contradiction, such that δ` < 1 implies χ > δ`.

A.9 Proof of Proposition 10

When loans are real, the actual gross nominal repayment on a loan ` becomes (1+ iS)`(1+π)/(1+

πS). We assume that the government remains to value loans at their steady state nominal price,
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so that equations (58) and (59) remain unchanged. Equation (39) remains valid and Equation (42)

becomes maxqe{ρqe − c(qe, kS)} ≥ β 1+iS
1+πS

kS . In turn, Equation (43) becomes

ρα(ρ)qe(ρ)

ρSα(ρS)qe(ρS)
≥ 1, with equality if χ < 1. (92)

Combining this with (39) and (60) yields that the fraction of active entrepreneurs satisfies:

χ = min

{
[θ + η(1− θ)]α(ρ)

α(ρS)

1 + πS
1 + π

, 1

}
(93)

Equation (61) remains unchanged, whereas equation (62) (nominal liabilities of the government)

becomes

MS + [τbδb(1 + iS)bbS + τ`δ`(1 + iS)`bS ]− τ`χ(1 + iS)`bS
1 + π

1 + πS

+ (1− τb)(1 + iS)bbS + (1 + iS)(BS − bbS), (94)

so that equation (63) changes to

1 + π

1 + πS
= max

1 +
(1 + iS)

(
δ` − χ 1+π

1+πS

)
τ``

b
S − (1 + iS)(1− δb)τbbbS

MS + (1 + iS)BS
, 1

 . (95)

We now show that π = πS by means of a contradiction. Clearly π 6= πS ⇔ π > πS . In turn, it

is immediate from (95) that π > πS only if χ < 1. From (92), we get that χ < 1 only if ρ = ρS .

From (93), we thus get that χ < 1 implies χ = [θ + η(1 − θ)] 1+πS

1+π . Using this in condition (95),

we get that π > πS only if δ` > θ+ η(1− θ). We have shown already in the proof of Proposition 9

that δ` ≤ θ + η(1− θ), so that we obtain a contradiction.

A.10 Proof of Proposition 12

Note that condition (67) can be rewritten as

dIS ≤ mb
S + (1 + iS)(bbS + χ`bS). (96)

Consider first ZLB and PLI equilibria. Since the IC constraint of patient depositors binds in these

equilibria, we have dIS = dPS = mb
S + (1 + iS)(`bS + bbS). Condition (96) is thus fulfilled if and only

if χ = 1 which, by Corollary 1, is the case if and only if δ` = 1.

Next, consider FLI equilibria. Assuming η < 1, we get from (59) and (64) that

χ = θ + η(1− θ) =
mb
S + (1 + iS)(δbb

b
S + δ``

b
S)

dIS
. (97)

Inserting this into condition (96), and using the fact that mb
S = θdIS in FLI equilibria, yields that

runs are prevented in an FLI equilibrium iff

(1− θ)dIS ≤ (1 + ι)bbS + (1 + ι)

(
θ +

(1 + ι)(δbb
b
S + δ``

b
S)

dIS

)
`bS . (98)

Substituting φdIS = φpSqS ≡ (1 + ι)ρSqS , φbbS = B and φ`bS = θqSκS in condition (98) (the latter

two equations follow from the fact that banks hold all assets in the economy if AS ≤ A) gives

(1− θ)ρSqS ≤ B + θ2qSκS +
θκS
ρS

(δbBS + δ`θqSκS). (99)
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Substituting AS = B + θqSκS and using the fact that κS = κ∗ in FLI equilibria, condition (99)

can then be rewritten as (68). So far we have taken it as given that η < 1, i.e. the discounts are

high enough such that banks impose a redemption penalty in the DM. Inserting mb
S = θdIS into

condition (65) and substituting for dIS , `
b
S and bbS in the same manner as above yields that in an

FLI equilibrium

η < 1 ⇔ (δb − 1)B + (δ` − 1)θqSκ
∗ < −[AS − (1− θ)ρSqS ]. (100)

We can see immediately that η < 1 whenever condition (68) is violated, which means that (68) is

both necessary and sufficient for emergency liquidity to prevent runs.

A.11 Reinterpreting the Government’s Intervention as Secured Lending

Suppose that, instead of purchasing assets outright, the government stands ready to provide emer-

gency credit at a gross interest rate 1/δb when the loan is secured by government bonds and at

gross interest rate 1/δ` when it is secured by loans, where we continue assuming δb, δ` ≤ 1. The

amount of collateral banks need to post equals the face value of the loan, i.e. in order to obtain

one unit of money in the DM, banks need to post either government bonds with face value 1/δb or

loans with face value 1/δ` (or any combination thereof). Analogous to section 8, τb and τ` denote

the fraction of bonds and loans that banks pledge as collateral. Emergency loans extended to

banks are due in the CM next period, after entrepreneurs repay their loans; if banks fail to repay,

the government seizes the collateral.

As before, we assume that the government cannot increase its real indebtedness, i.e. constraint

(57) applies. In said constraint, M + (1 + iS)B now denotes the government’s nominal liabilities

at the beginning of the next CM, just after entrepreneurs have repaid loans and banks have repaid

their emergency credit. The provision of emergency liquidity will then be inflationary whenever it

leads to an increase in nominal government liabilities beyond the point at which the assets pledged

as collateral mature.

It is easy to see that the total amount of liquidity a bank can access by pledging all its assets

as collateral is still given by (58). This implies that the redemption penalty banks need to charge

in order to stop a run is still given by (59), and the aggregate cash held by impatient depositors in

a run equals (60). Equation (61) remains the same as well, with the RHS now denoting the total

money a bank raises by obtaining a secured credit from the government. Finally, nominal liabilities

of the government at the beginning of the next CM will never exceed (62). To see this, note that if

banks repay their emergency loans, all money injected in the DM will be removed from circulation.

If banks default on their loans, the government seizes the collateral, in which case its liabilities

will be identical to the case where it purchases the assets outright, i.e. they will be exactly equal

to (62). As a result, inflation created by the government’s intervention is still given by (63), from

which it follows that all further results derived in Section 8 remain the same. Note in particular

that a bank’s CM payouts - and hence incentives to run for patient depositors - do not depend on

whether the bank sells a given amount of assets in the DM or pledges them as collateral.
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Steady-state results for a Cobb-Douglas Production Function

While the main focus of this paper is on bank runs, this Appendix discusses steady-state

results in some more detail. To do so, we assume that the DM production function is

Cobb-Douglas:

f(k, h) = kαh1−α, (1)

with α ∈ (0, 1). For this parameterization, κ can be expressed as

κ =

(
α

1− α
1 + ι

1 + i

)1−α
, (2)

and thus the real DM price is

ρ =
1

1− α

(
1− α
α

1 + i

1 + ι

)α
. (3)

From the equilibrium conditions we get that DM output in an FLI and a ZLB equilibrium

respectively equals

qFLI(α, θ, ι) = u′−1
(

1 + ι

1− α

(
1− α
α

)α)
(4)

qZLB(α, θ, ι) = u′−1
(

1 + ι/θ

1− α

(
1− α
α(1 + ι)

)α)
, (5)

and for PLI equilibria we get:

qPLI(i;α, θ, ι) = u′−1
(

1

1− α

(
1 +

θι(1 + i) + (1− θ)(ι− i)
θ(1 + i)

)(
1− α
α

1 + i

1 + ι

)α)
. (6)

∗University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom. lu.altermatt@gmail.com
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Given this, we can now revisit the existence conditions for the three equilibria. For the

FLI equilibrium, the existence condition becomes

B
qFLI(α, θ, ι)

+ θ

(
α

1− α

)1−α
≥ 1− θ

1− α

(
1− α
α

)α
, (7)

while for the ZLB equilibrium it is

B
qZLB(α, θ, ι)

+ θ

(
α(1 + ι)

1− α

)1−α
≤ (1 + ι)

1− θ
1− α

(
1− α
α(1 + ι)

)α
, (8)

and for the PLI equilibrium, the existence condition is

B
qPLI(i;α, θ, ι)

+ θ

(
α

1− α
1 + ι

1 + i

)1−α
=

(
1 + ι

1 + i

)1−α 1− θ
1− α

(
1− α
α

)α
, (9)

with i ∈ [0, ι].

Equilibrium without Government Bonds

We consider first the specific case in which B = 0. This implies that the only illiquid assets

banks can invest in are loans to entrepreneurs. While this is not the most realistic and also

not our preferred specification, it is very illustrative since it isolates the new mechanism

we introduce here: the return on illiquid assets is not independent of the real economy,

and if a bank run occurs, conditions in the real economy and thus returns on illiquid assets

worsen.

With B = 0, the existence conditions (7)-(8) reduce to

θ


≥ 1

1+α Full liquidity-insurance equilibrium

= 1
1+α Partial liquidity-insurance equilibrium

≤ 1
1+α Zero lower bound equilibrium.

. (10)

This shows that in an economy without government bonds, θ and α fully determine

the equilibrium case in which the economy ends up. For a given α, the economy will be in

an FLI equilibrium for high values of θ and in a ZLB equilibrium for low values of θ. For

fixed θ, an FLI equilibrium becomes more likely if α is high, which is natural given that

α denotes the share of DM revenue that goes to capital (i.e. to banks in our model). For

the knife-edge case θ = 1
1+α , all three equilibria coexist, and any i ∈ [0, ι] constitutes an

equilibrium.1

What do these results imply for DM consumption? First, note that qFLI is independent

of θ, while qZLB increases in θ. Next, it is also relatively straightforward to show that

qFLI(α, θ, ι) > limθ→0 q
ZLB(α, θ, ι). Thus, to characterise the path of q over the whole

1As we show in Appendix A in the paper, this is an instance of a general property of the model:

whenever both an FLI and a ZLB exist, then (at least one) PLI equilibrium exists as well.
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Figure 1: DM consumption as a function of θ in an economy with B = 0.

domain of θ, all that is left to determine is whether the q’s differ in the three equilibria

when θ = 1
1+α , and if they do, which one delivers the highest q. Computing these two

quantities shows that

qFLI(α, θ, ι) < lim
θ→1/(1+α)

qZLB(α, θ, ι) ⇔ 1 + ι > (1 + ι(1− α)) (1 + ι)−α,

which happens to hold for any ι > 0 and α > 0. This shows that there is a nonmonotonicity

in q over θ, and further that when all equilibria coexist, the equilibria vary in terms of

allocations and welfare.2 As described in the paper, an increase in i has two opposing

effects on DM activity: a negative effect by increasing the DM price ρ and a positive

effect by lowering the effective cost of liquidity. It turns out that in an economy with a

Cobb-Douglas production technology and B = 0, the first effect dominates at the level

of θ where we have equilibrium multiplicity. Figure 1 shows DM consumption over the

domain of θ, with the dashed line depicting ZLB equilibria, the dotted line depicting FLI

equilibria, and the solid line depicting PLI equilibria.

Equilibrium with Government Bonds

Having discussed matters without government bonds, we now turn to the case with a pos-

itive amount of government bonds available in the economy. We can rewrite the existence

condition for an FLI equilibrium (7) as:

B ≥ qFLI(α, θ, ι)

(
1− θ
1− α

(
1− α
α

)α
− θ

(
α

1− α

)1−α
)
. (11)

2Whether welfare is higher in a ZLB or in a FLI equilibrium when they coexist is unclear. DM output

in the ZLB equilibrium is higher, which may move DM output closer to its efficient level. However, a

given DM output is produced with an inefficiently high amount of capital in a ZLB equilibrium, while the

capital-labour mix is efficient in an FLI equilibrium.

3



It is easy to see that for any ι and θ, there is a B that satisfies condition (11), thus showing

that policymakers can always get the economy into an FLI equilibrium by supplying

enough bonds. Rewriting the condition for a ZLB equilibrium, (8), in a similar fashion

yields

B ≤ qZLB(α, θ, ι)

(
1− θ
1− α

(
1− α
α

)α
− θ

(
α

1− α

)1−α
)

(1 + ι)1−α. (12)

It is again straightforward that higher B makes it harder for the above condition to be

satisfied, showing that by supplying enough bonds, policymakers can not only ensure that

an FLI equilibrium exists, but also that a ZLB equilibrium does not exist. From the case

with B = 0, we know that an FLI and a ZLB equilibrium both exist when θ = 1
1+α . An

important question is thus whether the multiplicity of equilibria can still occur with B > 0.

This is the case whenever there exists a B that satisfies both conditions (11) and (12). A

sufficient condition for this to be the case is

qZLB(α, θ, ι) ≥ qFLI(α, θ, ι)

(1 + ι)1−α
. (13)

To ensure that a B satisfying both (11) and (12) is positive, we also need

θ <
1

1 + α
,

which is of course a familiar expression from the previous analysis. We already showed that

qZLB(·) > qFLI(·) when θ = 1
1+α , and since (1 + ι)1−α > 1 for any ι > 0, condition (13) is

satisfied at this value of θ.3 By continuity, the condition will also be satisfied by values of

θ close to, but different from 1
1+α . Thus, there exist values of θ < 1

1+α (θ > 1
1+α) for which

the two equilibria coexist with a positive (negative) supply of government bonds. Further,

as we show in Appendix A in the paper, coexistence of an FLI and a ZLB equilibrium

implies existence of a PLI equilibrium. This shows that with B 6= 0, all three types of

equilibria coexist not only in a knife-edge case, but for a set of parameters with positive

mass.

3At the Friedman rule, the FLI and ZLB equilibria are equivalent, so the condition always holds at

equality.
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