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Abstract

Empirical research suggests that lower interest rates induce banks to take higher
risks. We assess analytically what this risk-taking channel implies for optimal
monetary policy in a tractable New Keynesian model. We show that this chan-
nel creates a motive for the planner to stabilize the real rate. This objective
conflicts with the standard inflation stabilization objective. Optimal policy thus
tolerates more inflation volatility. An inertial Taylor-type reaction function be-
comes optimal. We then quantify the significance of the risk-taking channel for
monetary policy in an estimated medium-scale extension of the model. Ignor-
ing the channel when designing policy entails non-negligible welfare costs (0.7%

lifetime consumption equivalent).
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1 Introduction

The risk-taking channel of monetary policy — the mechanism by which lower interest
rates encourage banks to take on additional risk — is a well-established empirical
regularity. Studies have shown that this channel was active both before and after the

2008 financial crisis.!

Despite policymakers’ awareness of the risk-taking channel,
its normative implications for monetary policy remain to be determined.” Should
central banks consider their influence on bank risk taking when setting their policy
rates, and if so, how?

We explore these questions in two steps. First, we embed a tractable model of bank
risk taking into the textbook New Keynesian model (NKM), and analytically char-
acterize optimal monetary policy under a linear-quadratic approximation. Second,
we embed the same model of the risk-taking channel into a larger New Keynesian
DSGE model estimated using US data, and we use it to explore the quantitative
importance of the risk-taking channel for optimal monetary policy. We show ana-
lytically that the risk-taking channel provides an incentive for the central bank to
minimize the volatility of the real interest rate, conflicting with the standard New
Keynesian policy prescription to minimize inflation volatility. Hence, the risk-taking
channel introduces a new trade-off for the policy maker. We find this new trade-off
to be quantitatively significant in the large model: Ignoring the risk-taking channel
when designing optimal monetary policy entails welfare costs of approximately 0.7%
of lifetime consumption equivalent.

To derive the analytical conclusions, we set up a simple New Keynesian model
with financial intermediation and a bank risk-taking channel. Firms must borrow in
advance to finance production, as in Ravenna and Walsh (2006). Firms’ technologies
are risky and differ in their risk-return characteristics. Banks provide the necessary
external financing to firms by funding themselves through equity and deposits, and
they choose the riskiness of the firm in which they invest. As in Dell’Ariccia et al.
(2014), frictions in the banking system — limited liability, the unobservability of risk
taking, and an equity premium — cause a risk shifting problem. Banks choose to

lend to excessively risky firms, in the sense that a reduction in risk would increase

'E.g. Maddaloni and Peydro (2011), Buch et al. (2014), Ioannidou et al. (2014), Jimenez ct al.
(2014), Heider et al. (2019), Bubeck et al. (2020).

*For example, ECB board member Mersch (2020) remarked that “monetary accommodation
incentivizes financial firms to increase risk taking”, while FOMC meeting participants discussed
the possibility of “adjusting the stance of monetary policy to mitigate financial stability risks”,
particularly when macroprudential tools were likely to be ineffective (FOMC, 2020).



the expected social return on their investment. The level of the real interest rate
influences the degree of banks’ risk taking: Lower real interest rates induce banks
to choose even riskier investments, thus giving rise to the risk-taking channel of
monetary policy.

Since risk taking comes at the cost of lower expected return on investment, the
central bank might wish to reduce risk taking by increasing the average level of real
interest rates. However, due to long-run neutrality of monetary policy, the central
bank cannot control the long run level of the real interest rate. Nevertheless, this
does not render the risk-taking channel irrelevant for monetary policy. As we show
analytically, the average efficiency of banks’ investments decreases not only in the
level, but also in the volatility of the real interest rate. The latter can be controlled
by the central bank. Thus the risk-taking channel translates into an motive for the
central bank to stabilize the real interest rate around its policy-independent average
level.

The model remains highly tractable and, in linearized form, boils down to a modifi-
cation of the textbook three-equation NKM, which allows us to characterize optimal
monetary policy analytically using a linear quadratic approximation and to derive
the impact of the risk-taking channel on optimal policy. We derive four key results.
First, we show that welfare depends not only on output gap and inflation volatility,
as in the standard NKM, but also on the volatility of the real interest rate. Second,
we find that the inclusion of the risk-taking channel implies less real interest rate
volatility, but greater inflation volatility under optimal policy. Third, the presence
of the risk-taking channel decreases the optimal response to inflation in the cen-
tral bank’s Taylor rule. These last two results hold true regardless of whether we
consider optimal policy under discretion or optimal simple rules under commitment.
Fourth, we derive an implicit instrument rule that implements fully Ramsey-optimal
policy under commitment, and find that the risk-taking channel requires inertia in
the policy rate. The risk-taking channel thus provides a novel explanation for in-
terest rate inertia, which is routinely built into Taylor rules in models and typically
observed empirically.

Having explored the risk-taking channel analytically in a stylized model, we then
turn to the question of whether this channel is also quantitatively relevant for op-
timal monetary policy. To address this question, we use the medium scale DSGE
model of Abbate and Thaler (2019). This model combines the same banking-sector

model described above with an otherwise standard medium scale New-Keynesian



model & la Smets and Wouters (2007). This model provides a reasonable descrip-
tion of macro-dynamics and is thus a better laboratory for quantitative analysis. In
fact, Abbate and Thaler (2019) estimate the model using US data and show that
the inclusion of the risk-taking channel improves the fit of the model for macroeco-
nomic time series, generates a path of risk taking that matches survey evidence on
the riskiness of newly issued loans, and gives rise to procyclical bank leverage, as
documented by Adrian and Shin (2014).

We employ this model to numerically determine optimal policy under simple rules.
We derive four results that confirm and quantify the four theoretical results men-
tioned above. First, the central bank accepts approximately 50% more inflation
volatility than in the absence of the risk-taking channel. Second, the optimal Taylor
rule features a significantly lower response to inflation and, third, an autoregres-
sive coefficient of approximately 1 when the risk-taking channel is active. Fourth
and most importantly, the welfare costs of considering the risk-taking channel when
designing optimal monetary policy are significant, and amount to around 0.7% of
lifetime consumption equivalent. The risk-taking channel thus has the potential
to affect optimal policy significantly. This contrasts findings in the literature that
other types of financial frictions do not affect optimal monetary policy significantly
(e.g. Bernanke and Gertler, 2001 or De Fiore and Tristani, 2013).

Our model builds on an extensive literature documenting the risk-taking channel
empirically, including Maddaloni and Peydro (2011), Buch et al. (2014), Ioannidou
et al. (2014), Jimenez et al. (2014), Bubeck et al. (2020) and Heider et al. (2019).
They all find that low rates increase the riskiness of banks’ new investments. The
second and third paper add an important qualification to the risk-taking channel by
showing that banks do not offset higher risk with a sufficiently large increase in the
risk premium. Risk taking is thus inefficient, as in our model.

The main contribution of this paper is twofold. First, we contribute to the theoretical
macro literature on the risk-taking channel. This literature has so far taken a largely
positive approach and described different versions of the risk-taking channel. Many
models focus on the risks generated by the banks’ leverage choice on the liabilities
side of their balance sheets. Some link greater leverage to a stronger financial
accelerator (e.g. Gertler et al., 2012 and de Groot, 2014), while others link it to a
larger incidence of bank runs (Angeloni and Faia, 2013 and Angeloni et al., 2015).
Closer to the empirical literature cited above, other authors focus on the riskiness of

banks’ investments, that is, on risk taking on the asset side of their balance sheets.



Christensen et al. (2011) and Collard et al. (2017) are two examples, but in their
models market discipline or regulation always ensures that risk taking is efficient
in equilibrium, so there is no important role for monetary policy. In contrast, our
companion paper Abbate and Thaler (2019) and Afanasyeva and Guentner (2020)
explore the interactions of monetary policy and banks’ asset risk taking in a medium
scale DSGE model from a positive point of view.

The first contribution of this paper is therefore to add normative conclusions for
monetary policy to this largely positive literature.® In doing so, our paper is related
to Martinez-Miera and Repullo (2019), who provide a simple two period macro-
model in which banks’ asset risk taking is modeled and affected by monetary policy
in a very similar way. Since risk taking is excessive from a social point of view,
the authors argue that this mechanism constitutes a motive for the central bank
to increase the real interest rate through monetary policy. Because we consider
monetary policy in the long run under rational expectations, our message contrasts
with theirs. We argue that monetary policy cannot systematically raise the real
interest rate due to monetary neutrality, which is a central tenet of New Keynesian
theory. However, monetary policy can still affect risk taking by influencing the
volatility of the real interest rate.”

The second contribution is to the normative literature on monetary policy inertia.
While the inertial nature of policy rates is well documented empirically and inertial
Taylor rules are standard in monetary models, it is theoretically not straightforward
that such inertia is optimal form a planner’s point of view. By showing that the
risk-taking channel adds an interest rate variation term to the welfare function and
leads to an inertial rule under Ramsey policy, we provide a novel theory that can
explain inertial interest rate policy. In doing so, we complement other explanations
for why interest rate volatility matters for welfare, such as the zero lower bound or
transactions frictions in Woodford (2003).

The paper proceeds as follows: In section 2 we set up a simple NKM with the risk-

30f course, the risk-taking channel also has important normative implications for regulatory
policy, from which we abstract for simplicity. We view this choice as a shortcut to model the
arguably realistic fact that regulation might not be 100% effective at muting the risk-taking channel
in practice — otherwise the channel should not be in the data.

“We conjecture that our intuition might also apply to Martinez-Miera and Repullo (2019) in
the long run. Since the welfare function is concave in the real rate, a mean preserving increase in
the volatility of the real rate is detrimental to average welfare.

5Note that while in our case it is the real interest rate, not the nominal one, that appears in
the welfare function, the effects are similar.



taking channel, which we then use in section 3 to explore optimal policy analytically.
In section 4 we briefly discuss the medium scale model, which we then use to analyze

the quantitative importance for optimal policy numerically. Section 5 concludes.

2 A simple New Keynesian model of the bank risk-

taking channel

In this section, we set up a simple New Keynesian model with financial interme-
diation and a bank risk-taking channel. We build on Ravenna and Walsh’s (2006)
model of the cost channel, where firms need to borrow in advance to finance produc-
tion. While we are not interested in the cost channel per se, it represents a tractable
and parsimonious way to introduce intermediation into the textbook three-equation
New Keynesian model without introducing capital.® We extend this basic model of
intermediation to introduce the risk-taking channel as in Abbate and Thaler (2019),
who build on Dell’Ariccia et al. (2014). Firm’s production technology is risky and
banks, who finance firms, can choose the riskiness of the firm they lend to.

The simplicity of the model has two advantages: First, we can cleanly demonstrate
how bank risk taking alters the otherwise standard set of equations of a basic New
Keynesian model. Second, we can derive an analytical approximation of the social
welfare function, as well as optimal monetary policy rules. Finally, while simple,
the model replicates two key stylised facts about the asset risk-taking channel es-
tablished in the empirical literature. First, that lower interest rates induce banks
to make riskier loans (e.g. Jimenez et al., 2014). Second, that the increase in risk
exposure is not offset by an increase in risk premia (Buch et al., 2014 and Toannidou
et al., 2014), i.e. that this additional risk is inefficient.

The model economy has eight types of agents: Households, input good produc-
ers, intermediate goods producers, final good producers, equity and deposit funds,

private banks, and the central bank. We discuss these agents in turn.

2.1 Households

Households choose consumption C;, working hours Ny, cash holdings M; and shares

in the equity and deposit funds E; and D; in order to maximize their discounted

5Introducing capital makes the optimal policy problem analytically intractable. In the numerical
analysis in section 4 we introduce intermediation through capital rather than the cost channel.



lifetime utility:
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Timing is as follows: Households enter period ¢ with nominal money holdings M;_;.

They then receive wage income W;N; in cash as well as a lump-sum cash injection
X, from the central bank. They then use this cash to investment into equity and
deposit funds D; and E;, and to purchase the consumption good Cy, which has to
be paid in advance. Hence, consumption is subject to the following cash-in-advance
(CIA) constraint:

PCy < My +WiNy — Dy — Ey + X, (1)

At the end of the period, households work and consume the previously chosen quan-
tities Ny and C;. Furthermore, the household receives payments from the equity
and deposit funds remunerated at the safe nominal (gross) rate RY and RY, as well
as any profit income II; from firms and the two funds. Hence, cash holdings M; at

the end of the period are:
M; = My_y + W;N; — Dy — P,Cy + R{Dy + R{Ey + T, + X, (2)

Utility maximization implies that the two safe interest rates are the same, so that

we can simply refer to the safe rate as Ry:
R¢=RI=R, (3)

Utility maximization also yields the usual labor supply condition and the Euler

equation:
N W @
cy P
_ _ Rt}
C7% = BE U 5
t PR, t+1 Tl ( )

Furthermore, the CIA constraint (1) must hold with equality in any equilibrium

with positive nominal rates.



2.2 Input good producers

There exists a continuum of ex-ante identical input good producers indexed by
m, who hire labor N™ to produce the input good z{* using a risky production
technology, which has constant returns to scale (CRS) with respect to labor. Each
input producer has access to a continuum of technologies with different risk-return
characteristics indexed by ¢ € [0, 1]. Given a certain technology ¢;", the output of

producer m is:

(w1 — %) N/ with probablity ¢;"

0 else

Input producers need to pre-pay the wage bill W;/N;" at the beginning of the period,
but only produce at the end of the period. They therefore need to borrow from
the bank in order to finance the wage bill. They promise to repay the loan after
production at the gross nominal loan rate 7;; and let the bank choose the riskiness of
their technology ¢;.” If the production process is successful, producers sell the input
good at price P, ; and repay the loan. If the production process is not successful,
the producers default.

Input producers choose the scale of production that maximises their profits. Price
taking and the linearity of the production technology in N, imply that they pass on
all their revenues to the bank and make zero profits. Hence, the nominal price of

the input good is equal to:

w
Py =1r1:W/ (Wl - ;%T) (6)

Given that the producers’ output is uncorrelated, and that in equilibrium all produc-

ers use the same technology ¢;, the quantity of input goods produced in equilibrium

is given by:
w
Zy = q (wl - ;%) N¢ (7)
N——

f(qt)

where Z; = fl_o Z™dm, Ny = fnll:(] N™dm, and where f(q;) denotes the expected

m=

productivity of input good producers.

7 Alternatively, one can assume that ¢, is a fixed characteristic of a producer, but that there
exists a continuum of producers for each ¢, € [0,1].



2.3 Final and intermediate good producers

Final and intermediate good producers are standard and hence discussed only briefly.
A representative final good producer aggregates intermediate good varieties Y to

produce the final consumption good Y according to the CES aggregator:

L e 100D
Yt:U (YZ)(t )/tdz}
0

There is a continuum of intermediate good producers indexed by ¢ who produce
differentiated intermediate goods under monopolistic competition and Calvo pric-
ing. Their CRS technology is given by Y = A;Z}, i.e. they linearly transform
input goods into intermediate varieties, where A; is total factor productivity. They
purchase input goods at price P;,; and receive a proportional subsidy 7; on their
purchases. This subsidy is financed by lump sum taxes on the household and plays a
similar role as the labor subsidy often used in the textbook NKM. Hence, their nom-
inal marginal cost is given by MC; = %ﬁ—n)’ which using (6), can be rewritten

as:

Wiryq: (1 — 1)
Asqr (w1 — 4 q™)

MCy =

Note that the above marginal cost definition differs from the standard one in the
basic New Keynesian model (e.g. Gali, 2015) in two ways. First, due to the presence
of different risky production technologies: Input good production is risky at firm
level, but one unit of labor is transformed into f(g;) = ¢; (w1 — %*¢}"*) units of input
goods on average across all input goods producers. The higher the productivity
of inputs good producers f(g;), the lower the marginal costs of intermediate firms.
Second, due to the presence of the cost-channel as in Ravenna and Walsh (2006):
Since input producers have to pre-finance their wage bill, their marginal costs are
given by the wage bill multiplied by expected gross interest payments on the wage

bill g;7¢. Since we are not interested in the cost channel per se, we assume that the

1 8
qerye”

This subsidy is not relevant for the derivation of the welfare function in section

government sets the subsidy 7; such that the cost channel is muted 7. =1 —

8The cost channel only serves as a convenient device to introduce intermediation into the 3-
equation NKM without capital. The implications of the cost channel for optimal policy are discussed
in detail in Ravenna and Walsh (2006). In the medium scale model which we explore numerically
in the last section, we do not need to rely on the cost channel since the presence of capital allows
to introduce intermediation in a more straightforward way.



3.1, but it simplifies the Phillips curve and, as a result, the derivation of optimal

monetary policy.” Marginal costs are thus:

Agy (w1 — “Zq")

Marginal costs now differ from the standard definition only due to the risk-taking

MC, (8)

channel. We will discuss the implication of this difference later.

Price setting is standard. Every period, each intermediate good producer can reset
its price P} with probability 1—w. The price is set to maximize expected discounted
profits, using the households stochastic discount factor and taking the demand func-
tion for their variety as given. This leads to the standard dynamics of aggregate

prices and price dispersion reported in Appendix A.

2.4 Equity and deposit funds

As we explain in the next subsection, there is a continuum of banks indexed by
b which fund loans through deposits D} and equity E? at the beginning of the
period. Each bank is subject to a binary idiosyncratic shock, which makes a bank
fail with probability 1 — ¢;. If the bank fails, both equity holders and depositors
loose their investment. If the bank does not fail, bank deposits and equity pay the
gross nominal deposit and equity rates rfl and 7% at the end of the period. The
deposit and equity funds hold the deposits and equity of all banks, thus diversifying
away any idiosyncratic risk. They are financed by fund shares purchased by the
household such that D; = fol DYdb and E; = fol EPdb. Note that the funds merely
serve as modeling devices to simplify the exposition.'”

The deposit fund is a frictionless pass-on vehicle. It invests its funds into all banks,
represents the depositors’ interests perfectly and returns the nominal deposit fund

rate Rq, which is simply the average return on deposits:

Rd,t =qtrdt - (9)

As a simple way to introduce an equity premium, we assume the equity fund manager

9We will not impose this subsidy in the large model in section 4, and we have verified numerically
that it would not affect the results reported there significantly.

OEquivalently, we could assume that the household perfectly diversifies its deposits and equity
across banks, or that there is perfect risk sharing among a continuum of households, each interacting
with one bank.
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is paid a (real) premium & per unit of funds under management to incentivize him
to act in the best interest of equity providers. This premium is rebated to the
household in a lump-sum fashion as part of his profit income.'" The nominal return
on the equity fund is hence given by the average return on bank equity minus the
premium:

Rer = qire — §Eymyr - (10)

Since both funds are perfectly diversified, the returns of both funds are risk free.
Hence, the households’” FOCs imply that the return on fund shares are equated
R.; = Ri; = R;. Nevertheless, the costs of deposit and equity financing for banks
differ from each other due to the equity premium £. To see this, combine this
equality with equations (9) and (10) to find that:

T Tdt

e,t
t =qt +¢
Etﬂt—‘,—l Etﬂ't—f—l

This simple way of modeling the equity premium could also be reinterpreted as
transaction costs of equity or a convenience yield of deposits.'? The equity premium
invalidates the Modigliani-Miller irrelevance principle and, as we will see, plays an

important role in delivering the risk-taking channel.

2.5 Banks

Banks finance themselves through deposits and equity, and invest these funds into
risky assets. In particular, banks choose the scale of their balance sheet, their capital
structure and the riskiness of their assets, taking interest rates as given. We show in
this section that the bank risk choice has implications for the allocative efficiency of
the economy, and therefore bears implications for monetary policy. The modeling
of the banks follows Abbate and Thaler (2019), who build on Dell’Ariccia et al.
(2014), and involves three key assumptions: (i) Unobservability of the bank’s risk

1 This equity premium can be explained by a simple agency problem. Assume the equity fund’s
manager faces two possibilities. Either he behaves diligently, investing funds F; into banks at the
beginning of the period, paying back the return of this investment at the end of the period. Or he
absconds with the cash at the beginning of the period, consuming a fraction £ in the next period,
while the rest is lost. To prevent the latter, equity providers promise to pay him a premium p; at
the end of the period, conditional on not absconding. The minimal premium that induces diligent
behavior is Pt = gtEt'/Tt-&-L

12This assumption about equity is common, e.g. Allen et al. (2011) or Hellmann et al. (2000).
Gorton and Winton (2017) provides a microfoundation where the equity premium arises from a
liquidity motive.

11



choice and (ii) limited liability of the bank, which give rise to an agency problem
between depositors and equity providers, and (iii) the cost advantage of deposits
over equity introduced in the previous subsection.
There is a continuum of ex-ante identical competitive banks (for convenience we omit
the bank’s index b in this subsection). Banks live for one period. At the beginning
of the period, each bank chooses how much deposits D; and equity FE; to raise
from the respective funds, and lends these resources to one particular input good
producer at a promised (gross) rate r;;. When lending to an input producer, the
bank chooses the risk characteristic ¢; of the technology employed by the producer.'?
While the bank selects the level of risk, depositors cannot observe this risk choice.
Hence deposit contracts cannot be made contingent upon the bank’s risk choice,
and the bank cannot credibly commit to a certain risk choice either. At the end
of the period, the bank’s loan is due. Since each bank invests into only one input
producer, the return on the bank’s assets is risky. If the input good producer is
successful, which happens with probability ¢;, the bank receives r(E; + Dy). In
that case, the bank repays its deposits and equity at the promised nominal (gross)
rates rq4; and 7.;. With probability 1 — ¢;, the production fails, and the loan is
worthless. In this case, limited liability protects equity providers from depositors’
claims such that both depositors and equity providers receive nothing.
It is convenient to understand the bank’s problem as a two-stage problem. At stage
1, the bank chooses the scale of its balance sheet and the capital structure. At stage
2, once the balance sheet has been determined and the deposit rate has been fixed,
the bank chooses the risk level ¢;. At each stage, the bank maximizes the expected
value of its profits net of the user cost of equity — excess profits for short. The bank’s
objective function is hence given by:

i {T’Z,t - Td,t% — Te,t%} (Ey + Dy)
When choosing the riskiness of its investment ¢, the bank understands the risk
return trade-off implied by the capital producers’ optimality condition (6). We can
hence substitute r;; in the above expression. Furthermore, define the equity ratio as
ky = % and the total balance sheet size by o, = D; + E; and divide everything

by expected inflation to obtain:

13The choice of ¢; may be interpreted both as lending to borrowers of different risk levels, or as
the adjustment of lending terms (collateral, covenants etc.) to the same borrower so as to make
repayment more likely. Also see FN 7.

12
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To simplify notation, we rewrite the objective function in real variables using the fol-

. s Lo 1 Pin, o o o
lowing definitions: 7], = E; |:7Tt+1 ;V"tt] s T = Be[rae/me], vy = B [ree/mea], B =

E¢ [R¢/m41] . The objective function can be reexpressed as:

w2 9\ -
{(wlfh - 7%2) Fle — arg (1 — ki) — Qtrg,tkt} o .

Now we solve the bank’s problem recursively.

At the second stage, the bank has already raised Ey + D; funds and now needs
to choose the riskiness of its investment ¢;. As already mentioned, we assume that
the bank cannot write contracts conditional on ¢; with the depositors at stage one.
Therefore, at the second stage the bank takes the deposit rate as given. Furthermore,
since the capital structure is already determined, maximizing expected excess profits
coincides with maximizing the expected total profit of the equity holders. The second

stage problem is thus:

w2 - r
7%:2> TlT,t - qtrd,t(l — ki) .

max <w1qt —
qt
The FOC reads:

Wiy, — Ty (1 — k)
qt = .

CL)Qth

At the first stage, the bank chooses the capital structure k; and the balance sheet
size o; to maximize expected excess profits, subject to the participation constraints
(i.e. the funding supply schedules) for depositors and equity providers. Since agents
have rational expectations, everyone correctly infers the level of risk ¢; that will be
chosen by the bank at the second stage as a function of k¢, 7y, and 77,. The first

stage problem is thus

. w2
max ot {r{t (thl - —qtz) —qrg (1 —ke) — qre (1 — kt)}

k06,670 0, 2

=T T
PR e _RiAE il - (k)
st. Ty, = q_ and 1. = p and ¢ = o .
t t Lt
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Substituting for g, ry, and r¢, allows us to rewrite the problem more compactly:

max oy {flrt ((jtwl - 002@2) — R} — §k‘t}
k)t,Ot ’ -
where
A wy + \/w% — (dwa(1 — k) RY) /f}:t
G = '

w2

The FOCs for leverage k; reads:

B+,
waRY (RY +2€2)

k=1

Finally, since the first stage problem is linear in the balance sheet size o;, the corre-
sponding first order condition requires banks to make no expected profits in excess

of the costs of funds:

L w .
i (an — %242 ~ (g + ) =0. (1)

cost of funds

revenues
We can combine the last three equations to derive the banks’ risk choice ¢; as a

function of the safe real interest rate:

_ wi(E+RY)

T e Ry (12)

2.5.1 Bank risk taking in equilibrium

The bank’s equilibrium risk choice discussed above has four important properties,

that we summarize below:

PROPOSITION 1: Consider a partial equilibrium in the banking sector for a
given level of the expected real rate R}. Let ¢ denote the optimal risk choice of the
bank in partial equilibrium and assume this choice is interior. Recall the definition

of the expected productivity of the input producer f(g;) = (w1 — %*q¢) ¢;. Then:

(1) Risk decreases in the real interest rate: 6‘? 7e >0
t
(2) Risk taking is excessive: ¢; < argmax f(q;) .
(3) Expected productivity increases in the real interest rate: aafgf) >0.
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(4) Expected productivity is a concave function of the real interest rate
2
%&?ﬁ% <0.

Part 1 of the proposition, which can be easily derived from equation (12), states that
a decline in the real risk-free rate R} induces banks to invest into riskier projects
(g falls). This is the risk-taking channel at work.

What is the intuition behind it? By choosing its funding structure at stage 1 the
bank implicitly determines its risk choice at stage 2, which is understood and priced
in by depositors. Thus, when the bank chooses its leverage, it balances the advan-
tages of deposits (lower costs due to the excess equity premium) with those of equity
(mores skin in the game, hence less risk taking at stage 2, thus higher expected re-
turn on investment). A reduction in the safe real rate makes the equity premium
a more important component of the cost of equity, in relative terms. Thus banks
have a stronger incentive to rely on cheaper deposits and thus to lever up. This
reduces their skin-in-the-game and induces them to take more risk. For this result
it is crucial that the equity premium is constant in absolute terms. As Abbate and
Thaler (2019) argue, this assumption is both common in the theoretical literature
as well as empirically plausible.

Part 2 states that the bank’s risk choice is excessive (i.e. suboptimally high), in
the sense that expected productivity would increase if the bank chose a safer invest-
ment. The inefficiency of the risk choice results from the agency problem between
depositors and equity providers and the fact that deposits are cheaper than equity.
In the absence of these frictions, ¢; would be chosen to maximize expected produc-
tivity (w1 — % q:)q: and would thus be given by ¢° = Z—; The frictions drive a wedge

between the optimal risk level ¢° and the level that is actually chosen ¢;:

_ LT RY
T+ Ry

This wedge is smaller than one, i.e. banks choose excessive risk. Furthermore, it

qt

increases in Rj. Thus, risk taking gets more excessive as the real rate falls, implying
a lower expected productivity f (¢;) as stated in part 3.

Finally, part 4 states that the effect of R} on expected productivity f (¢;) decreases
in R;. That is f (g; (R})) is a concave function. This result will be crucial for optimal

policy. Parts 2 to 4 of proposition 1 are illustrated in figure 1.'*

MNotice that the exact shape of the risk return trade-off does not need to be
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Figure 1: Expected return on bank assets f(¢;) = f (¢ (R})), as a function of the
real interest rate Rj

f(a(R:))

f(qo)- ------------------- o oTcooo====s

2.6 Central bank

To close the model, the central bank needs to set the nominal interest rate according
to some criterion and adjust the money supply accordingly. It may follow a Taylor
rule or optimize welfare. We leave this criterion unspecified for now. This concludes

the description of the model.

2.7 Comparison to the three-equation New Keynesian model

Our model embeds the risk-taking channel into the basic textbook NKM. Frictions
in the banking sector imply that lower interest rates lead banks to choose riskier
investments with a lower expected productivity. This alters two key equations in
the standard New Keynesian model: The definitions of aggregate output and of
marginal costs. We discuss them in turn. The other equations remain unaltered,
and we report them in Appendix A.

First, using equation (7) and aggregating the intermediate goods, aggregate output

quadratic as we assumed for f(¢:): as Abbate and Thaler (2019) show, propo-
sition 1 generally holds for a broad class of concave functions f(g). Con-
cavity in turn is a mnatural assumption since it guarantees an interior solution.
Even more generally, for the analytical results about optimal policy in section 3 the exact
mechanism behind the risk-taking channel is irrelevant. All that will matter is the concavity of

f(g: (RP)).
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can be defined as:

Ap (w1 — Laq) q Aif(qr)
Y, = 2 N, =
t A, t A,

where A, is the standard price dispersion term. This expression implies that, because

Ny (13)

of the risk-taking channel, aggregate output is not only a function of labor, total
factor productivity and price dispersion, but also of the average productivity of the
input production technology f(g;). This new term is a function of the real interest
rate by equation (12):

flar) = f (RY)

_ Wl £+ R W <§+Rz>2 1)

T w26+ R 2wy \26+ RY
The risk-taking channel has both steady-state and dynamic implications for aggre-
gate output. From part 2 of Proposition 1, we know that the banking sector frictions
lead to excessive (suboptimally high) risk taking, both in and outside the steady
state, so that f(g:) < f(¢°), where f(¢°) is the productivity of input good produc-
ers evaluated at the optimal risk level. The inefficient risk choice translates to an
inefficiently low level of aggregate output, both in and outside the steady state.
Moreover, risk taking gets more excessive as the real interest rate falls (part 3 in
Proposition 1). This implies that the lower the real interest rate, the lower the level
of aggregate output.
Second, marginal costs are also affected by the risk-taking channel. They are given

by equation (8), which we reproduce below:

- Wi B Wi
Ay (wl - %Qt) qt Aif(qr)

As noted before, this equation differs from that of a standard New Keynesian model

in the term f(¢). Productivity depends not only on total factor productivity, but
also on the risk level chosen by the banks. By the same arguments discussed for
output, marginal costs are hence excessively high and decrease in the real interest
rate.

After linearization, the model condenses to the two well-known equations, that
together with a policy rule for the nominal interest rate define the three-equation
NKM : the IS curve and the Phillips curve. While the former is the same as in

the textbook model, the risk-taking channel shows up in the Phillips curve (see
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Appendix B2) via the marginal costs:

Tt :ﬁEtﬂ't—f—l +/€(O’+§0) fot—/ﬁ}(1+g0) RlR;‘-i-’U,t (15)

Here  — 1=@)(1-fw)

is the coefficient on marginal costs in the standard New Key-
nesian Phillips curve, Z; is the log of the welfare relevant output gap (wrt. to the
efficient level) and R; is the expected real rate, the latter two in deviation from
the steady state, R1 is a positive coefficient defined in the next section, and u; is a
cost-push shock driven by 6.

To summarize, once the model is condensed, the risk-taking channel shows up as a
function f (R}) multiplying TFP. Our model is hence isomorphic to a model where
TFP is a positive, concave function of the real interest rate. Next, we explore how

this channel alters the standard trade off faced by the monetary policy authority.

3 Optimal monetary policy in the simple model

To understand the impact of the risk-taking channel on optimal policy, we first
derive a second order approximation of the planner’s welfare function, and then use

it to derive optimal policy.

3.1 The objective function

We assume the planner maximizes household utility. As we show in Appendix B1,
in case of a small steady-state distortion, a second-order approximation to consumer

welfare leads to the following social loss function:

w

(1= pw) (1 -w)

1 A
Or; — 5 (0 + )& + (1 - ©) Ry

1
07, — -
Ty 2

W:—Et{iﬁt
t=0

1 A N2 o I

—5 (A + QR+ R) (By)” R (0 = D) Rigi + Ra(1+ ) R;xtl }
where g denotes the efficient level of output, z; the welfare relevant output gap, both
in log deviations from steady state, and where ]%{ denotes the period t expectation of
the real interest rate in next period, in deviations from steady state. The first three
terms in the loss function are the usual in the standard New Keynesian model and

imply that consumer welfare declines in (i) the steady-state output gap distortion,
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(ii) fluctuations of inflation and (iii) fluctuations of the output gap. The term ©
is the steady-state distortion related to imperfect competition in the intermediate
sector, which is defined as © = 1— % where ® is the steady-state markup. The other
terms are related to the risk-taking channel and discussed in the Appendix. Here
we just note that the fourth term implies that welfare increases in the real interest
rate because the efficiency of risk taking increases in the real rate. The coefficients
R1 and R9 are a positive function of the steady state real interest rate, and of the

equity premium:

_ Ir
Ri= f(RT) >0
_ frrf(RY) = (fr)?
Ro = L >0

where f(R") denotes the steady state of equation (14), and fr and frgr respectively
denote the first and second-order derivatives of f(R") with respect to R", which we
characterized in proposition 1.'°

Because our main focus is on stabilization policies, we will follow the literature in
assuming that time-invariant subsidies are in place such that the steady state is
efficient. This eliminates the steady-state markup (© = 0) and the steady-state
inefficiency in risk taking, such that fr = 0, while still frr < 0. The loss function

then simplifies to:

1—fw)(1l—-w)

This expression is identical to the welfare function in the textbook NKM, with the

W:;Etg,@t {( d 0n2 + (0 + @) 22 + Ry (R:ﬂ (16)

exception of the last term. This is our first key result about optimal policy: The
risk-taking channel introduces a real interest rate volatility term into the second
order approximation of welfare. To understand why this term appears, recall part 4
of Proposition 1, which states that the expected return of the bank’s investment is
concave. This implies that a mean preserving spread in the real interest rate reduces
the expected return of investment by Jensen’s inequality. Volatility in the expected
real interest rate thus affects welfare negatively. This intuition is evident from (16):

The weight on real rate volatility in the loss function is Ry = —% . This weight

5The expressions for R; andRs are reported in Appendix B1. Note that these terms, which
measure the strength of the risk-taking channel, increase in the equity premium &.
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is positive due to the concavity of expected productivity in the real rate (frr < 0).
Recall that the equity premium £ was defined in real terms. This is important here.
If the equity premium were instead a nominal object, the nominal rate would appear
instead of the real in (16).

3.2 The central bank’s problem

Under the assumption of an undistorted steady state, the linear approximation of
the model reduces to the same IS and Phillips curves as in the textbook NKM. A

linear-quadratic approximation of the central bank’s problem is then given by:

1 © K A N\ 2
max—iEt {; st {WE + Az? + 57?,2 (R;) ] } (17)
subject to the IS equation:
1 /4
=K —— (R —E 18
Tt tLt+1 o ( t t7Tt+1) (18)
the Phillips curve:
e = BEimis1 + K (0 + @) 2 + uy (19)

and the linearized definition of the real rate:
Ry = Ry — By (20)

where A\ = § (0 + ¢) denotes the weight of output fluctuations relative to inflation
fluctuations in the loss function, 6 is the elasticity of substitution between goods in
the steady state and x; is the output gap wrt to the steady state. The supply-side
cost push shock wu; is assumed to follow an AR process with autoregressive coefficient
p. For simplicity, but without loss of generality, we have also assumed that TFP A;

is constant so that no shock appears in the IS curve.'®

1611 a standard NKM without the risk-taking channel it is optimal for the central bank to stabilize
both inflation and the output gap Z: perfectly in response to ’demand’ shocks such as temporary
productivity, government spending or preference shocks, which affect the flex-price economy as well
(divine coincidence Gali, 2015). Since such a zero-inflation-zero-output-gap policy requires the real
rate to follow the natural rate, it implies non-zero real rate volatility. The risk-taking channel thus
introduces a trade-off that breaks the divine coincidence and leads to the same conclusions as those
summarized at the beginning of the next section. These analytical results are thus robust to the
nature of shocks.

20



3.3 Optimal discretionary policy

We now derive optimal monetary policy, starting with the simpler case of discre-
tionary policy. That is, we assume that that the central bank cannot credibly
commit to any future action and thus cannot influence expectations on future vari-
ables. Since there are no endogenous state variables, the central bank problem then
simplifies to a sequence of static optimization problems.

Appendix B3.1 derives the first order conditions to the central bank’s problem as
well as policy functions for the output gap, inflation, the nominal and real interest
rates. These functions are of the form: x; = auy, m = buy, Ry = cuy and }A%f 1 = duy,
where the coefficients (a, b, ¢,d) are derived in Appendix B3.1. The absolute values
of these coefficients also determine the standard deviation of the four variables of
interest, up to a scaling factor which is the standard deviation of the cost-push
shock. To understand how these standard deviations change with the risk-taking
channel, we derive the rate of change of the four coefficients with respect to the
risk-taking channel parameter Ro and check the sign.

We thus arrive to our second main result: Optimal discretionary policy with the risk-
taking channel implies a lower volatility of the output gap and of the real interest
rate, but a higher volatility of inflation, relative to the model without the risk-taking
channel.'”

What is the intuition behind these results? The standard trade-off in the NKM with
cost push shocks is that, through the Phillips curve, inflation stabilization comes
at the cost of higher output gap volatility. However, through the IS curve, higher
output gap volatility also implies higher real interest rate volatility. This is irrelevant
in the standard NKM where the IS curve and the interest rates are recursive. But it
becomes costly once the risk-taking channel is active, since fluctuations in the real
rate lead to less efficient risk choices on average. The risk-taking channel thus tilts
the trade-off between output gap and inflation stabilization arising from cost-push
shocks in favor of the former. In other words, the risk-taking channel increases the
central bank’s tolerance to deviations of the real rate from the natural rate.
Finally, we can re-express the nominal rate as a function of expected future inflation
to derive an interest rate rule that serves to implement the equilibrium under optimal

policy:

" The effect of the risk-taking channel on the volatility of the nominal rate is ambiguous: For
low enough values of p, the risk-taking channel also implies a lower volatility of the nominal rate.
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O(A\p + w(1 = p)(0 + 9)p) + k(1 = p)pRa0”
PO + k(1 — p)pRyo?

Ry = ¢l = E¢mer1 (21)

The parameter multiplying expected inflation qﬁfr is larger than 1 and can be in-
terpreted as an optimal Taylor rule parameter. Deriving d)ﬁlr with respect to the
risk-taking channel parameter delivers our third result: The risk-taking channel

lowers the optimal response of the nominal interest rate to expected inflation, i.e:

s Or*(1—p)*c* (0 + )
OR2  p(OA+ k(1 — p)Rao?)?

(22)

Again, the intuition is straightforward. A parameter of 1 would imply a stable real
interest rate, thus a central bank that cares about stabilizing the real rate chooses
a value closer to 1.

Next, we show that the last two results also hold for a policy maker that optimally

chooses the parameter of such a simple rule.

3.4 Commitment: Optimal simple rules

Asin Clarida et al. (1999), we now assume that the central bank has full commitment
but is restricted to simple policy functions that depend only on the exogenous state
u;. That is we consider an optimal simple rule of the form x; = —~yu;, where ~ is
chosen under commitment.

In Appendix B3.2 we explicitly set up the problem and solve it to derive the policy
functions, which are linear in the cost-push shock wu; by construction. Analogously
to the previous subsection, we then compute the rate of change of the standard devi-
ations of the endogenous variables with respect to the risk-taking channel parameter
Ra.

The results confirm those derived for the discretion case: The inclusion of the risk-
taking channel implies lower output gap and real interest rate volatility and higher
inflation volatility under optimal policy. Analogously to the previous subsection, we
can express the policy rule for the nominal interest rate as a function of expected
future inflation to arrive to an optimal simple Taylor rule. As before, the the risk-
taking channel lowers the optimal response of the nominal interest rate to expected

inflation.
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3.5 Commitment: Fully optimal policy

Finally, we turn to Ramsey-optimal policy. The central bank’s problem is to solve
(17) by choosing conditional paths for inflation, the output gap and the interest
rate. Appendix B3.3 provides the Lagrangian and the first-order conditions of this
Ramsey problem. Unfortunately, no simple analytical solution is available for the
rational expectations equilibrium defined by these conditions. However, it is possible
to combine the first-order conditions to derive an implicit instrument rule as in
Giannoni and Woodford (2003). This rule applies from ¢ > 2 and is optimal from a

timeless perspective and reads:

Rt = PlRtfl + PZAﬁtfl + OErEimip1 + OrTe + Or M1 + G Axy

0c+0
where p1=1, p2 = %7 Gpr =1, ¢or = (773—;0@ _%_17 Gr—1 :%, Gr = ’R%i\qa'

Similarly as above, the weight on inflation in this Taylor-type rule decreases in the
strength of the risk-taking channel. Furthermore, this rule exhibits a nontrivial
degree of persistence: p; = 1,ps > 1, unlike the optimal Taylor rule under no
commitment. As Woodford (2003) shows, in the standard NKM the fully optimal
interest rate paths do not involve any explicit reference to the lagged interest rate
either.!® Thus, under fully optimal policy the risk-taking channel introduces a case
for persistent policy responses. This is our fourth analytical result.

The risk-taking channel thus provides an additional explanation for interest rate
inertia, which is routinely built into Taylor rules in models, and which is typically
observed in practice. It augments other theories such as the zero lower bound or the
cost of holding money, which regularly motivate researchers to include the interest
rate — the nominal one, not the real one as in our case — in the welfare function and

which also lead to inertia under optimal policy.

4 The importance of the risk-taking channel in a quan-

titative New Keynesian model

The analysis so far has delivered a clear description of the implications of the risk-

taking channel for optimal monetary policy in an otherwise standard New Keynesian

8Note that the above rule does not nest a rule for the standard NKM. However, as the weight
on real rate stabilization %R% goes towards 0, past interest rates become less important in the
determination of the current interest rate, relative to deviations of output and inflation.
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model. We have derived four analytical results, which we summarize below:
e R1: Real interest rate volatility affects welfare negatively

e R2: Optimal monetary policy with the risk-taking channel calls for lower real

interest rate volatility and higher inflation volatility

e R3: The presence of the risk-taking channel lowers the optimal response to

inflation in a simple Taylor-type policy rule
o R4: The risk-taking channel introduces a motive for inertia in the policy rate

In this section we determine whether these four results are also quantitatively impor-
tant. After all, some previous studies have found that other financial frictions do not
have quantitatively significant effects on optimal monetary policy (e.g. Bernanke
and Gertler, 2001 or De Fiore and Tristani, 2013).

To quantify the importance of the risk-taking channel, we turn to the quantitative
model of Abbate and Thaler (2019). The latter embeds the same model of inter-
mediation and risk taking as above in an otherwise standard medium-scale New-
Keynesian model as in Smets and Wouters (2007). This model has three advantages
over the simple model of section 2: First, it includes a number of additional build-
ing blocks that bring it closer to macroeconomic dynamics. Second, it has been
estimated on US data.'” Thus, we can rely on a plausible set of empirically de-
termined parameters instead of making arbitrary parametric assumptions. Third,
Abbate and Thaler (2019) show that the inclusion of the risk-taking channel im-
proves the fit of the benchmark Smets-and-Wouters model with respect to standard
macro time series data, generates a path of risk taking that matches survey evidence
on the riskiness of newly issued loans, and gives rise to a procyclical bank leverage
as documented by Adrian and Shin (2014).?C This gives us confidence that this
model of the risk-taking channel is empirically plausible. In sum, the larger model

is useful to assess whether the new monetary policy trade-off between inflation and

19 Abbate and Thaler (2019) estimate the model on US data over 1984Q1 to 2007Q3, using seven
standard macro series, plus a measure of the equity ratio in the US banking sector, which allows
the identification of the banking sector parameters. More details can be found there.

20The risk-taking channel improves the posterior odds of the benchmark model by exp(3.1).
The variable ¢; displays a 60% correlation with the risk of newly issued loans, see figure 2 in the
Appendix. The correlation between the variables considered by Adrian and Shin (2014) (leverage
and the bank balance sheet size) is 43%. These are all non-targeted moments. See Abbate and
Thaler (2019) for further details.
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real interest rate stabilization generated by the risk-taking channel is quantitatively
significant.

Since the larger model is essentially a medium scale extension of the simple model,
we rely on Abbate and Thaler (2019) for a full description, and limit ourselves to a
brief explanation of the differences. The larger model is different in five dimensions.
First, it includes capital. As common in the literature, we assume that banks finance
the capital stock and give up the assumption that wages need to be prefinanced. The
risky input good producer hence becomes a risky capital good producer. Inefficient
risk taking affects aggregate output through the productivity of capital, via the same
mechanisms discussed in the simple model. Second, the banking sector in the larger
model has two additional features that improve the model’s quantitative fit: Deposit
insurance and a non-zero liquidation value in case of bank default.?! These features
imply that, in case of bank failure, depositors get the maximum of the amount
covered by deposit insurance and the value of investment that can be recovered from
a failed project. Similar to the equity premium, deposit insurance improves the cost
advantage of deposits over equity, thereby worsening the risk-taking problem. The
liquidation value is irrelevant for the bank’s choice, because it is assumed to be
smaller than deposit insurance.?” Importantly, these additions leave Proposition 1
and thus the mechanism unchanged. Third, the larger model has additional features
that improve its quantitative fit: Habits in consumption, investment adjustment
costs, Kimball aggregation, monopolistic competition in the labor market, wage
stickiness, price and wage indexation. These features are standard in medium-scale
NK models. Fourth, the larger model includes a more complex shock structure.
While in the simple model we have considered only optimal responses to a cost-
push shock, the larger model features eight shocks. These are the seven shocks in
the Smets and Wouters (2007) model, plus a shock to the equity premium. Fifth,

we do not assume that the steady state is undistorted.

4.1 The numerical experiment

We proceed as follows. We set the model parameters to their posterior mean esti-
mates (cf. table 2 in Abbate and Thaler 2019). Then, we numerically determine the

21The deposit insurance scheme, which covers the gap between the insurance cap and the liqui-
dation value for the depositors of failing banks, is financed through a variable tax on capital.

22Deposit insurance does not affect the optimal frictionless level of risk. By contrast, the liqui-
dation value increases the optimal risk level, thereby easing the excessiveness of risk taking.
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optimal simple implementable monetary policy rule using a second order approxi-
mation as in Schmitt-Grohe and Uribe (2007). We focus on a simple policy rule
— as opposed to Ramsey optimal policy — both because such a rule is realistically
implementable and because their coefficients can easily be related to our analytical
results R3 and R4. We do so in two model versions: The full model with the risk-
taking channel (henceforth bank model), and a model version without this channel,
that corresponds to a standard Smets and Wouters economy (henceforth benchmark
model). We then compare the performance of these two optimal rules in the bank
model. This comparison has an interesting interpretation. Suppose that the actual
economy features the risk-taking channel (the bank model), but the central bank is
unaware of this channel and believes that risk taking cannot be influenced by the
interest rate. The central bank would then design optimal policy based on a wrong
model (the benchmark model). Our comparison then answers the question of how
important it is to understand the risk-taking channel, in terms of optimal policy
and welfare.”?

In particular, we look for the policy rule that maximizes welfare among the class of

simple, implementable interest-rate feedback rules given by:**

ét = (bwﬁt—ks + ¢y@t+s + ert—l s (23)

where the index s allows for forward-looking or contemporaneous rules (respectively
by setting s = 1 or s = 0), and the hat symbol denotes log deviations from the steady
state (in case of s > 0 in expectations). We impose that the inertia parameter p
has to be non-negative. The policy rule (23) is a standard Taylor rule, which allows
for the two elements that we have found to be optimal in subsections 3.3 to 3.5: A
(weaker) response to inflation and inertia.?’

As before, the welfare criterion is the household’s conditional lifetime utility. To

23For this experiment we use the parameters estimated for the bank model for both the bank
and benchmark economy. I.e. we keep all parameters fixed for this comparison, we just switch
the banking sector on or off. The latter is done by fixing the equity ratio and the risk choice at
their steady state levels. Alternatively, we could assume that the central bank determines its policy
based on an estimation of the benchmark model. Findings are robust to this alternative.

24Implementability requires uniqueness of the rational expectations equilibrium. Simplicity re-
quires the interest rate to be a function of readily observable variables. For a complete discussion,
see Schmitt-Grohe and Uribe (2007).

250ne might wonder whether it would be useful for the central bank to respond to leverage as
an observable proxy for risk taking. However, since leverage and risk taking are dependent on the
nominal rate and inflation, both of which already appear in the Taylor rule, there is nothing to be
gained from doing so, at least up to first order.
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Table 1: Optimal simple rules: The second (third) column describes the timing (restrictions)

of the policy rule. Italics indicate restricted parameters.

rule benchmark model bank model
s restriction pPr Priss Dyrrs p Prive  Duris
1 0 pr=20 0 7.100 0.115 0 3.080 0.126
I o 0.000  7.100 0.115 | 1.059 0.510  0.005
I 1 pr =0 0 17.222  0.148 0 4.294 0.172
v 1 0.236  12.084 0.124 | 1.114 0.072  0.074

compare welfare levels, we define the measure {2 as the fraction of the consumption
stream that a household would need to receive as a transfer under the suboptimal
rule S to be equally well off as under the optimal rule O.  is implicitly defined by

the following equation:

Eo iﬁtU (cP,NP) =Ko i,@tU ((1+o)cf, Ny).
t=0 t=0

4.2 Findings

Our numerical analysis delivers four results, which mirror the four theoretical results
above.”0 The first two results are evident from Table 1, which reports the optimal
coefficients for four different specifications of the monetary policy rule: contempo-
raneous and forward-looking, without inertia and with optimal inertia.

First, the optimal coefficient on inflation deviations is always significantly smaller
in the bank model than in the benchmark model. This confirms that our analytical
result R3 from the simple model — a lower optimal weight on inflation in the Taylor
rule — carries over to the medium scale model used here.

Second, if the central bank can optimize over its smoothing parameter, then full
interest rate smoothing is optimal in the bank model, but not in the benchmark
model (rows II and IV).?” This confirms result R4 that the risk-taking channel
introduces a rationale for interest rate smoothing.

But how do these differences in policy rules translate into differences in the behavior
of macroeconomic variables? Our third finding is the answer to this question and

is provided in Table 2. The table displays how much the mean and volatility of

26The results are qualitatively robust with respect to the estimation sample and the choice of
the priors and calibrated parameters.
2"Values of p, slightly above 1 are not uncommon e.g. Rotemberg and Woodford (1999).
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Table 2: Differences in moments associated with the optimal simple rules in the
benchmark and in the bank model: Columns 4-10 indicate the % change of mean and standard
deviations of key variables when the central bank switches from the benchmark-optimal to the bank-
optimal rule in the bank model. The first entry, for example, indicates that under the bank-optimal
policy rule the standard deviation of the real rate R" is 48% lower than if the rule optimal for the
benchmark model had been applied in the bank model. The last column reports the welfare cost
(in % of the consumption stream) associated with implementing in the bank model the optimal

policy rule of the benchmark model.

rule standard deviation mean
s restriction R" T y R" T y f(@) Q
1 0 pr =20 -47.975 52470  -0.843 | 0.002 -0.051 0.311 0.045 | 0.476
IIr o -77.760  64.393  -9.545 | 0.007 -0.038 0.439 0.061 | 0.898
Imr 1 pr =0 -55.417 57.719 -2.781 0.011  -0.037 0.413 0.062 | 0.687
v 1 -76.3112  71.906  -10.373 | 0.004 -0.054 0.458 0.057 | 0.813

key variables change when the central bank switches from the benchmark-optimal
rule to the bank-optimal rule in the bank model. By responding less aggressively
to inflation and by smoothing the nominal interest rate, the central bank optimally
limits the volatility of the real interest rate (column 4). The lower volatility of R}
translates into a higher average return on investment f(¢q;), due to the concavity of
this function in R} (column 10).?® However, this higher average return on investment
comes at the cost of higher inflation volatility (column 5), in line with the analytical
result R2. The increase in volatility is sizable (50-70%). Hence, the new trade-
off between inflation and real rate stabilization implies a significant deviation from
inflation stabilization: The central bank reacts a lot less strongly to deviations of
inflation from the target in order to achieve a more stable real rate

Finally, we assess how different the equilibria associated to the two optimal rules
are in terms of welfare, and therefore how important it is for the central bank to
take the risk-taking channel into account. To do so, we compute the welfare cost §2
of applying the rule that is optimal for the benchmark model in the bank model.
These costs, expressed in % of the lifetime consumption stream, are reported in
the last column of Table 2. They are significant for all policy rule specifications.
For the best-performing policy, the cost of applying the benchmark policy in the

bank model are around 0.81% of the lifetime consumption stream. The effect of the

2®Note that the slight increase in R accounts only for a marginal fraction of the increase in

flae)-
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risk-taking channel on the policy maker’s objective function that we approximated
analytically above (result R1) turns out to be economically significant.

In sum, the risk-taking channel is economically significant for optimal monetary
policy both in terms of the prescribed policy and the welfare cost of deviating from
it.

5 Conclusions

This paper analyses the implications of the risk-taking channel for optimal monetary
policy. To this end we first embed a model of asset risk taking into the textbook
NKM. Then, we characterize optimal policy analytically using a linear quadratic
approximation. We find that the risk-taking channel (i) introduces real rate volatility
into the otherwise standard objective function of the central bank, (ii) calls for lower
real rate volatility and higher inflation volatility, (iii) lowers the optimal response
to inflation in a Taylor-type policy rule, (iv) introduces a motive for inertia in the
policy rule. Lastly, we extend the model to a medium-scale DSGE model of the
type routinely used at central banks to evaluate the quantitative importance of the
risk-taking channel for monetary policy. We show that the four conclusions from the
simple model not only carry over, but also matter significantly. Conducting optimal
policy as if the risk-taking channel were not present entails high costs in terms of
welfare.

Our model of the risk-taking channel is analytically tractable and our analysis de-
livers clear results for optimal monetary policy. To this end, we have abstracted
form other dimensions of the risk-taking channel such as risks on the liabilities side
of banks, effects of the zero lower bound or long spells of low interest rates. At the
same time however, our qualitative lessons about optimal policy can be of relevance
for any theory that relates TFP to the level of the real interest rate, such as some
theories of capital misallocation (e.g. Gopinath et al., 2017).

Furthermore, our model economy features no regulatory tools. While these tools are
important, they are outside the scope of the present paper.”’ Instead we focus on
what the monetary policy maker can do about risk taking in the (realistic) case that
the risk-taking channel cannot be fully addressed by regulation. Using monetary

policy to address shortcomings of “imperfect” regulation is advocated in a similar

2%For an analysis of macroprudential regulation in an economy with bank risk-taking see for
example Collard et al. (2017).
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context e.g. by Stein (2013) and Bean et al. (2015), and was discussed as an option
during the January 2020 FOMC meeting.
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Online Appendix

Appendix A: Full set of recursive equations in the simple

model

The following 12 equations (24) - (35) define the equilibrium. Note that only equa-
tions (24) - (26) differ from the standard NKM and that the model collapses to the
standard NKM if f(¢) is a constant.
Marginal costs:

Wy Wy

MCy = = 24
T4 (W —%a)a  Af(a) (24

Output:

Aif(qr) Ny = AN Cy (25)

Risk taking channel:

w? E+ Ry w [ E+RY 2
Ry
T = 27
b Byma (27)
Household optimization:
R
uc(Cy, Ny) = BIEtTr;luC(CtH’ Niy1) (28)
un(Cy, Ny)
UC(Ct, Nt) ¢ ( )
Price setting:
* Ep Zl,t
ﬂ-t - Ep -1 Zg’t (30)
A — Buc(Cry1, Net1) (31)
! UC(Cu Nt)
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Z1y = Aymegye + BAE [(7i41) P Z1 1441]
Zoy = Ayr + BAE, [(Wtﬂ)erl Z2,t+1}
L= (1=X) (@) 7+ A(m) 7

At = (1 — A) (W:)_Ep + )\At—l (7Tt)€p

The following equations are recursive:

di + e =my_1/m +we Ny — Cy + 4

my = m_1 /7 + weNe —dp — e — Cp + Ry (dy + e¢) + I + a¢ + Eer — Ty

II; = Cy — W ztT ¢t

wi £+ Ry
wo 26 + Ry

qt

_
ORI+ 2¢

ky

dt‘l‘et:Ot

oy = wlNy

Ct o
er + dt

ki

35

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Appendix B: Deriving optimal policy

B1: Deriving the welfare function

Our goal is to derive a second-order approximation to the utility of the household
when the economy is close to the steady state, around a zero-inflation steady state
and in the case of a small steady state distortion. We follow Gali (2015) and Ravenna
and Walsh (2006). The procedure involves 8 steps. We preliminary describe the

notation that will be used throughout the derivations:

Table 3: Notation

X; variable in level

X steady state level

x¢  variable in log: In(X})

2y log deviation from steady state: z; — x = In(X;) — In(X) = In(X;/X)
X, absolute deviation from steady state

R} gross real interest rate

Step 1: Take a second-order Taylor expansion of the utility function in

time t around the steady state C,N:
1 1
U(Ct, Nt) ~ U+UC<Ct—C)+UN(Nt—N)+§UCC(Ct—C)2+§UNN<Nt—N)Q—l—tZp

where t.i.p. stands for terms independent of policy, U = U(C, N) denotes the
utility function evaluated at the steady state and U, = U,(C, N),Uyy = U (C, N)
respectively denote the first and second order derivative of the utility function with
respect to variable x, evaluated at the steady state. Multiply and divide by steady-

state consumption or employment, where appropriate:

Cy—C)

N, — N
U(Cou Ny) = U0 Qe = N)

(
- C+Un N

Cy—C)

1 ( 2 501 (N
N+=U, +-U
sYcc— 3 C SUNN

Step 2 Exploit the aggregate resource constraint: Y; = C;

36

_N)

N2

2
N%4t.i.p.



(Y;-Y) 1Ucc (Y1 —Y)?_, (N: — N) 1UNN (Nt = N2 o .
Ny) ~ ——Y + = — Y — N+ — N ..
U(Ct, i) > U+Uc | = T e +UN | MR +tip
Note that, given our utility function, %C—CCC = —o and U[}V—NNN = . Use that

XX ~ 7,4+ 122 and d f order higher than 2, i hat (7, + 172)° =
== ~ ¥+ 57; and drop terms of order higher than 2, i.e. use that ($t+§xt) =

T} + 73 + 13t ~ ok

1. 1 . 1. 1 .
U(Cy, Ny) ~U+Ue <<yt + 2yt2) Y — 20yt2Y> +Un <(nt + 2nf> N + 2g0n§N> +t.a.p.

Rearranging:

1
J;%f) +tip.

1-— .
U(Cy, Ny) ~U +UcY <§t + ;@?) +UnN (nt +

Step 3: Express aggregate employment as a function of output. From our

model, we can express aggregate employment as:

AY;
Ny = —""—
"TOAf(RY)

where A; expresses the resource loss due to the price dispersion term, and where
f(R}) is the dispersion term related to the risk-taking channel, which depends on
the expected real interest rate R;. We take logs of both sides:

In(Ny) = In(Ay) + In(Yz) — In(4y) — In f(R})

We derive the second-order Taylor expansion of In f(R}):

fr 1 frrf(R") = (fr)?

In f(RY) ~1In f(R") + R — R") + Rl — R")?
(B~ n f(R) + s (B = B 5 2 U (y = )
Define now the two coefficients:
2 2
Ri1= fR = £ >0

FRT) (BT + (R + 26) (R + 3¢)
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R - IRRIE) = (fr)" _ 2B(R)°€+12R7E +11¢Y)
o fR)E (B4R +29(R +3¢)2

Replace the second-order Taylor expansion of In f(R}) into the expression for ag-
gregate employment, and subtract from both sides the log of the steady state. Since
In(A) =In(1) =0 =0 and In(A) =1In(1) = a = 0 we have:

~ ~ DT R DT 2
=6+ — ar — RAR +72(Rt)

We can plug this into our utility function:

. 1—-0_ . A Ra /a2
U(Ct,Nt)l’U—l-Ucy <yt+2yt2>+UNN {(ﬁ%—yt—at—RlRt —|—72 (Rt) :|

1+ R ~ Raran2l?
+UNNT¢ |:5t+yt—at—R1R:+22 (%) } +tip.

Now, we use the following Lemma, proven in ch. 3.4 of Gali (2015): §; = gvar {pt(7)}.
This is valid in the neighborhood of a symmetric steady state and up to a second
order approximation. Using this Lemma, and the fact that terms of order higher

than 2 can be dropped out of the approximation, yields:

. 1—0_
U(Cy, N;) ~U +UcY (yt +— yf)

0 . . L RaanN2 1+ N2 .
+UnN <2va7‘ {pe(D)} + 9 —ar — R1 R} + 72 (RZ) + TSO (yt —a; — R1R§> )—l—t.z.p.
Step 4: Divide everything by U.C' so to express the approximation as a

percentage of steady state consumption:

U(Ct,Nt)—U ~ 1—0’,\2
UcY 2 U
UyN [0 ) . A Ro /N2 1+¢ /. A\ 2 .
+W (2var {pe(D)} + 91 — ar — R1R} + 3 (R;) + — (yt —ap — RIRI) )—i—t.z.p.
Combining the household first order condition with respect to labor, and input
producer’s labor demand condition and the definition of marginal costs, we get

that:
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Unv W Agq(wr —waq)
Uco P P
Where we have defined ® = 0/ (6 — 1) as the steady-state markup.’’ We then get
that:

UvN Aq (w1 — %q) N 1
UcY ® Aq (w1 —%q) N @

Define © such that:

1
1-0=—
=5

We can exploit the definition of © as well as the assumption of a small steady
state distortion (so any interaction with terms of order > 2 can be eliminated) to

re-express the utility approximation as:

U(Ct,Nt)—U ~ 1—0
— T~ +
UcY 2

- H_TSO (.@t —ay — Rlé;)z +©O (@t —ay — Rlﬁ;) +t.i.p.

o 0 : . o R [a0\2
5 — gvar {pu(i)} = G+ ar + RaRy — =7 (%)

Note also that a; is independent of policy and hence can go into the t.i.p. After

some rearranging of terms, we get:

U(Cy,Ny) — U

. A Ro /.02
5% ~ Of + (1 - O)R1R} — (Rt>

2

1 . . . o) 2 .
-3 Ovar {p;(i)} — (1 — )52 + (1 + ) (yt —ap — RlRt) } + t.i.p.

Step 5: Collect terms related to output deviations and re-express them as
R
output gap deviations. Open the square bracket (Qt —ap — RlRZ{) and collect

terms related to output deviations squared:

3%Tn the absence of the subsidy on input goods, there would be an additional term related to
the cost channel in the above equation, but the rest of the derivations would be unaffected.
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UC,N)-U _ . Ra(pry?_ 1 : )
(tU;/) ~ Oj+(1 — 0) R1+1—f2 (R ) ) [HUC”" {pe@)} + (0 +9) 57 + 1+ ) a?}
C

1 A N2 . . _
-2 {(1 +0) (Ruf)" = 2(1+ @) R B +2(1+ ) a/Ri B | + tii.
Re-express productivity as a function of the efficient level of output yf where needed.

Recall that yf is independent of policy and can be expressed as:
I+

Ae: a 44
Yy U+¢t (44)

Denoting the output gap as x; = y — yy we can express the utility approximation

as:

U(Cy, Ny) = U

~ O7 DT R DT 2 1 ; 72
Sy = O+ (1= @) RuR =2 ()= [var (D)} + (0 + ) 7]

1 2 2 ( Hr 2 ~ DT DT .
— 5 (1+e) (af + R (R7)” = 20Ra By + 2a,Ra Ry ) + tip.

Step 6: Express var {p:(i)} as a function of inflation. From Woodford (2000)
and Lemma 2 in Ch. 4 of Gali (2015) we know that: var {p;(i)} ~ wvar {pi—1(i)} +

277, where w is the Calvo parameter. So we have that:

o ot N w - t 2 i
t:ZOIB var {p(i)} = (1_&0)(1_@;}5 Pt tip

Step 7: Get the approximated present discounted value of the welfare

loss function:

05, + (1— ©) R BT — % ()"

W= _E, ZBtU C’t,Nt) _ {i

t=0

1 . A DT 2 ~ DT DT
) [Hvar {pe()} + (0 4+ @) 22 + (1 + ) (a? +R2 (Rt) — 20, R1 Ry + 2atR1Rt)} ] }

Using step 6 we get:
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- A Ro A2 1 wb 1 R
OF+(1 - ©) RiRj— =" (Ry) s T—od 7wﬁ)7rt2—§(a+g0) #?

A Z—Eo{ iﬁt

t=0

1 2 2 ( Dr 2 ~ ® DT
-5 0 +9) (@ + R (R7)" = 20Ra Ry + 2R

Collect the terms related to the real interest rate, remember that a; is independent

of policy and re-express ¢; in terms of the output gap. This yields:

wb 1 X N
T og™ 2@t 1O RE;

_ 1
@th—§

W = —Eo{ iﬁt
=0

A

1 2 DT 2 T Al DT 2,
— 5 (A R+ R2) (Bf) ~Ri (o = 1) Ryf + Ri (1 + ) Ry

The first three terms in this approximation are standard. Welfare loss increases
with distortions in the current output gap (from the first best level), and with the

volatility of inflation and in the output gap. The remaining terms derive from the

inclusion of the risk-taking channel:

e —(1—©)RyRI : A higher real interest rate, decreases the inefficiency of risk

taking, reducing the welfare loss.

o (14 ¢)R?+R2) (]:2{)2: The real rate affects the efficiency of the banks’
investment choice and through that the productivity of labor (TFP). Volatility
in the real interest rate makes TFP more volatile and reduces it on average
(due to the concavity of f). These two effects, which are captured by the two

coefficients, imply that real rate volatility lowers welfare.

e Ri(oc—1) RZ{ 95+ For a risk aversion parameter o greater than unity, this term
is clearly positive, implying that welfare losses increase in the covariance be-
tween the real interest rate gap and the efficient level of output (i.e. produc-
tivity). A negative productivity shock (a fall in the efficient level of output)
coupled with a fall in the real interest rate would imply an even larger negative
productivity shock, amplifying the welfare loss. This is because a lower real

rate increases the inefficiency of risk-taking, lowering the marginal productiv-
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ity of labor.

. —leif{ (1 4+ ¢) @: Welfare losses decrease in the covariance between the out-
put gap the real interest rate gap. The intuition is the same as for the previous
covariance term: A positive output gap coupled with an increase in the real
interest rate implies an additional increase in the output gap, increasing wel-
fare. This is because a higher real rate decreases the inefficiency of risk-taking,
increasing the marginal productivity of labor and through that aggregate out-

put.

Step 8: Assume correction of the steady state distortion through fiscal
instruments. If we assume that the steady state is undistorted then ® = 0 and
R1 =0 and & = x;. The second equality follows from the first derivative of f(R")
being equal to zero, given the optimal steady state risk choice. The approximated

present discounted value of the welfare loss simplifies to:

> 1 wb 1 1 A N2
— _F t|_ - 2 - 2 - T :|
v {gf T aman sty ()
Hence, only the variance of the real interest rate remains as an additional term in
the welfare loss function.
B2: The linearized Phillips curve
We can express the Phillips curve as (Gali (2015), ch.3):
mp = BBy [mi41] — Ky (45)

with ¢; being the deviation between the average and the desired markup and k =

(1—@5)#&;)' Note that the average price markup is equal to the inverse of real

marginal costs, defined in equation (24):

Ot = pr — (wt —ar — hlf(RI))

where small-case letters denote logs. We can then substitute the household’s labor

choice (¢nt + ocy = wy — pt) and use y; = ¢, yielding:
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¢t = — (ong + oyy) +ay +In f(Ry)

Substitute for n; using ny = y¢ — ay — In f(R})

pr=—(c+ )y + (1 +p)a+ (1+p)In f(R])

Under flexible prices, the markup is equal to the desired level (&} = 6,/ (6; — 1)):

o =—(0+@)yr + (L+@)ar+ (L4 @) In f(RY™) (46)

Get an expression for ¢y, the deviation between the average and the desired markup:

ot =—(0+¢) (ye —yi) + (L+¢) (In f(R]) — In f(RY"))

Use the identity y; — yi' = (yr — vf) + (vf —ui') -

br=—(0+¢) (ye —yi) — (0 +¢) (yf —y') + (1 + ) (In f(R]) —In f(RY"™))

Use the definition of the welfare relevant output gap:

G =—(o+@)ar— (0 +9) (v —yi") + (L+ ) (In f(R]) — In f(R;™))

Subtract the steady state, and denote with “hat” deviations from the steady state.

G —0=—(0+p) & — (0 +¢) (5 — 1)
+ (1 +¢) [Inf(R]) —In f(R") —In f(R;™) + In f(R"™")]

A first order Taylor expansion of the bracket in the second line yields R }Aﬁ: —Ri1 ]%:’n

(see Appendix B1 step 3) so we can write

Gi=—(0+p) 8+ 1+ Q)RR — 1+ )RR — (0 + ) (95 — 07

Using the definitions of g5 and g (44) and (46) we can rewrite this as:
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bi=—(0+@) 2+ (1+ )RR —

Substitute the above equation into the first version of the Phillips curve (45):

T = BEq [me1] + k(0 + ) & — & (14 @) R1R +

Where we have defined the cost-push shock as u; = mfﬁt, i.e. the term capturing
short-run deviations of the desired markup caused by movements in the parameter
0.

Under the assumption of an efficient steady state the expression simplifies to the

standard Phillips curve, since R; = 0.
7y = BE¢ [mip1] + k(0 4+ @) x¢ + w4

B3: Optimal monetary policy

Assuming no steady-state distortions, the monetary policy problem is:

1 > K &
max — - o {tzzo Bt {w? + A2 + G Rl 2} } (47)
t = Etxt_l - % ﬁt — Etﬂt+1 vt (48)
X
T = BEtﬂ't-i-l + K (0’ -+ QO) Ty + Up Vit (49)
R; = Rt — Eﬂrt_H Vit (50)

where Kk = Wﬂ is the coefficient on marginal costs in the New Keynesian
Phillips curve, A = 7 (0 + ) denotes the weight of output gap fluctuations relative
to inflation fluctuations in the loss function, € is the elasticity of substitution between
goods, and where we have already substituted R{ =R, - E;7i41. The term uy is a

cost-push shock that follows an AR process with autoregressive coefficient p.
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B3.1: Discretion

We start with the simpler case, assuming that the central bank cannot credibly com-
mit itself to any future action and cannot therefore influence expectations on future
variables. The central bank problem simplifies to one of sequential optimization,
i.e. the central bank chooses output and inflation in order to minimize the period
losses U; = 7rt2 + )\:c? + gRg (Rt — EﬂrtH)Z subject to the contemporaneous IS and
Phillips curve. Under optimal discretion, the first order conditions for the central

bank problem are:

oU,
8771; = -7+ 1/)15
oU,
a—xz =—-Ar+xt — k(0 + @)
8Ut K EN 1
ok —5732 (Rt - Etﬂtﬂ) Xt

The above conditions imply the following equilibrium relationship between inflation,
the output gap and the real interest rate, under optimal discretionary monetary

policy:

(51)

Tt =

A 0ERo N R
Thlo4 Sp)ft + (;+ ) (Rt - Etﬂ'tJrl)
Next, we derive the policy functions for the key variables of interest. We find
them using the method of undetermined coefficients. Since there are no endogenous
states, the policy functions must be linear functions in the cost-push shock wu;.
Therefore, we assume the following policy functions: x; = aut, m = buy Rt = cuy
and Rg = duy. Since the cost-push shock is AR(1), we also know that Ez1 = apuy
and Emiq = bpuy. By combining these functions with the Phillips curve (49), the IS
curve (48), the definition of the real rate and the central bank’s optimality condition

(51), we can derive the following coefficients:

_ Or(o + )
T OB A2 )P+ N) FR(p— DR20%(Bp — 1)

b 0N — K(p — 1)Ra0? (53)
C0(=BAp+ R0+ )2+ A) +hlp — 1)R20%(Bp — 1)
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ee OO0 —r(p—1)a(a +¢)) = K(p—1)pRy0”
0 (=BAp+ K> (0 +¢)> + A) + k(p — 1)R20%(Bp — 1)

(54)

Or(p —1)o(o + ¢)
(=BAp+ K30+ ¢)? + A) + k(p — 1)R20(Bp — 1)

d=- (55)

The absolute values of these coefficients also determine the standard deviations
of output gap, inflation and the nominal and real interest rates, up to a scaling
factor which is the standard deviation of the cost-push shock. We are interested
in establishing how these standard deviations change with the risk-taking channel.
To do so, we derive the rate of change of the four coefficients with respect to the
risk-taking channel parameter Ry — e.g. o, R, = 887732“71 — and check the sign:

~(L = p)o>(L— Bp)
6 (N1 = Bp) + 2(c + 9)?) + ~(L — p)R20?(1 — Bp)

<0 (56)

Oz, Ry = —

0r*(1 — p)o*(o + ¢)?
O+ (1 — p)R20?) (0 (N1 — p) + 2(0 + 9)%) + (1 — p)Ra0?(1 — Bp))

>0 (57)

On, Ry =

0x*(1 — p)o’(o + @) (a(p(B(L = p) + Kk + 1) — 1) + Kpp)

TR T 00w + w1 = p)o(o + 9)) + K1 — p)pR207) (0 (M1 — fp) + #2(0 + 2)%) + K(1 — p)R(zg)(l ~ Bp))

- 5(1 = p)o*(1 = 6p)
TR = TGN = Bp) + 520 + @)2) + Rl — p)R20? (1 Bp) (59)

Given that p < 1 and g < 1, it is straightforward to see that all terms in the

numerators and denominators of (56), (57) and (59) are positive. Thus o, r, and
ORrR, are negative, implying that the standard deviation of the output gap under
optimal policy is lower when the risk-taking channel is present. By contrast, o ®,
is negative, indicating that the standard deviation of inflation increases with the
risk-taking channel.

The sign of or R, in equation (58) is ambiguous. While the denominator is clearly
positive, the sign of the numerator depends on the value of the autoregressive pa-
rameter p. For low enough values of this parameter, the derivative of the standard
deviation with respect to the risk-taking channel parameter is negative. We can see
this by considering the case of an i.i.d. shock (p=0). In this case, equations (56) to
(59) become:
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/iO'2

0 (/-@2 (04 ¢)* + )\) + KRo0?

Oz Ry —=ORRy; = OR" Ry — — <0

03 2
On Ry = o (O’—I—tp) >0

(OX + K R20?) (6 (/12 (0 +¢)?+ )\) + /172202)

To derive a policy rule that implements the above equilibrium, we re-express the
nominal interest rate as a function of expected future inflation (see Clarida et al.
(1999)). The parameter multiplying expected inflation can be interpreted as an
optimal Taylor rule parameter (ﬁflr, which describes how the central bank should

react to expected inflation under optimal discretionary policy:

0\ + (1 = p)(0 + 9)p) + k(1 = p)pRac>
POX + k(1 — p)pRyo?

Ry = ¢eEymyi1s = Eimip (60)

We can see that the presence of the risk-taking channel lowers the optimal response

of the nominal interest rate to inflation, i.e.:

Ay Or*(1—p)*c*(0 + )
OR2  p(OA+ k(1 — p)Rao?)?

(61)

Note that it suffices to take a derivative since the sign of equation (60) is clearly

negative.

B3.2: Commitment - Looking for optimal simple rules

Following Clarida et al. (1999), we consider a rule for the target output gap contin-

gent on the fundamental shock wu;

Xy = —yuy, Vt (62)

Combine this equation with the Phillips curve (49) and the IS curve (48), and get

expressions for m; and }Aﬁ" that also depend on the fundamental shock:

my = BEmiy — k(0 + ) yup + g
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Ry =0 (1— p)ug + Eymrfyy (63)

Substitute the nominal interest rate into the Phillips curve, and collect terms:

7w = BEmi g + [ — k(0 + @)y w

o0

=By {80 [L—r(o+¢)]uf

1=0

e lorloto)y
! 1—Bp

The optimal policy problem can be re-expressed as choosing the value of v that

Ut (64)

maximizes the following objective function:

(1—n(a+go)7
1—8p

Note that in the above equation we have substituted the expressions for the output

2
K
) a4 G Ra (00 (1 p))

gap, the real rate and inflation using equations (62), (63) and (64).
The FOC yields the following solution for ~:

(c+¢)k
Y= 2 (040)2 (1—0)2Ro02 (65)
(1- pB)? (228 + A+ mU=gRac)

This solution can be substituted in equations (62), (63) and (64) to get the policy

functions for the output gap, inflation and the nominal and real interest rates.

Tt = —YUs (66)

(1 . 9n2(a+ga)2 )
O(A(1—Bp)+r2(c+¢)?)+r(1—p)2Rac2(1—Bp)?
= (A(1—Bp)+r2( 1? ;p (=p?Re0?0-30) ) (67)

p _ _0Qw(L = Bp) — k(1 — p)o(o +¢)) — w1 — p)*pR20>(1 — Bp)) (68)
T OO BrR + 2o + 97 + A — PPRac( = B2

R — 0r(1 = p)o(o + ¢)
CT OO = B2 + K20 +9)?) + K(1 = p)*Ra0?(1 - fp)

The parameters multiplying the shock also denote the standard deviation of the

> Ut (69)

variables of interest (assuming that the cost-push shock has a unit variance). Anal-
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ogously to what we did in section B3.1, we can compute the rate of change of these

standard deviations with respect to the risk-taking channel parameter Ra:

k(1 = p)io?

O = —
e 0 K2(o+p)? + N+ r(1=p)2Ro02
502 5

<0 (70)

0°(1 = p)’c® (0 + ¢)*
OX + k(1 = p)2R202) (0 (A(1 — Bp)? + k(0 + ¢)?) + k(1 — p)?*R20%(1 — Bp)?)

Or, Ry = ( >0 (71)

0k2(1 = p)202(1 = Bp) (o + @) (o (=p(B+ k) + Bp> + (1 — p)) — Kpp)
(0(Ap(1 = Bp) + K(1 = p)o(o +¢)) + k(1 = p)2pR20%(1 — Bp)) (0 (\(1 — Bp)? + K2(c + ¢)2)(J7r2f;(1 = p)?R202(1 - Bp)?)

ORRo = —

#(1— p)®o*(1 - Bp)*
BN = Bp)? + 12(0 + 9)2) + (1 — p)PRac?(1 - p)?

0z R, and opr R, are evidently negative while oz, is evidently positive, as in the

O’RT‘7R2 = — < O (73)

case without commitment. The sign of og, is ambiguous, as before. However,
for low enough values of p the derivative of the standard deviation with respect to

the risk-taking channel parameter is negative. We can see this by setting p to zero,
80'7«/87?,2 _ /{0'2

o T 0(k2(o+p)2+A)+KRe02
the inclusion of the risk-taking channel implies lower output gap and real interest

which yields < 0. Overall, we can conclude that
rate volatility and higher inflation volatility under optimal policy.

As we did in B3.1, we can express the policy rule for the nominal interest rate as a
function of expected future inflation. The parameter multiplying expected inflation
could be interpreted as an optimal Taylor rule parameter ¢<, describing how the

central bank should react to expected inflation under commitment:

O(Ap(1 — Bp) + w(1 = p)a(o + ¢)) + k(1 = p)*pRa0*(1 — Bp)

R = 03B —
= ¢ Eemi p(1 = Bp) (0N + k(1 — p)?Ra0?)

K¢
(74)
We can see that the presence of the risk-taking channel lowers the optimal response

of the nominal interest rate to expected inflation, i.e.:

g5 Or(p—1)Pc%(a(k+p—1)+rp) 01 —p)’c(o+ )

ORa  (p(B+ k) —1) (OA+ k(p — 1)2Ra02)*  p(1 = Bp) (A + k(1 — p)202)? <0

(75)
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B3.3: Fully optimal policy

Under full commitment, the central bank’s problem is to maximize (47), by choosing
conditional paths for inflation, the output gap and the interest rate. The associated

Lagrangian is given by

1 o AN 2
Lo= —2Eo{ ;Bt [wf a2+ gRQ (%) }

1 /4
+ Xt [.Q?t — Tt+1 + — (Rt — 7i't+1)
g
+ i [mp — B — K (0 4+ ) T — uy

+ st (—f?f + R - 7Tt+1) } (76)

The multipliers associated to the Phillips curve, the IS curve and the definition of

the real rate are respectively v, x; and ¢;. The FOCs wrt. m, xy, Rt, fm’}", G are:

1 1

T+ P — o1 — R R R 0
Axt—/i(0+so)wt+><t—;xt_1 =0
%Xt +a=0

gRQR; =0

1 /4
Ty — T4l + — (Rt—ﬂ'tJrl) =0
o
T — P —k(c+@)xy —up =0
—R:—FRt—ﬂ't_H =0
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with x_1 =1¥_1 = 0. We can eliminate ]?{f{ and ¢ to simplify the system somewhat

T+ Yy — Y1 —

K ~
@Xt—l - @7% (Rt—l - 7Tt> =0
Az — K (0 + @) + x¢ — th_1 =0
1 K A
Xt + 5732 (Rt - 7Tt+1> =0

Ty — xpp1 + % (f%t - 7Tt+1> =0

Ft—ﬁﬂt+1—/€(0'+(p).%’t—ut:0

Unfortunately, no simple analytical solution is available for the rational expectations

equilibrium defined by these conditions.

However, it is possible to combine the first three equations to derive the following

implicit instrument rule as in Giannoni and Woodford (2003). This rule applies

from ¢t > 2 and is optimal from a timeless perspective:

Ry = plfzt—l + P2Aﬁt—1

where

P1
P2
PEn
P

¢7r— 1
o

+ ¢E7T]Et7rt+1 + ¢7r7rt + ¢7r_17rt.—1 + ¢xA$t

O\
Roko

As in Giannoni and Woodford (2003), this Taylor-type rule exhibits a nontrivial

degree of persistence: p; = 1,p2 > 0. By construction, the optimal Taylor rule

under no commitment or under optimal simple rules does not feature any persistence.
As Woodford (2003) shows, in the standard NKM — i.e. in this model without the

risk-taking channel — the fully optimal interest rate paths do not involve any explicit
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reference to the path of interest rates either.?! Thus, under fully optimal policy the
risk-taking channel requires persistent policy responses. This is a result of the fact
that the interest rate appears in the welfare function.

The risk-taking channel thus provides an additional explanation for interest rate
inertia, which is routinely built into Taylor rules in models and which is typically
observed in practice. Our theory augments other theories such as the zero lower
bound or the cost of holding money, which regularly motivate researchers to include
the interest rate — the nominal one, not the real one as in our case — in the welfare

function and which also lead to inertia under optimal policy.

31Note that the above rule does not nest a rule for the standard NKM. However, as the weight
on real rate stabilization gR% approaches 0, past interest rates become less important in the
determination of the current interest rate relative to deviations in output and inflation.
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Appendix C: Additional figures

Figure 2: Risk taking in the model and in the data: The figure compares the value of loan
safety ¢: implied by the estimated model (in particular we plot the mean of the series posterior
distribution) with a survey-based index of loan safety computed from the US Terms of Business
Lending Survey. The figure is borrowed from Abbate and Thaler (2019). See this paper for more

details on the estimation procedure and the empirical risk measure.
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