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Abstract

We propose a methodology for measuring the market-implied capital of banks by sub-

tracting from the market value of equity (market capitalization) a credit-spread-based

correction for the value of shareholders’ default option. We show that without such

a correction, the estimated impact of a severe market downturn is systematically dis-

torted, underestimating the risk of banks with low market capitalization. We argue

that this adjusted measure of capital is the relevant market-implied capital measure

for policymakers. We propose an econometric model for the combined simulation of

equity prices and CDS spreads, which allows us to introduce this correction in the

SRISK framework for measuring systemic risk.
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1 Introduction

Since the Global Financial Crisis, bank stress tests have become an important tool for super-

visors and regulators (Sorge, 2004; Drehmann, 2009; Anderson, 2016; Kapinos et al., 2018).

Stress tests allow authorities to assess the resilience of the banking sector by estimating the

impact of adverse scenarios on the value of banks’ assets. However, measuring the loss on

assets is complicated because doing so requires a consistent translation of the macroeconomic

stress scenario into specific shocks for all asset classes. Furthermore, historical data on stress

events similar to those assumed in the stress scenario are not always available. Thus, stress

test results are subject to substantial model uncertainty.

Market-based assessments of banks’ asset values under stress are considered to be useful

complements to model-based stress-tests (e.g., Acharya et al., 2014; Sarin and Summers,

2016; Pierret and Steffen, 2018; Vickers, 2019). One such approach is based on the framework

proposed by Acharya et al. (2017) and Brownlees and Engle (2017) for measuring systemic

risk (SRISK).1 In this framework, the difficulty of measuring asset values under stress is

circumvented by proxying the loss on assets by the projected loss on equity under a negative

stock market shock, assuming that debt is unaffected by the shock. As banks’ equity is

the first affected source of funding, this assumption is reasonable for well-capitalized banks

and mild downturns. However, in a severe crisis, debt holders can also suffer losses, as

shareholders have limited liability. If one wants to assess the total risk or loss potential of

banks’ assets in a market-based stress test, focusing only on equity is insufficient—instead,

one has to consider banks’ total liabilities. As banks fund their assets predominantly with

debt, a small percentage loss on debt may correspond to a large dollar loss.

In this paper, we address this issue and estimate market-implied losses in a crisis not

only for equity but also for debt instruments. We use credit spreads as market-based loss

indicators for debt instruments. Using the terminology of Merton (1974), we interpret the

spread-implied expected loss on total debt as the value of shareholders’ default option. We

subtract from the banks’ market capitalization (MC) this spread-implied value of sharehold-

1SRISK is commonly reported in financial stability reports of central banks and related institutions. See,
for instance, Banco de España, Danmarks Nationalbank, European Central Bank, Financial Stability Board,
or Office of Financial Research.
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ers’ default option and obtain a market-based measure of capital that reflects the full risk

and loss potential of banks’ assets. We call this measure intrinsic capital (IC), as it measures

the intrinsic value of equity without the time value of the default option.

In our empirical implementation of IC, we focus on long-term unsecured debt and esti-

mate, based on notional amounts and maturities, the total sensitivity of this debt category to

the banks’ credit default swap (CDS) spreads. We use CDS spreads instead of the individual

bond issuer spreads because of high standardization, liquidity, and availability of the former.

As a first illustration of the effects of our adjustment, we consider the MC and IC of

18 global systemically important banks (G-SIBs) before and after the Covid-19-induced

market downturn in March 2020. Before the downturn, the differences between IC and MC

were relatively small, except for a few European banks with relatively low MC. After the

market downturn, however, our adjustment becomes much more important and, again, has

the largest effect on banks with low MC. Given the limited liability of shareholders, this

observation is quite intuitive. The asset losses that shareholders must absorb reduce to

zero as MC approaches its zero lower bound. Therefore, the asset losses that debt holders

must absorb increase correspondingly. These findings illustrate our main point: if one only

considers MC without the adjustments we propose for IC, the loss estimates in market-based

stress tests can be significantly distorted, as they systematically underestimate the risks of

banks with low MC.

Next, we perform a more systematic analysis of IC and the simulated effect of severe

market stress over a longer time period, 2009–2020. For this purpose, we develop an econo-

metric model that allows us to describe the joint dynamics of a bank’s equity and CDS

returns together with the aggregate CDS and stock market returns. Using this model, based

on the dynamic conditional beta approach (Engle, 2012), we simulate severe stock market

downturns and infer the stressed MC and IC levels. To compare these capital levels between

banks and over time, we divide them by the Basel III leverage ratio denominator (LRD) and

introduce the market leverage ratio (MLR) and the intrinsic leverage ratio (ILR).2

We observe relatively large contributions from debt losses to the simulated stress impact

on ILR. Averaged over the sample, the unstressed ILR is at 3.9% and declines to an average

2Thus, these are defined as MLR = MC/LRD and ILR = IC/LRD.

3
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of 1.1% under the simulated market stress scenario. Of this simulated 2.8 percentage points

(pp) stress impact, 1.1 pp are due to losses on debt instruments. This result shows that our

spread-based capital adjustment is quite material in market-based stress tests.

Our analysis of results by jurisdiction reveals large differences between U.S. and euro

area banks, with U.K. and Swiss banks being in between. As euro area banks have relatively

low unstressed MLR in comparison with U.S. banks, their MLR is also much less affected

by the stress simulation. The simulated impacts on the ILR, however, are similar for banks

in both jurisdictions, as this metric also takes the losses to debt holders into account. The

stressed ILR of euro area G-SIBs is on average negative over the sample period (−0.6%),

with particularly low values during the European debt crisis.

We also integrate our IC concept into the market-based capital shortfall measure SRISK,

based on MC (Brownlees and Engle, 2017). Furthermore, we propose aligning the required

capital in this shortfall measure with the Basel III leverage ratio requirement. Our resulting

aggregate capital shortfalls are, on average, of a magnitude similar to that of results under

the standard SRISK. However, our shortfall measure exhibits more variation over time.

Because of the zero lower bound of MC, SRISK understates projected asset losses during

stress periods, such as the European debt crisis in 2012. In contrast, in a normal market

environment, SRISK produces larger capital shortfalls than does our measure due to the

higher minimum requirement.

Finally, we compare the simulated impacts for our two market-based capital measures

(MC and IC) to two accounting-based regulatory exposure measures (LRD and risk-weighted

assets (RWA)). We show that in the cross-section, the estimated IC impacts are better aligned

with these regulatory exposure measures than the estimated MC impacts. This comparison

again illustrates that the MC impacts are systematically too small for European banks in

comparison with U.S. banks. We observe the closest alignment when comparing the IC

impacts with RWA.

In summary, our analysis suggests that policymakers should pay attention to spreads on

bank debt not only as an indicator of market stress but also because such spreads contain

information about the market-implied asset values of banks. Ignoring this information leads

to distorted quantitative assessments of bank health both in the cross-section and over time.

4
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Literature Review. Our paper is related to research that empirically evaluates the capital

shortfall of financial institutions based on publicly available data (see Bisias et al., 2012,

Giglio et al., 2016, and Benoit et al., 2017 for surveys). Acharya et al. (2017) quantify

systemic risk as the systemic expected shortfall (SES) of a financial institution, i.e., its

propensity to be undercapitalized when the system as a whole is undercapitalized. The SES

of a bank is defined as the sum of its expected default losses and the expected contribution

to a systemic crisis. As mentioned above, the SRISK measure of Brownlees and Engle (2017)

provides an empirical evaluation of this notion using the projected loss on equity to proxy

the impact of the crisis on the market value of assets. Acharya et al. (2012), Acharya et al.

(2014), and Engle et al. (2015) further explore SRISK measures. Jondeau and Khalilzadeh

(2017) also aim at measuring capital shortfall in a severe downturn, but they directly measure

the impact of market stress on the market value of assets. As such, their measure of capital

shortfall can exceed the current value of equity if asset losses are sufficiently large. Jondeau

and Khalilzadeh (2021) provide an empirical application to large U.S. banks.

A few papers use a mark-to-market evaluation of the balance sheet of financial insti-

tutions in a market downturn based on the information available in CDS spreads. Huang

et al. (2012) define systemic risk as the price of insurance against financial distress. Their

“distress insurance premium” is the theoretical premium for a risk-based deposit insurance

scheme that guarantees against severe losses incurred by the banking system. They use CDS

spreads to estimate individual banks’ probability of default and equity returns to proxy the

correlation between banks’ asset returns. Oh and Patton (2018) propose a copula model

to estimate a variety of systemic risk measures, such as the joint probability of distress,

based on CDS market data. Jobst and Gray (2013) rely on a strategy based on contingent

claims analysis. They construct a risk-adjusted balance sheet using option pricing theory

and estimate the joint default risk of multiple institutions to measure systemic risk. The

resulting measure of systemic risk also uses equity, equity option, and capital structure in-

formation. Giglio (2016) exploits information in CDS spreads to measure the joint default

risk of financial institutions.

Our research is also related to the literature on the distance-to-default measures for fi-

nancial and nonfinancial firms (see, e.g., Duan and Wang, 2012 for a review). Analyses in

5
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this literature sometimes approximate the market value of assets, which is not directly ob-

servable, by adding the market value of equity to the book value of debt. This approximation

systematically overestimates the market value of assets and underestimates asset risk in the

same way as we discuss in our paper.

2 Defining Market-implied Intrinsic Capital Ratios

2.1 Market-implied Intrinsic Capital

We consider the measurement of a bank’s intrinsic capital (IC) using market prices. By

IC, we mean the market value of a bank’s equity if shareholders had full liability for the

bank’s outstanding debt. This measure can be thought of as the market assessment of

banks’ regulatory common equity tier 1 (CET1) capital, as banks indeed have to correct for

the value of the shareholders’ default option in their CET1 calculations. According to the

international Basel III standard, banks have to “derecognise in the calculation of CET1, all

unrealised gains and losses that have resulted from changes in the fair value of liabilities

that are due to changes in the bank’s own credit risk” (Basel Framework, CAP 30.15; see,

e.g., Ramirez, 2017). These corrections are particularly important in stress periods, when

the credit spread of the bank widens and the value of the bank’s fair-value debt instruments

declines.3

We define ICt as the difference between the market-implied value of assets at a given

time t, At, and the book value of debt, BD,4

ICt = At − BD. (1)

3Regulatory CET1 capital is obtained from book equity after a number of regulatory adjustments (cf.
Basel Framework CAP 30 at https://www.bis.org/basel_framework/). For instance, certain intangible
assets, such as goodwill, are deducted from book equity in the calculation of regulatory capital. The ad-
justment of own credit risk is, however, particularly important in our context, as it increases during stress
periods.

4We distinguish between market-based variables (such as the market-implied value of assets, At) and
accounting variables (such as the book value of debt, BD). The former change daily and carry a time index
t. The latter change only infrequently (e.g., quarterly), and we omit the time index.

6
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This value is different from the market value of equity MCt, which is equal to the difference

between At and the market value of debt, Dt,

MCt = At −Dt. (2)

The challenge in measuring ICt is that At is not directly observable from financial markets.

However, rearranging Equations (1) and (2), we can express IC as follows:

ICt = MCt − (BD −Dt). (3)

Thus, the difference between IC and MC is the correction term BD − Dt. This term is

the value of the shareholders’ default option. To recognize this, it is useful to rely on the

terminology of the model of Merton (1974): MCt is the value of a call option to buy the

assets of the bank, At, by paying the book value of debt, BD. Using put-call parity, we can

express the corresponding put option as

Pt = MCt − At + BD = BD −Dt, (4)

where we have used Equation (2) in the second step. Figure 1 illustrates this point graphi-

cally.

The value of the default option, BD − Dt, is still not directly observable in the market

because market prices are not available for all categories of debt instruments. Our strategy

is to relate the market value of the default option to the bank’s credit spread, denoted by

St. We continue with the terminology of the Merton model and assume that the bank only

has a single zero-coupon debt instrument with remaining maturity M and notional amount

K outstanding. We further denote by r the risk-free interest rate, which we assume to be

constant. The book value of this debt instrument is then given by BD = Ke−rM . Based

on the definition of the credit spread St, we can write the current market value of this debt

instrument as Dt = K e−(r+St)M . Substituting these definitions in Equation (3), we obtain

ICt = MCt − BD(1− e−St·M) ≈ MCt − BD ·M · St, (5)

7
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Figure 1: Market-implied Intrinsic Capital

Book value of
debt (Strike)

Market value
of assets

Market capitalisation
(Call)

Value of default option
(Put)

Intrinsic capital
(Call − Put)

where we have assumed in the second step that M · St is small relative to 1.

In reality, banks have not just one single zero-coupon bond but many different types of

liabilities with different maturities and contractual terms. To calculate the total value of

the shareholders’ default option, one has to estimate and sum for all of these instruments

the difference between their default-risk-free and actual market valuations. Hence, we can

generalize the definition in Equation (5) as follows:

ICt = MCt −
∑
k,M

BDk,M ·M · Sk,M
t , (6)

where k indexes various types of liabilities, such as retail deposits, secured debt, liabilities

from derivatives as well as short- and long-term unsecured debt, BDk,M denotes the nominal

amount of these liabilities with maturity M , and Sk,M
t denotes the corresponding credit

spread.

8
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2.2 Implementation

We now discuss how we estimate ICt in practice. Among various types of bank liabilities,

long-term unsecured bonds will make a particularly large contribution to the sum in Equa-

tion (6). Banks have significant amounts of long-term unsecured debt, generally featuring

higher credit spreads than other bank liabilities. The relatively high credit spreads reflect

market participants’ expectation that long-term unsecured bonds are most likely to absorb

losses in a crisis. Retail deposits absorb losses only after senior debt, and also for political

reasons are much less likely to be subject to losses. Operational liabilities and liabilities from

derivatives are also less likely to be subject to losses in a crisis, due to practical and legal

reasons. Secured debt is less sensitive to the market value of a bank’s total assets due to

its separate collateralization. Finally, short-term debt is better protected against losses and

contributes less to the sum in Equation (6) due to its shorter maturity. Therefore, we limit

our analysis to long-term unsecured debt instruments, assuming that the contributions from

other debt categories can be neglected.

Long-term unsecured debt is, however, still not a homogeneous debt category. There is

significant variation in the issuer spread of long-term debt instruments depending on the

remaining maturity and the ranking in the creditor hierarchy. Specifically, issuer spreads

of an additional tier 1 (AT1) capital instrument are higher than those of a subordinated

tier 2 (T2) debt instrument, which in turn are higher than those of senior unsecured debt

instruments with the same maturity. For G-SIBs, the Financial Stability Board in 2015

established the total loss-absorbing capacity (TLAC) requirements, and the issuer spreads

for instruments eligible for TLAC are generally lower than for subordinated T2 instruments

but higher than for long-term senior unsecured debt ineligible for TLAC.5

In the following, we assume that the five-year issuer spread of TLAC-eligible debt is

representative in terms of not only maturity but also seniority for the entire long-term debt

5Under this international standard, G-SIBs are required to establish a loss-absorbing capacity of at least
6.75% of the Basel III LRD by the beginning of 2022. Of this requirement, 3.75% can be met with TLAC-
eligible unsecured long-term debt. To be eligible for TLAC, a debt instrument must be contractually or
structurally subordinated to operational senior liabilities of a bank. Most jurisdictions in the euro area have
adopted the contractual subordination approach by introducing a new debt class of senior non-preferred debt
that ranks higher than subordinated debt but lower than senior preferred debt in the creditor hierarchy. G-
SIBs in the U.S., the U.K., and Switzerland have adopted the structural subordination approach by issuing
senior debt from the G-SIB’s holding company to meet the TLAC requirements.
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category and can be used as the exposure-weighted average spread for the entire unsecured

long-term debt category. Using the issuer credit spread of TLAC-eligible debt, for which a

bail-in is more credible than for ineligible senior debt, has the additional advantage that the

actual default risk of such debt is less likely to be hidden behind a too-big-to-fail subsidy.

In our analysis, we use the five-year senior CDS spread instead of the five-year issuer

spread of TLAC-eligible bonds. The main reason for using CDS spreads is the higher stan-

dardization and liquidity of CDS contracts and the longer time series of CDS market data.

For a given issuer, we observe in the available market data that the two spreads co-move

closely but the CDS spread is significantly lower than the TLAC issuer spread. The empiri-

cal analysis in Appendix A.1 shows that the issuer spread for five-year TLAC-eligible bonds

is approximately twice as high as the five-year senior CDS spread of the same issuer, i.e.,

STLAC, 5y
t ≈ 2 SCDS, 5y

t .

For G-SIBs, the total book value of all long-term unsecured debt instruments amounts

to approximately 10% of the total book value of debt, BDi, and in our implementation we

assume this fraction to be constant. In Appendix A.2, we justify, based on banks’ regulatory

disclosures and financial reports, that this assumption is reasonable for all banks in our

sample regardless of their jurisdiction.

With these assumptions about the outstanding amount of unsecured long-term debt,

the average maturity of such debt, and the average credit spread of such debt, we can

approximate the difference between the default-risk-free and actual debt valuations for a

bank i as

BDi −Di,t ≈ 10% · 5 · BDi · STLAC, 5y
i,t ≈ BDi · SCDS, 5y

i,t , (7)

where we have used in the second step the approximate factor-of-two relationship between

the CDS spread and the TLAC issuer spread (10% ·5 ·2 = 1). Based on these considerations,

we implement the IC measure as follows:

ICi,t = MCi,t − BDi · SCDS, 5y
i,t , (8)

where both time-dependent terms on the right are observable in equity and credit markets.

10
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2.3 Market-based Capital Ratios

We now define and compare different market-based capital ratios. Our main focus is on

market-based leverage ratios that relate market-based measures of capital to the Basel III

leverage ratio denominator (LRD). Compared to the book value of assets, the LRD has the

advantage of being more comparable between U.S. and European banks, as it adjusts for the

most important differences in the accounting standards.6

We define the intrinsic leverage ratio (ILR) and the market leverage ratio (MLR) of bank

i at time t as

ILRi,t :=
ICi,t

LRDi

and MLRi,t :=
MCi,t

LRDi

. (9)

In Section 3, we will analyze the impact of the Covid-19-induced market downturn on

these market-based leverage ratios. In Section 4, we will examine the evolution of these

leverage ratios over time. In Section 5, we will assess the relevance of market-based capital

ratios that use risk-weighted assets (RWA) instead of LRD in the denominator. Analogously

to Equation (9), we define the intrinsic capital ratio (ICR) and the market capital ratio

(MCR) of bank i at time t as

ICRi,t :=
ICi,t

RWAi

and MCRi,t :=
MCi,t

RWAi

. (10)

2.4 Data

Our empirical analysis focuses on 18 U.S. and European G-SIBs for which CDS data are

available over our sample period, 2004–2020. The sample contains 6 U.S. banks, 7 euro area

banks, 3 U.K. banks, and 2 Swiss banks. As we require a minimum of five years of data for

the estimation of the econometric model (see Section 4), our analysis starts in January 2009.

The main data constraints apply to CDS spreads. For all banks, we use five-year CDS

contracts with the market default settings with respect to currency and the restructuring

clause. We chose CDS contracts referencing eligible bail-in debt instruments as soon as

6For the same reason, we calculate the book value of debt as BD = LRD − BE, where BE denotes the
book value of equity, so that we have an internationally comparable measure of a bank’s total liabilities.
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spread data for such CDS contracts were available and of sufficient quality. For G-SIBs

that use the structural subordination approach, we use the CDS referring to the holding

company, which also issues the TLAC-eligible bonds. For European G-SIBs that issue senior

non-preferred debt, we use the corresponding CDS when it becomes available around 2018.

We use data from Bloomberg, Eikon, and Markit, depending on the availability and quality

of data.

The list of banks and additional accounting and financial information is reported in

Table 1.7 The average MLR is high in the U.S. and low in the euro area (7.4% versus 2.9%).

This reflects the fact that on average, LRD of U.S. banks is 1.4 times higher than LRD in

the euro area, while MC is 3.8 times higher. U.K. and Swiss banks have market leverage

ratios that are similar and range between those of U.S. and euro area banks. CDS spreads

are on average higher in the U.S. and the euro area than in the U.K. and Switzerland.

Table A3 in Appendix A.3 provides summary statistics on stock and CDS returns. Stock

returns and volatility are higher in the U.S. and the euro area, whereas CDS returns and

volatility are higher in the euro area and the U.K. The cross-correlation between both return

series is negative for all banks.

3 Illustration and Implications for Market-based Stress

Tests

To illustrate more concretely the effect of the proposed correction, we consider how the

different market-based measures of banks’ capitalization changed in response to the Covid-

19-induced market downturn in March 2020. We then discuss implications for market-based

stress testing exercises.

7We calculate the LRD by scaling total assets with a bank-specific, constant scaling factor. The factor is
chosen so that we can reproduce the disclosed LRD of the banks as of 2020:Q1. From this LRD, we calculate
total debt by subtracting book equity. We use LRD instead of total assets to adjust for differences in the
accounting standards. Note, however, that G-SIBs started only in recent years to report a consistent LRD
according to the Basel III rules. We use the scaling approach to cover the entire sample period.

12



12 13

Table 1: Summary statistics on G-SIBs in our sample

G-SIB LRD Total Total Book MC MLR CDS Annual
debt equity leverage spread volatility

($ bln) ($ bln) ($ bln) ratio (%) ($ bln) (%) (in bp) (in %)

Banco Santander SAN 1304.9 1213.5 91.4 6.97 69.9 5.42 108.9 33.6
Bank of America BAC 2572.9 2323.7 249.2 9.70 176.9 6.82 92.9 47.5
Barclays BARC 1270.0 1206.4 63.6 5.13 32.5 2.63 87.7 47.1
BNP Paribas BNP 1901.2 1805.9 95.3 5.03 59.4 3.15 74.3 37.4
Citigroup C 2216.5 2020.5 196.0 8.88 133.1 6.02 102.8 50.2
Crédit Agricole ACA 1467.5 1341.2 126.3 8.66 26.8 1.82 85.1 40.3
Credit Suisse CS 1048.9 1004.0 44.9 4.33 38.5 3.67 77.8 36.7
Deutsche Bank DB 1431.7 1372.9 58.8 4.23 28.0 1.96 98.2 39.3
Goldman Sachs GS 1226.9 1145.5 81.4 6.65 78.0 6.39 104.5 34.8
HSBC HSBC 2457.1 2277.0 180.1 7.32 170.7 6.97 61.4 25.3
ING ING 1364.2 1314.0 50.2 3.78 36.7 2.87 72.5 44.6
JP Morgan Chase JPM 2763.1 2541.3 221.8 7.99 237.1 8.42 65.6 36.8
Morgan Stanley MS 1032.8 960.5 72.3 6.99 57.9 5.54 123.0 48.8
Société Générale SOGN 1067.9 1010.1 57.8 5.39 27.7 2.62 90.7 42.3
Standard Chartered STAN 792.3 740.6 51.6 6.53 41.3 5.23 80.2 35.8
UBS UBS 984.9 932.3 52.6 5.55 57.7 6.15 71.5 36.3
UniCredit UCG 1036.5 977.2 59.3 5.72 28.3 2.75 138.0 44.5
Wells Fargo WFC 1843.4 1672.2 171.2 9.29 209.8 11.29 62.5 39.8

United States 1942.6 1777.3 165.3 8.25 148.8 7.41 91.9 43.0
Euro area 1367.7 1290.7 77.0 5.69 39.5 2.94 95.4 40.3
United Kingdom 1506.5 1408.0 98.4 6.33 81.5 4.94 76.4 36.1
Switzerland 1016.9 968.2 48.7 4.94 48.1 4.91 74.6 36.5

Note: This table describes our list of G-SIBs. It reports the leverage ratio denominator (LRD),
total debt, total equity, and the market capitalization (MC) in USD billions; the book leverage
ratio and the market leverage ratio (MLR) are presented as percentages, and the CDS spread
is in basis points. All numbers are averages over the 2009–2020 sample.

3.1 Covid-19-induced Market Downturn

The global outbreak of Covid-19 in the first quarter of 2020 led to a severe and abrupt

market downturn. The MSCI World index dropped by 30% between February 19 and March

19. Over the same period, the average CDS spread of the banks in our sample jumped from

44 basis points (bp) to 150 bp, increasing by 246%.

Figure 2 displays the MLR and the ILR for U.S. and European G-SIBs before the market

shock (February 19) and after the market shock (March 19). The figure shows that changes

in MLR and ILR were similar for banks with high MLR before the shock. For banks with

low MLR, however, the difference between MLR and ILR changes was large. For some of
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Figure 2: Effect of the Covid-19-induced Market Downturn on MLR and ILR
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Note: This figure displays the effect of the Covid-19-induced market downturn (February 19 to
March 19, 2020) on the MLR and the ILR of U.S. and European G-SIBs. The banks are ordered
according to their MLRs before the market shock.

these banks, ILR was in fact negative at the trough of the market crisis, while MLR stayed

positive throughout by construction (since MC cannot be negative).

Thus, if one focuses on changes in MLR, the market assessment of a bank’s asset value

losses in a crisis is systematically underestimated for banks with low MLR pre-crisis. For

instance, as the figure reveals, the Covid-19-induced market shock affected the MLR of JP

Morgan almost seven times more than it affected that of Deutsche Bank (observe the leftmost

vs. rightmost light-blue lines). The onset of the Covid-19 pandemic, however, was a global

crisis, and market reactions in Europe and in the U.S. were similarly strong. Furthermore,

Deutsche Bank and JP Morgan are both globally active banks and, at least with regard to

investment banking, are participating in the same global markets. Against this background,

the large difference in the impact is not very plausible.
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The difference between the two banks actually reflects that the MLR of Deutsche Bank

was already very low before the market shock, and that MLR could not fall below zero.

As a result, the maximum loss potential of Deutsche Bank inferred from changes in MLR

is very limited. In fact, a large impact such as that experienced by JP Morgan in March

2020 would have been impossible for Deutsche Bank under any market shock. It would be

incorrect, however, to conclude from this fact that the actual loss potential of Deutsche Bank

under severely adverse scenarios is similarly limited. The ILR measure does not have this

restriction to positive values, as it also takes the market-assessed impact on debt holders

into account. With the ILR measure, the Covid-19-induced impact is only approximately

twice as high for JP Morgan as for Deutsche Bank, which is more consistent with regulatory

measures.8

The left panel of Figure 3 illustrates that the effect of the Covid-19-induced market

downturn on MLR is directly proportional to MLR before the shock. If the MLR of a

bank approaches zero, the change in MLR for this bank has to vanish, by construction and

independently of the actual risks on the balance sheet of this bank. If MLRs are comparable

for all banks and clearly above zero, this property is not a major limitation. If some banks

have high MLRs and other banks have very low MLRs, however, as was the case in February

2020, the inference one would draw about changes in asset values based on changes in MLRs

would be clearly distorted.

In such a situation, the correction to market-based capital that we propose with the

IC measure becomes particularly relevant. The right panel of Figure 3 shows the spread

contribution to the IC impact, i.e., the ratio of the losses absorbed by the debt holders to

the total losses absorbed by debt and equity holders, versus the MLR before the shock.

We observe that for banks with high MLRs (typically, U.S. banks), only a small fraction of

losses is absorbed by debt holders, whereas for banks with low MLRs (typically, European

banks), a substantial part of losses and in some cases even more than 50% is absorbed by

debt holders. Our analysis indicates that for U.S. banks most of the loss is absorbed by

shareholders themselves, and therefore their default option in the terminology of Merton

8As of 2020:Q1, the RWA density (RWA divided by LRD) was 45% for JP Morgan and 28% for Deutsche
Bank. Therefore, a two times higher leverage ratio impact is approximately consistent with this regulatory
risk density measure.
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Figure 3: Dependence of the Covid-19-induced MLR impact, and spread con-
tribution to IC impact, on MLR
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Note: The left panel displays the impact of the Covid-19-induced market shock (from February
19 to March 19, 2020) on the MLR versus the MLR prior to the market shock. The sample
of banks is the same as in Figure 2. The right panel shows the ratio of the spread impact
to the total IC impact versus the MLR prior to the market shock. Note that this ratio can be
interpreted as the moneyness of the shareholders’ default option. The lines are drawn to indicate
that the MLR impact is approximately proportional to MLR, and the spread contribution to
the IC impact is nonlinear in MLR.

(1974) is out of the money. Conversely, for European banks, most of the loss is absorbed by

debt holders, and the shareholders’ default option is in the money.

Another way to look at the moneyness of the default option is through the sign of ILR in

Figure 2. If market-implied IC is positive, the default option has no intrinsic value but the

MC has intrinsic value, and vice versa (cf. Figure 1). At the bottom of the market downturn

in March 2020, the market-implied IC was negative for several European banks according to

our measure.

Negative market-implied capital is clearly a very harsh assessment of banks’ resilience,

and some caveats are warranted, especially when comparing these ratios with regulatory

ratios. Market-based measures contain risk premia, which may account for a substantial

fraction of the variation over time. Furthermore, they often react very strongly to new

information and may over- or underestimate the resilience of banks, especially at times of
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very high uncertainty (as was the case in March 2020). The main reason it is important

to consider IC instead of just MC is not that the market-based leverage ratios of European

banks would be too high without this correction. Rather, our point is that if we want to

estimate the impact of a shock on the banks’ assets from a regulatory perspective, using

MLR would systematically distort the results by underestimating the risks for banks with a

low MC.

3.2 Implications for Market-Based Stress Tests

One can view the Covid-19 shock studied above as a realized stress event. When conducting

a market-based stress test, we instead assume a negative market shock—e.g., a stock market

downturn of at least a certain size—and calculate predicted market-based leverage ratios

after the shock. We will present an implementation of such a market-based stress test in the

next section.

For such exercises, the illustration above holds two main lessons. First, from the per-

spective of levels of the leverage ratio either before or after stress, MLR may overstate the

capitalization of banks, especially for banks with low MC (such as Deutsche Bank in the

example above). This issue is important for measures such as SRISK that are directly based

on MC, as we will discuss below.

Second, from the perspective of changes between an unstressed environment and a

stressed one, the difference in MLR is likely to understate the market assessment of the

impact of stress on asset values, again particularly so for banks with low MLR pre-stress.

This insight is especially important if one wants to use changes in market-based leverage

ratios as a benchmark for model-implied stress tests. Conceptually, ILR is more appropriate

for this task, and as observed above, using ILR rather than MLR also can make a sizeable

difference in practice.
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4 Stressed Intrinsic Leverage Ratios

4.1 Definitions

In this section, we describe in detail how the concept of market-based intrinsic leverage

can be integrated into the SRISK framework, which is a well-established market-based stress

testing and systemic risk measurement methodology. As we discussed in the previous section,

the systematic distortion in measuring market-implied IC using the MC is particularly large

in a severe market downturn and for the least-capitalized banks. The purpose of SRISK is

to estimate the expected capital impact, or capital shortfall, in a severe market downturn.

Hence, distinguishing between MC and IC is particularly important for SRISK.

An important element in the SRISK framework is to calculate at time t for a bank i the

expected MC at time t+ T conditional on a market decline occurring between t and t+ T

MCS
i,t:t+T := Et [MCi,t+T | Stresst:t+T ] . (11)

We adopt the same approach for IC. To this end, we estimate the impact of the downturn

not only on the MC but also on the CDS spread. We define the stressed IC as

ICS
i,t:t+T := Et [ICi,t+T | Stresst:t+T ] (12)

= Et [MCi,t+T | Stresst:t+T ]− BDi · Et

[
SCDS
i,t+T | Stresst:t+T

]
.

If we define the long-run marginal expected shortfall of bank i as

LRMESi,t:t+T = −Et [MCi,t+T/MCi,t − 1 | Stresst:t+T ] = −Et [Ri,t:t+T | Stresst:t+T ] , (13)

where Ri,t:t+T denotes the cumulative stock return between t and t+T , we obtainMCS
i,t:t+T =

(1− LRMESi,t:t+T ) ·MCi,t. Similarly, we define the marginal expected increase of the firm’s

CDS as

CDSMEIi,t:t+T = Et

[
SCDS
i,t+T/S

CDS
i,t − 1 | Stresst:t+T

]
= Et [Yi,t:t+T | Stresst:t+T ] , (14)
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where Yi,t:t+T denotes the cumulative CDS return between t and t+T . Then, we can rewrite

Equation (12) as

ICS
i,t:t+T = (1− LRMESi,t:t+T ) ·MCi,t − BDi · (1 + CDSMEIi,t:t+T ) · SCDS

i,t . (15)

Analogously to Equation (9), we define the stressed ILR and the stressed MLR as

ILRS
i,t:t+T =

ICS
i,t:t+T

LRDi

and MLRS
i,t:t+T =

MCS
i,t:t+T

LRDi

. (16)

We will also analyze the estimated impact of our stress simulation on these market-based

leverage ratios. For a given bank i at time t, the estimated stress impacts on ILR and MLR

are defined as

∆ILR
i,t:t+T := ILRi,t − ILRS

i,t:t+T and ∆MLR
i,t:t+T := MLRi,t −MLRS

i,t:t+T . (17)

In Section 5, we will examine the impacts on the market-based capital ratios, ICR and MCR

defined in Equation (10). Therefore, we also introduce the definitions

∆ICR
i,t:t+T := ICRi,t − ICRS

i,t:t+T and ∆MCR
i,t:t+T := MCRi,t −MCRS

i,t:t+T , (18)

where ICRS
i,t:t+T and MCRS

i,t:t+T are defined as in Equation (16) with RWAi instead of LRDi

in the denominator.

4.2 Measuring Stressed ILR

In this section, we describe the estimation of the long-run marginal expected shortfall of the

firm’s return (LRMESi,t:t+T ) and the marginal expected increase of the firm’s CDS spread

(CDSMEIi,t:t+T ) in a severe market downturn (“Stress” in the equations above).

As we are interested in the joint dynamics of the equity and CDS markets, we model the

behavior of the four series rt+1 = {rM,t+1, yB,t+1, ri,t+1, yi,t+1}, where ri,t+1 and yi,t+1 denote

the daily stock log-return and the CDS log-return of bank i in the period from t to t + 1,

and rM,t+1 and yB,t+1 denote the daily stock market (MSCI World index) log-return and
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the CDS log-return of the bank panel on the same day.9 Our objective is to model the

dependence of the return of a bank’s stock and CDS spread on their drivers. To this end, we

design a factor model with time-varying parameters, time-varying volatility, and a general,

non-normal dependence structure for the innovations. We assume the following recursive

multifactor model with time-varying parameters, after having demeaned all return series:

rM,t+1 = εM,t+1, (19)

yB,t+1 = βM
B,t+1 rM,t+1 + εB,t+1, (20)

ri,t+1 = βM
ir,t+1 rM,t+1 + βB

ir,t+1 yB,t+1 + εir,t+1, (21)

yi,t+1 = βM
iy,t+1 rM,t+1 + βB

iy,t+1 yB,t+1 + βr
iy,t+1 ri,t+1 + εiy,t+1. (22)

In this recursive model, the world stock market return can affect the aggregate bank CDS

return. Both of these aggregate returns can affect the individual bank’s stock and CDS

returns. We implicitly assume an instantaneous relation between stock returns and CDS

returns, which is allowed to strengthen at times of financial distress, as suggested in Merton

(1974). This model can be interpreted as a generalized market model under market efficiency,

based on the Dynamic Conditional Beta approach of Engle (2012) and Bali et al. (2017).

As the error term εt+1 = {εM,t+1, εB,t+1, εir,t+1, εiy,t+1} may exhibit nonlinear dependence

both in the time series (heteroskedasticity) and in the cross section (tail dependence), we

allow εt+1 to have univariate GARCH dynamics with skewed t innovations. Tail dependence

is captured through a t copula. Details of the econometric methodology are provided in

Appendix A.4.

Armed with this model, we predict the long-run marginal expected shortfall (LRMESi,t:t+T )

and the CDS marginal expected increase (CDSMEIi,t:t+T ) using Monte-Carlo simulations.

9Systemic risk measures are defined using simple returns, but our econometric model is written in log-
returns. The main reason for this is that working with log-returns avoids unlimited losses. Indeed, with an
unbounded distribution (such as normal or t distributions), simple returns may fall below −100%, and thus
the loss may exceed the wealth. With log-returns, this will not happen. Once cumulative log-returns have
been computed, we convert them back into simple returns to compute capital shortfall measures.
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First, we define the cumulative returns on stocks and CDS as

Ri,t:t+T = exp

(
T∑

k=1

ri,t+k

)
− 1 and RM,t:t+T = exp

(
T∑

k=1

rM,t+k

)
− 1,

Yi,t:t+T = exp

(
T∑

k=1

yi,t+k

)
− 1 and YB,t:t+T = exp

(
T∑

k=1

yB,t+k

)
− 1.

Second, we define the duration and magnitude of a crisis event. We consider a world

stock market decline of at least 30% in the next six months. Recently, stock markets ex-

perienced such major drawdowns in October 2008 during the subprime crisis and in March

2020 during the Covid-19 pandemic. This threshold for a systemic event is less severe than

the conventional 40% market decline considered by Brownlees and Engle (2012) and Engle

et al. (2015). The reason is twofold: first, in our model, the aggregate stock market and CDS

returns both affect and usually reinforce the impact on the bank’s individual stock return

in Equation (21). Second, as tail dependence is allowed between innovation processes, joint

crashes in stock and CDS markets are more likely than with Gaussian innovations. There-

fore, the overall impact on banks’ individual stock prices (LRMESi,t:t+T ) is usually larger

than in a model with only the stock market. Our model also determines the effect of a stock

market decline on the CDS market and, ultimately, on the bank’s CDS spread, which gives

us predictions of CDSMEIi,t:t+T .

To ensure consistency of aggregate predictions and reduce the computational burden, we

simulate the model in two blocks. First, we run J1 = 100, 000 draws of the aggregate model,

which includes the aggregate stock and CDS returns, and identify a stress event in a given

simulated trajectory j1 when R
(j1)
M,t:t+T ≤ −30%. We denote by NS,t =

∑J1
j1=1 I(R

(j1)
M,t:t+T ≤

−30%) the number of stress events in the simulations on date t. Then for each draw cor-

responding to a stress event, we simulate J2 = 1, 000 draws of the bank model, which

corresponds to the stock and CDS returns of bank i, and compute LRMES and CDSMEI

conditional on the stock market shock, with

LRMESi,t:t+T = − 1

NS,tJ2

J1∑
j1=1

J2∑
j2=1

R
(j1,j2)
i,t:t+T × I(R(j1)

M,t:t+T ≤ −30%), (23)
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where the indicator function I(x) equals 1 if x is true and 0 otherwise. Similarly, CDSMEI

is obtained by

CDSMEIi,t:t+T =
1

NS,tJ2

J1∑
j1=1

J2∑
j2=1

Y
(j1,j2)
i,t:t+T × I(R(j1)

M,t:t+T ≤ −30%). (24)

This approach provides accurate estimates of the true expectation, as the number of sim-

ulated trajectories is large. A description of the simulation process is provided in Appendix

A.4. To deal with the possible time variability of (some of) the model parameters, we esti-

mate the model over a rolling window, moving forward as soon as a new observation is made

available. Specifically, we start in January 2009, using five years of data (from January 2004

to December 2008). Then, we use one more month for the next month, using an expanding

window until December 2013. From January 2014 onward, we use ten years of data for the

rolling-window estimation.

4.3 Temporal Evolution of Aggregate Measures

Figure 4 presents the temporal evolution of estimated model parameters and statistical

measures in our aggregate market model. Panel A reports the temporal evolution of the

sensitivity of the market CDS return to the market stock return (βM
B,t+1). This parameter

plays an important role because it measures how the CDS market is affected by a stock

market decline. The contagion of the CDS market also impacts individual CDS spreads and

therefore the potential loss of banks’ debt holders. As the model is re-estimated monthly

using new data, this parameter is updated monthly. It is close to −1 at the start of the

sample and then ranges between −3 and −1 until the end of the sample. In the beginning

of 2020, the sensitivity is equal to −1.4; thus, a −40% stock market decline is expected to

increase the aggregate CDS spread by approximately 60%.

Panel B reports the probability of a world stock market crash obtained using our simu-

lations. It is computed as the number of draws identified as crashes (with cumulative stock

market returns below −30% over the next six-month period). High crash probabilities cor-

respond to major drawdowns during the period: the probability was still high (above 2%)

in 2009 after the subprime crisis; it reached 3.5% in the middle of 2011 at the start of the
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Figure 4: Temporal evolution of aggregate measures
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Note: This figure displays the sensitivity of the aggregate CDS spread return to the stock
market return (βM

B,t+1), the probability of a crash (NS,t/J1), the aggregate stock market shortfall
(Et[RM,t:t+T | Stresst:t+T ]), and the aggregate CDS market increase (Et[YB,t:t+T | Stresst:t+T ]),
in case of a stock market crash. The sample covers the period from January 2009 to June 2020
at a monthly frequency.

European sovereign debt crisis; it increased again at the end of 2015 at the start of the

normalization of the Federal Reserve policy; finally, it jumped up to 10% in March 2020,

with the market decline driven by the Covid-19 crisis.

Panel C presents the evolution of the aggregate stock market shortfall, computed as the

expected stock market decline when the fall is at least −30%. The simulated average market

crash magnitude ranged between 36% and 42%. It was usually low until 2014, with the

exception of the episode of the sovereign debt crisis, and then it steadily increased, with a

maximum in March 2020. This evidence suggests that a crisis was likely to be more severe in

2020 than in 2012–2015. On average over the sample, the simulated expected stock market

crash magnitude is equal to 38%.
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Panel D reports the evolution of the average CDS market increase when a world stock

market crash occurs. The CDS market became more reactive to stock market crashes over

time until 2014, following the downward trend in the βM
B,t+1 parameter. The highest CDS

return was equal to 183% in July 2014. It should be noted that high CDS returns are usually

associated with low levels of the CDS spread.

4.4 Temporal Evolution of Stressed Leverage Ratios

Sample Average. The top panel of Figure 5 displays the temporal evolution of MLR,

averaged across all banks in our sample. The solid line shows the unstressed (actual) MLR

defined in Equation (9), and the dashed line shows the stressed MLR defined in Equa-

tion (16). The unstressed MLR is close to 5% on average over the sample period, with

particularly low values in the beginning of the sample (the aftermath of the subprime cri-

sis) and at the end of the sample (the Covid-19 market crash). The sample average of the

stressed MLR is equal to 3.3%, 1.7 pp below the actual level. Note that the gap between the

dashed and solid lines—the implied stress impact—narrows when the solid line is at a lower

level to begin with. This is consistent with our earlier discussion and reflects the zero lower

bound of MLR, given the shareholders’ default option.

The bottom panel similarly presents the temporal evolution of the average unstressed

and stressed ILR. In contrast to MLR, movements in ILR take the fair-value changes of the

banks’ debt instruments into account. Averaged over the sample period, the unstressed ILR

(the solid red line) is at 3.9% and the stressed ILR (the dashed red line) is at 1.1%, 2.8 pp

below the unstressed level. This implies that in addition to the 1.7 pp loss by shareholders,

which we mentioned above, an additional loss of 1.1 pp is incurred by debt holders under

our simulated market stress. Note that the gap between the solid and dashed lines varies

over time but does not appear systematically related to the level of the solid line, unlike in

the top panel.

In our sample, there were a few episodes where the average stressed ILR measure turned

negative: in 2009 (the aftermath of the subprime crisis), in 2011–2012 (the sovereign debt

crisis), and in 2016. Note that for these periods we simulate severe market stress after the
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Figure 5: Average Market Leverage Ratio and Intrinsic Leverage Ratio
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Note: This figure displays the (unweighted) average of MLR and ILR across banks in our sample.
The sample covers the period from January 2009 to June 2020 at a monthly frequency.

market has already suffered losses. The actual ILR never turned negative over this period,

though it came close in 2009 when stock prices were low and CDS spreads were high.

Differences Across Jurisdictions. Figures 6 and 7 display the time series of average

leverage ratios across banks in the U.S., the euro area, the U.K., and Switzerland. Figure 6

reveals a stark contrast between the U.S. and the euro area. The average MLR in the U.S.

is relatively high (7.4% on average) and falls by several pp in our simulated stress scenario.

The average MLR in the euro area is relatively low (2.9% on average) but declines only by

approximately 1 pp under stress.

The average stressed ILR of U.S. banks remains positive most of the time, with an

average equal to 2.5%. The average stressed ILR for euro area banks reaches much lower

levels (−0.6% on average, with particularly low values in 2011–2014), for two reasons. First,
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average equal to 2.5%. The average stressed ILR for euro area banks reaches much lower

levels (−0.6% on average, with particularly low values in 2011–2014), for two reasons. First,
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the unstressed ILR level is already quite low for these banks. Second, the impact from the

stress scenario is also quite significant, as the loss contribution from debt instruments is

important for these banks.

As Figure 7 reveals, the market-implied leverage ratios of U.K. and Swiss banks evolved

quite similarly to each other, at levels between those of U.S. and euro area banks. The

average MLR is equal to 4.9% in both countries. The average stressed ILR turned negative

during the European crisis for Swiss banks and during the Brexit campaign for U.K. banks,

but remained in the positive territory the rest of the time, including the spring of 2020.

Figure 8 shows the evolution of the average MLR impact (i.e., taking into account only

the equity price shock) and the total ILR impact, with the difference between the two series

showing the contribution of the loss on debt. The figure shows that the equity contribution

is high in the U.S. and clearly dominates the debt contribution, except around 2012 when

the two were approximately equal. The opposite holds in the euro area, and the figure

clearly illustrates that one could substantially misestimate the relative possible impact of a

market shock on the leverage ratio of U.S. versus European banks if only the MLR impact is

considered. In the U.K. and Switzerland, the equity impact only marginally dominates the

debt impact, and the impacts for banks in these countries again are between those for U.S.

and euro area banks. Overall, the ILR impact ranges between 1% and 5% and therefore often

exceeds regulatory capital buffers, which range between 0.5% and 2% in most jurisdictions.

Table A6 in Appendix A.5 confirms the summary results by jurisdiction above, and

further reports averages by bank over the sample period. At the bank level, there is even

more heterogeneity in terms of the average relative importance of the equity and spread

impacts. For instance, for Crédit Agricole the equity impact on average only accounts for

30% of the total ILR stress impact, while for Wells Fargo the corresponding share is 83%.
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Figure 6: Average Market Leverage Ratio and Intrinsic Leverage Ratio

Panel A: United States
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Note: This figure displays the (unweighted) average of MLR and ILR for all banks in a given
region in our sample. The sample covers the period from January 2009 to June 2020 at a monthly
frequency.
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Figure 7: Average Market Leverage Ratio and Intrinsic Leverage Ratio

Panel A: United Kingdom
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region in our sample. The sample covers the period from January 2009 to June 2020 at a monthly
frequency.

28



28 29

Figure 8: Time series of the intrinsic and market leverage ratio impacts, aggre-
gated by jurisdiction.
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Note: This figure displays the (unweighted) average of the simulated stress impact on the MLR
and the ILR for all banks in a given region in our sample. The stress impact on MLR is defined
as the difference between the actual (unstressed) MLR and the simulated stressed MLR. The
stress impact on ILR is defined analogously. The sample covers the period from January 2009
to June 2020 at a monthly frequency.

4.5 Defining a Capital Shortfall Measure

In this section, we define a capital shortfall measure based on IC and compare the definition

of this new measure to the original SRISK measure introduced by Brownlees and Engle

(2017), which is based on market capitalization.
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We define our IC-based shortfall measure for a bank i at time t as

SRISKIC
i,t:t+T = (Et [θ LRDi − ICi,t+T | Stresst:t+T ])

+ , (25)

where the expression (x)+ equals x if x > 0 and 0 otherwise. A shortfall arises in this measure

if IC in a stress scenario, as estimated with our econometric model (the second term), declines

below the minimum capital requirement (the first term). The minimum capital requirement

is based on the Basel III LRD with θ = 3% for all banks, which corresponds to the minimum

leverage ratio requirement in the Basel III capital framework.

Our IC-based definition of SRISK is conceptually similar to the original SRISK. The

definition differs, however, not only with respect to the estimated capital in a stress scenario,

which is MC-based in the original SRISK, but also with respect to the required minimum

capital in a stress scenario. The original SRISK for a bank i at time t is defined as

SRISKOriginal
i,t:t+T = (Et[θi Âi,t+T −MCi,t+T | Stresst:t+T ])

+, (26)

where Âi,t = BDi + MCi,t denotes the so-called quasi-market value of assets. Because of

differences in accounting standards, the threshold in the original SRISK measure depends on

the bank: θi is 8% for U.S. banks and 5.5% for European banks. This correction is very simple

compared to the detailed, exposure-specific accounting corrections in the Basel III leverage

ratio framework.10 Furthermore, LRD takes into account off-balance-sheet exposures, which

is not the case in the original SRISK measure. Acharya et al. (2021) have also pointed

out that the risks of off-balance-sheet exposures, particularly undrawn credit lines, are not

captured in the original SRISK measure and proposed another method to incorporate them.

In the original SRISK measure, the estimated available capital in a stress situation is

higher, which reduces the capital shortfall, but the capital requirements are also higher, which

increases the shortfall. To disentangle these two effects, we introduce a shortfall measure

that is MC-based, similar to the original SRISK, but uses the same Basel III leverage ratio

10Using this simplified correction can lead to distorted results for some firms. For example, Credit Suisse
is a European G-SIB but applies the U.S. accounting standards.
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minimum, as in our definition

SRISKMC
i,t:t+T = (Et[θ LRDi −MCi,t+T | Stresst:t+T ])

+. (27)

Figure 9 shows the evolution of these three different shortfall measures, aggregated by

jurisdiction. The shortfall obtained with the original definition of SRISK (the dashed yellow

line) declines substantially if we change the required capital from the original definition to

the Basel III leverage ratio requirement, as done in SRISKMC (the blue line). The reduction

is particularly high for U.S. banks, for which the aggregate shortfall drops to zero during

quiet market periods.

If we also change the definition of capital as done in SRISKIC (the red line), the shortfall

increases again and overall reaches a level similar to that of the original SRISK. The capital

shortfall in our new measure is, however, more volatile, implying a higher shortfall during

periods of stress and a lower shortfall during calm periods. The reason is that our measure

reflects the full risk of the banks’ assets, whereas the original SRISK only reflects the equity

risk. Differences between the two shortfall measures were particularly large for the euro

area in 2012–2013 during the sovereign debt crisis, when SRISKIC was much higher than

SRISKOriginal.

To evaluate the impact of the change in definition on the relationship between the vari-

ous SRISK measures, we compute Kendall’s tau and Spearman’s rho correlations for banks

between the SRISKIC and SRISKOriginal measures for a given month. Figure A3 in Appendix

A.6 displays the temporal evolution of these rank correlations. The declines in the correla-

tions during the market turbulence in 2016 and during the Covid-19 market stress in 2020

suggests that crisis episodes have a significant impact on the relationship between the SRISK

measures.11. During such periods, European banks such as Deutsche Bank, UniCredit, and

Credit Suisse had higher rankings according to the SRISKIC measure than according to the

SRISKOriginal measure (cf. Figure A4 in Appendix A.6).

Our measure has a further advantage of being less sensitive to the assumed minimum

required capital. We have also calculated the results with a risk-weighted minimum require-

11The sample average of Kendall’s tau equals 69% and that of Spearman’s rho equals 83% for correlations
between SRISKIC and SRISKOriginal.
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Figure 9: Time series of the three different capital shortfall measures
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Note: This figure displays the time series of the three different capital shortfall measures defined
in Equations (25), (26) and (27) in $ billions, aggregated by jurisdiction.

ment (8% of RWA) and obtained quite similar results. We could, in principle, also use a

threshold of 0%, which would make our measure completely independent of the definition

of minimum capital requirements. In this case, however, we would have to compensate this
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lower capital requirement with a more severe stress scenario. Otherwise, the capital shortfalls

would be based on a lower resilience target for the banking sector.

5 Benchmarking to Regulatory Exposure Measures

In this section, we compare the estimated impacts on the two market-based capital measures

(MC and IC) to two accounting-based regulatory exposure measures (LRD, used throughout

the above analysis, and RWA). By design, IC should capture the full risk of banks’ assets,

whereas MC captures only part of this risk. Depending on the moneyness of the shareholders’

default option, debt holders are also exposed to asset risk and will absorb part of the losses.

The regulatory exposure measures, LRD and RWA, are also designed to capture the full

risk of banks’ assets and, similarly to IC, do not depend on the shareholders’ default option.

Therefore, we expect the estimated impacts on the IC measure to be roughly proportional

to LRD or, even more so, to RWA, assuming that regulatory risk weights are consistent with

the markets’ assessment of banks’ risks. For MC, however, such proportionality could be

distorted, as the impacts depend on the moneyness of the shareholders’ default option.

We now turn to our cross-section of banks and study how the four different capital ratio

impacts defined in Equations (17) and (18) are distributed across banks. To disentangle the

overall magnitude of losses, which depends on the prevailing stress and volatility in financial

markets, from the distribution of losses across banks, we decompose the capital ratio impacts

as

∆µ
i,t:t+T = λµ

t:t+T · (1 + xµ
i,t:t+T ), (28)

where µ stands for any of the leverage and capital ratios (ILR, MLR, ICR, or MCR), λµ
t:t+T

is the average capital ratio impact over all banks in our sample at time t, and xµ
i,t:t+T is the

deviation from this average impact for bank i. If losses estimated under the market-based

measure in the numerator are exactly proportional to the regulatory exposure measure in

the denominator, xµ
i,t:t+T would be zero for all banks.
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Figure 10 displays the average xi,t:t+T by bank over the recent period from 2019:Q1 to

2020:Q2, which captures significant market volatility.12 The top left panel shows that for

MLR, the distribution of the impact is inhomogeneous across banks. As the banks are shown

in the order of decreasing MLR, the figure reveals that banks with high MLR also experience

a high impact and banks with low MLR also experience a low impact (consistently with our

earlier discussion). This result suggests that loss estimates based on MC, as used in the

SRISK measure, are very different from what we would expect based on the regulatory

leverage ratio exposure measure.

The bottom left panel shows that the impact distribution of MCR is more homogeneous.

However, even if we correct for risk in this way, the impact is still above average for all

U.S. banks and below average for almost all European banks. This regional difference in

the capital ratio impacts is substantially reduced if we consider ILR (the top right panel)

and especially ICR (the bottom right panel). The standard deviations of time-averaged

xi,t:t+T , corresponding to the four panels in the figure, equal 64% (MLR), 46% (MCR), 37%

(ILR) and 23% (ICR). The figure thus shows that using IC instead of MC, i.e., taking into

account the contribution from debt instruments, results in capital impacts becoming more

uniformly distributed. Therefore, loss estimates using the IC measure are more aligned

with the regulatory exposure measures. As regulatory stress tests are based on regulatory

exposure measures, i.e., stress loss estimates are typically based on the same risk parameters

that determine RWA, the IC impacts would plausibly be better aligned with regulatory stress

tests.

We can also use the xµ
i,t:t+T metric from above to evaluate alternative calibrations for the

sensitivity of market-implied capital to CDS changes. As explained in Section 2.1, we have

so far calibrated the CDS sensitivity of IC based on the average amount and maturity of

bail-in debt. We now analyze how the standard deviations of the distributions in Figure 10

depend on the choice of this sensitivity. To this end, we generalize our definition of IC from

Equation (8) and allow the importance of the spread adjustment to depend on a parameter

12We restrict this analysis to the recent period because in the years following the financial crisis, there
was substantial variability in the way RWA were measured across banks. In December 2017, the Basel
Committee finalized the Basel III post-crisis reforms with the objective of reducing such RWA variability.
The full implementation of the reform is still pending, but certain mitigating measures have already been
implemented.
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Figure 10: Deviation from a uniform distribution for different types of market-
based capital ratio impacts.
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Note: This figure shows xµi,t:t+T , as defined in Equation (28), for different types of market-based
capital ratio impacts, averaged over the period from 2019:Q1 to 2020:Q2. The top left (bottom
right) panel shows that if capital is measured as MC (respectively, IC), the leverage ratio (the
risk-weighted capital ratio) impact for JP Morgan, for example, is 150% (40%) above the average
impact. The banks are shown in the order of decreasing MLR, averaged over the same period.

α:

ICi,t(α) = MCi,t − α · BDi · SCDS, 5y
i,t . (29)

Note that for α = 0 this measure equals MC, and for α = 1 it equals our definition of IC in

Equation (8).
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Figure 11: α-dependence of the standard deviation
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Note: This figure shows how the standard deviation of time-averaged xILR,α
i,t:t+T and xICR,α

i,t:t+T depends
on parameter α, defined in Equation (29). The time period considered is 2019:Q1 to 2020:Q2.
The standard deviation for ICR is minimized at α ≈ 1, which is consistent with our definition
of IC. The value α = 0 corresponds to MC.

In Figure 11, we illustrate how the standard deviation of time-averaged xILR,α
i,t:t+T and xICR,α

i,t:t+T

depends on this parameter α.13 For the risk-weighted capital ratio impacts, the standard

deviation is minimized at α = 1.1. For the leverage ratio impacts, the standard deviation is

minimized at approximately 2.6. The minimum for risk-weighted capital ratios is lower, and

the region close to the minimum is much narrower than for the leverage ratios. We consider

the observation that the minimum standard deviation for the risk-weighted capital ratio is

close to 1 as an independent confirmation of our previous calibration based on balance sheet

data. The fact that both curves have a minimum at or above 1 also indicates that, according

to this benchmark, we did not overestimate the sensitivity of IC to the CDS spread, i.e., we

do not overstate the correction of MC due to the expected losses from debt instruments.

13Variables xILR,α
i,t:t+T and xICR,α

i,t:t+T are defined as in Equation (28) but with the α-dependent IC measure

of Equation (29). The standard deviation is calculated after time-averaging xµ,α
i,t:t+T over the period from

2019:Q1 to 2020:Q2.
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6 Conclusions

In this paper, we argue that analyzing market-based measures of bank capital may lead to

erroneous conclusions if the limited liability of equity holders and the resulting impact of

losses on debt holders are ignored. The bias is particularly important for banks with low

market capitalization (relative to their total exposures) and when conducting market-based

stress tests, similar to what is done in the SRISK framework.

We introduce the concept of intrinsic capital as market capitalization corrected for the

expected loss of debtholders implied by the credit spread. This correction allows the market-

implied bank capital to be negative in severe market conditions. Stressed measures provide

estimates of the intrinsic leverage ratio and capital ratio in a severe stock market downturn.

Our estimates reveal substantial heterogeneity across banks and jurisdictions.

Our intrinsic leverage ratio measure can be calculated in real time as long as bank stock

price and CDS spread series are available. We hope that this approach will prove useful to

bank regulators looking for market-based complements to their standard stress tests.
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A Appendix

A.1 Comparing Benchmark Issuer Spreads and CDS Spreads

In our econometric model, we use CDS spreads instead of issuer benchmark spreads. For a

given issuer, these two market variables co-move closely. However, there is a significant level

difference (or basis) between the two spreads. Figure A1 shows the benchmark issuer spread

and CDS spread for JP Morgan over a time horizon of one year. We observe from this chart

that the basis between the two spreads increases in a stress period (in this case, the onset of

the Covid pandemic). However, the ratio stays roughly constant at approximately two; i.e.,

the benchmark issuer spread is always approximately twice as high as the CDS spread.

Figure A1: Comparison of benchmark issuer spread and CDS spread for JP
Morgan
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Note: This figure shows the benchmark issuer spread of senior holding company debt of JP
Morgan with a five-year tenor and the corresponding CDS spread over the period 2019:H2-
2020:H1. The benchmark issuer spread is obtained from Eikon. The figure also displays the
ratio of these two spreads, the median value of this ratio (the dashed line), and the interquartile
range (dotted lines).

The summary statistics for this ratio for other U.S. and European G-SIBs are shown in

Table A1. For most banks, the median value is also close to two, and the interquartile range

(IQR) is relatively narrow. We obtain the benchmark issuer spread data from Eikon, which

calculates issuer curves for most G-SIBs. In this analysis, we consider the five-year tenor for

the issuer curve of bail-in-eligible debt. However, we did not find suitable issuer curves for

all banks in our sample. For UBS and Crédit Agricole, we found a relatively liquid bail-in

debt instrument with the remaining maturity of approximately five years, instead.
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Figure A2 displays the ratio of the benchmark issuer spread to the CDS spread for banks

in Table A1, averaged for European and U.S. banks. Note that for U.S. G-SIBs, the ratio was

somewhat below two in normal times and approximately two during the Covid-19 market

shock in March 2020. For European banks, the averaged ratio was approximately two during

normal times but was as high as three at the peak of the stress period.

Overall, the benchmark issuer spread can be reasonably well approximated by multiplying

the CDS spread by a factor of two for most banks during normal periods. For U.S. G-SIBs,

the factor of two seems also to be a good approximation during stress periods. For European

G-SIBs, the benchmark issuer spread can be even more than two times higher during stress

periods. Because it would be difficult to collect consistent data on issuer spreads for a longer

historical period, in this paper we approximate such spreads for all banks by multiplying the

CDS spread by a constant factor of two.

Table A1: Ratio of benchmark issuer spread to CDS spread – Summary statistics

G-SIB Observations Median IQR

Bank of America 251 2.00 0.28
Barclays 250 1.84 0.24
BNP 251 1.83 0.24
Citigroup 251 1.96 0.31
Crédit Agricole 258 2.08 0.27
Credit Suisse 252 2.08 0.24
Deutsche Bank 104 1.51 0.19
Goldman Sachs 251 1.29 0.55
HSBC 250 2.02 0.33
JP Morgan Chase 251 1.92 0.33
Morgan Stanley 251 1.55 0.19
Société Générale 251 1.91 0.23
UBS 249 2.24 0.31
Wells Fargo 252 1.91 0.22

Note: This table shows summary statistics for the ratio of the benchmark issuer spread to the
corresponding CDS spread over the period 2019:H2-2020:H1. The benchmark issuer spread is
obtained from Eikon for an issuer curve that corresponds to bail-in-eligible debt. The tenor for
both spreads is five years. The table shows the number of observations, the median value, and
the interquartile range (IQR).
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Figure A2: Ratio of benchmark issuer spread to CDS spread - averaged per
region
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Note: This figure shows the ratio of benchmark issuer spread to CDS spread for banks in
Table A1. The color scale indicates the level of the averaged CDS spread.

A.2 How Much Bail-in Debt do G-SIBs Have?

In our implementation of IC, we assume that 10% of a G-SIB’s total debt is long-term

unsecured debt. In this appendix, we provide some further background on this assumption

and on our measurement of the book value of total debt. We base the discussion on data

as of end-2020, as we found a complete disclosure of bail-in-eligible debt for all banks in our

sample only for this date.14

Table A2 shows the median values of long-term unsecured debt for G-SIBs in our sample,

aggregated by jurisdiction. The values are expressed as percentages of the adjusted book

value of debt, defined as the LRD less the book value of equity. We use this adjusted value

instead of the actual book value of debt to correct for differences in accounting standards.

We calculate long-term unsecured debt as the sum of Additional Tier 1 (AT1), Tier 2

(T2), bail-in debt (TLAC-eligible debt), and other long-term unsecured debt. We obtain

the first three elements from banks’ regulatory disclosures and the last element from the

14Not all jurisdictions have implemented standard disclosure requirements for TLAC yet. However, for the
year 2020, we were able to find the available amount of TLAC for all banks in their reports or fixed income
presentations.

42



42 43

Moody’s balance sheet database. While there are some regional differences, the table shows

that the amount of long-term unsecured debt is at least 10% in all regions.

In our implementation of IC, we will treat long-term unsecured debt as a uniform debt

category with issuer spread equal to the issuer spread of bail-in debt. In reality, AT1 and T2

capital instruments have higher issuer spreads, whereas other long-term unsecured debt has a

lower issuer spread than bail-in debt. The last column shows that if we assign higher weights

to capital instruments and lower weights to ineligible long-term unsecured debt, we observe

that the typical weighted amount of long-term unsecured debt is approximately 10%. As

we do not know the exact maturity distribution of these debt categories, there is significant

uncertainty as to the appropriate weights. This is especially true for the other long-term

debt (“O.LTD”) category, which could have an average maturity significantly shorter than

five years. Due to this uncertainty, we do not take bank-specific or regional differences into

account and use the uniform assumption of 10% long-term debt for all banks.

Table A2: Typically amounts of long-term unsecured debt

Jurisdiction AT1 T2 Bail-in O.LTD Total W.Total

United States 0.9 1.3 6.3 3.3 11.2 11.2
Euro area 0.6 0.9 2.2 9.0 12.2 8.3
United Kingdom 1.0 1.1 3.3 5.0 10.5 9.0
Switzerland 2.0 0.7 4.7 11.7 19.0 14.3

All 0.9 1.0 4.0 5.7 12.0 10.4

Note: This table shows the median values of banks’ liabilities expressed as percentages of the
total book value of debt per jurisdiction as of the end of 2020. The last column (“W.Total”)
shows the weighted total, where AT1, T2, bail-in debt, and other long-term debt (“O.LTD”)
have the following weights: 2, 1.5, 1 and 0.4.
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A.3 Stock and CDS Returns

Table A3: Summary statistics on stock and CDS returns

GSIB Stock return CDS return
Annual. Annual. AR(1) Annual. Annual. AR(1) Cross-
return volatility param. return volatility param. correl.

(%) (%) (%) (%) (%) (%) (%)

Banco Santander -3.0 35.5 3.2 17.0 68.2 13.4 -15.6
Bank of America 15.9 48.3 -5.4 11.3 58.6 21.7 -22.9
Barclays 9.8 49.5 4.3 15.3 64.8 13.8 -14.1
BNP Paribas 9.0 39.3 2.5 27.1 77.8 6.9 -11.1
Citigroup 9.6 48.6 2.9 7.4 56.4 19.0 -21.0
Crédit Agricole 8.4 41.0 4.3 24.4 78.1 8.4 -10.8
Credit Suisse -1.9 35.4 7.4 7.5 54.0 15.5 -12.7
Deutsche Bank 0.1 40.7 2.5 19.8 59.8 14.0 -16.5
Goldman Sachs 12.2 31.8 -8.5 4.1 54.4 18.6 -20.5
HSBC -0.1 26.1 -3.7 16.3 64.9 8.6 -10.1
ING 10.7 44.7 4.3 12.8 63.9 5.3 -16.6
JP Morgan Chase 15.2 35.0 -13.0 9.4 55.1 18.3 -18.6
Morgan Stanley 17.2 40.3 -7.3 -2.1 51.7 14.2 -19.2
Société Générale 2.7 44.5 3.7 22.3 73.4 9.2 -10.6
Standard Chartered 0.4 33.4 0.7 22.4 79.6 -14.3 -9.7
UBS 3.2 33.8 5.1 7.1 59.0 11.1 -12.9
UniCredit -2.9 48.2 4.3 24.6 70.7 15.7 -22.4
Wells Fargo 6.9 40.6 -12.2 9.6 52.4 24.1 -19.1

United States 12.8 40.8 -7.2 6.6 54.7 19.3 -20.2
Euro area 3.6 42.0 3.5 21.1 70.3 10.4 -14.8
United Kingdom 3.4 36.3 0.4 18.0 69.8 2.7 -11.3
Switzerland 0.6 34.6 6.2 7.3 56.5 13.3 -12.8

Note: This table reports summary statistics on daily stock and CDS returns: the annualized
return, the annualized volatility, the first-order autoregressive (AR(1)) parameter, and the
contemporaneous cross-correlation between stock and CDS returns. All numbers are averages
over the 2009–2020 sample.
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A.4 Econometric Methodology

Econometric model. Our model can be interpreted as a generalized market model under

market efficiency. On the one hand, in our specification the return on the CDS of the bank

panel (yB,t+1) is allowed to depend on the stock market return (rM,t+1), and the stock return

of firm i (ri,t+1) is allowed to depend on the stock market return and the return on the CDS

of the bank panel. Finally, the return on the CDS of firm i (yi,t+1) is allowed to depend

on the stock return of firm i, the stock market return, and the return on the CDS of the

bank panel. On the other hand, under market efficiency, returns do not depend on past

information. Therefore, our system includes four series, rt+1 = {rM,t+1, yB,t+1, ri,t+1, yi,t+1}.
The objective of the model is to capture the dependence of the return of firm i with respect

to the drivers. Our econometric approach aims at capturing this dependence by designing

a factor model with time-varying parameters, time-varying volatility, and a general, non-

normal dependence structure for the innovations. We begin with a recursive multifactor

model with time-varying parameters, after having preliminarily demeaned all return series

described in Equations (20)–(21) in the main text.

The model parameters are estimated using the Dynamic Conditional Beta approach pro-

posed by Engle (2012). The estimation is performed as follows. We assume that, conditional

on the information set on date t, the return process at t + 1 has mean Et[rt+1] = 0 and

covariance matrix Vt[rt+1] = Ht+1. The conditional covariance matrix Ht+1 is estimated by

a DCC model (Engle and Sheppard, 2001; Engle, 2012) as

Ht+1 = D
1/2
t+1Γt+1D

1/2
t+1, (A.1)

Γt+1 = (diag (Qt+1))
−1/2 Qt+1 (diag (Qt+1))

−1/2 , (A.2)

Qt+1 = (1− δ1 − δ2)Q̄+ δ1Qt + δ2 D
−1/2
t rtr

′
tD

−1/2
t , (A.3)

where diag (Qt+1) denotes a matrix with zeros except for the diagonal that contains the

diagonal of Qt+1, and Dt+1 is a diagonal matrix with the variances of rt+1 (conditional on

t) on its diagonal and zeros elsewhere. Matrix Q̄ is the unconditional covariance matrix of

the standardized residuals. Parameters δ1 and δ2 are restricted to ensure that the condi-

tional correlation matrix Γt+1 is positive definite. Armed with this model, we estimate the

parameters associated with the CDS log-return of firm i as

βiy,t+1 =




βir
iy,t+1

βB
iy,t+1

βM
iy,t+1


 =




Hirir,t+1 HirB,t+1 HirM,t+1

HirB,t+1 HBB,t+1 HBM,t+1

HirM,t+1 HBM,t+1 HMM,t+1




−1 


Hiyir,t+1

HiyB,t+1

HiyM,t+1


 ,

the parameters associated with the stock log-return of firm i as

βir,t+1 =

(
βB
ir,t+1

βM
ir,t+1

)
=

(
HBB,t+1 HBM,t+1

HBM,t+1 HMM,t+1

)−1 (
HirB,t+1

HirM,t+1

)
,
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and the parameter associated with the aggregate CDS log-return as

βM
B,t+1 = (HMM,t+1)

−1HBM,t+1.

The error term εt+1 = {εiy,t+1, εir,t+1, εB,t+1, εM,t+1} may be non-linearly dependent both

in the time series (due to heteroskedasticity) and in the cross-section (due to tail dependence).

To deal with heteroskedasticity, we assume a univariate GARCH model (Engle, 1982), where,

as before, volatility is conditional on the information set on date t:

εk,t+1 = σk,t+1 zk,t+1, (A.4)

σ2
k,t+1 = ωk + αkε

2
k,t + βkσ

2
k,t, (A.5)

for k ∈ {M,B, ir, iy}. The innovation process zt+1 = {zM,t+1, zB,t+1, zir,t+1, ziy,t+1} is such

that E[zk,t+1] = 0, V [zk,t+1] = 1 and Cov[zk,t+1, zl,t+1] = 0 for k �= l. As innovations zt+1

have been preliminarily orthogonalized, they are not correlated across series. However, they

cannot a priori be assumed to be independent from each other.15 As systemic risk measures

are based on the marginal expected shortfall (Equations (13 and (14)), they rely on the

dependence structure of the innovations. Therefore, we use a joint distribution for zt+1

that can capture possible nonlinear dependencies across innovation processes. A convenient

approach is to use a copula.16 First, the marginal distributions are assumed to be univariate

skewed t distributions, zk,t+1 ∼ f(zk,t+1; νk, λk), where f denotes the pdf of a skewed t

distribution with νk degrees of freedom and the asymmetry parameter λk.
17 We define

ut+1 = {uM,t+1, uB,t+1, uir,t+1, uiy,t+1} as the value of the marginal distribution evaluated at

the observed zt+1. Thus, uk,t+1 = F (zk,t+1; νk, λk), where F is the cumulative distribution

function (cdf) of the skewed t distribution f(zk,t+1; νk, λk). Then, the copula defines the

dependence structure of ut+1, denoted by C(ut+1). After investigating several alternative

copulas, we eventually selected the t copula, which has been found to capture the dependence

structure of the data very well. It accommodates tail dependence, and its elliptical structure

provides a convenient way to deal with high-dimensional systems. The cdf of the t copula is

defined as

CΩ,ν̄(uM,t+1, ..., uiy,t+1) = tΩ,ν̄(t
−1
ν̄ (uM,t+1), ..., t

−1
ν̄ (uiy,t+1)), (A.6)

where tν̄ is the cdf of a univariate t distribution with ν̄ degrees of freedom, and tΩ,ν̄ is the

cdf of the multivariate t distribution with Ω being the correlation matrix of the transformed

series and ν̄ being the degrees of freedom.

In summary, our model combines a DCC model for the dynamic of the beta parameters,

univariate GARCH models for the dynamic of the volatility of the error terms, and a t

15The Dynamic Conditional Beta model is likely to capture more than the mere linear dependence between
the variables. It is not clear, however, how much of the nonlinear dependence is left in the innovation process.
This is why we do not assume a priori that the innovations are independent from each other.

16Alternatively, the expected shortfall could be estimated using a nonparametric tail expectation estimator,
as in Scaillet (2003) or Brownlees and Engle (2017).

17Innovations in the skewed t distribution are rescaled to ensure that E[zk,t+1] = 0 and V [zk,t+1] = 1.
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copula for the dependence structure between the innovations. To deal with the possible time

variability of (some of) the model parameters, we estimate the model over a rolling window

of ten years of data, moving forward as soon as a new observation is made available.

Estimation strategy. The estimation strategy is worth describing. Although we have a

large number of models to estimate (one for each bank), the component that corresponds

to the interaction between the aggregate stock and CDS markets is common to all banks.

Therefore, we perform the estimation recursively as follows. We begin with the estimation

of the dynamic of CDS and stock market indexes, i.e., the model for (yM,t+1, rB,t+1). We

estimate the DCC model for these series and the corresponding time-varying beta parame-

ters. We also estimate the univariate GARCH processes for their error terms (εM,t+1, εB,t+1)

and the parameters of the t copula. We call this model the aggregate model. Next, we in-

troduce the stock and CDS returns, yi,t+1 and ri,t+1, of firm i and estimate the parameters

corresponding to these series, taking as given the parameters of the stock and CDS market

returns (the bank model).

This approach has three advantages. First, it is coherent with the recursive structure

of the model, assuming that the recursive model captures all interconnections between the

firms in a given country. Second, it ensures that the dynamics of the stock and CDS market

returns are the same for all submodels. Third, it allows for a relatively fast estimation of

the complete model and LRMES.

Measuring the Sensitivities to a Stock Market Crash. We now turn to the estimation

of the long-run marginal expected shortfall (LRMESi,t:t+T ) and the CDS marginal expected

increase (CDSMEIi,t:t+T ). Following Brownlees and Engle (2012), we estimate LRMES di-

rectly as the expected return of the firm in case of a large stock market decline in the next

six months.18

Directly estimating LRMES relies on a simulation of the model over T periods using all

information available on date t. As to the estimation strategy, our simulation strategy takes

advantage of the recursive structure of the model. We start by simulating the market model

over T periods (125 daily observations corresponding to a six-month period). To this end,

we draw a sample s of (u
(s)
M,τ , u

(s)
B,τ )τ=t+1,··· ,t+T from the t copula. Specifically, we draw a

bivariate Gaussian innovation n
(s)
t+1 from N(0,ΩMB) and a chi-squared innovation c

(s)
t+1 from

χ2
ν̄ , where ΩMB is the correlation matrix of the transformed series (uM,t+1,uB,t+1). Then,

the t innovation is obtained by n
(s)
t+1/

√
c
(s)
t+1. We deduce the innovation terms (z

(s)
M,τ , z

(s)
B,τ )

from the skewed t distribution. Using the GARCH estimates of volatility, we compute the

error terms (ε
(s)
M,τ , ε

(s)
B,τ ). We then estimate the dynamic betas that depend on the correlation

matrix and therefore on ε
(s)
τ . Eventually, we recover a six-month time series of CDS and

18A second approach consists of measuring LRMES based on the expected return of the firm in case of a
(relatively modest) 2% decline in the daily market return, which is then extrapolated to match a “once-per-
decade” crisis. For this study, we implemented both approaches and observed that they provided similar
systemic risk measures. To save space, we describe the methodology and report the results of the first
approach only.
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stock market returns, (r
(s)
M,τ , r

(s)
B,τ ) from the DCC model. The cumulative returns at t + T

tell us whether a crash occurred in CDS and stock markets over this simulated sample s (if

cumulative returns satisfy the condition for a crash event). If we do not observe a crash, we

simulate a new series. If we indeed observe a crash, we move to the bank model.

In the bank model, we simulate u
(s)
ir,τ and u

(s)
iy,τ from the t copula.19 Then, as before,

we recover the innovation terms from the skewed t distribution, the error terms from the

GARCH models, and eventually, the bank’s CDS and stock returns from the DCC model.

It is worth emphasizing that the recursive structure is critical in the simulation step for

obtaining systemic risk measures in an acceptable amount of time. To obtain an accurate

estimate of the marginal expected shortfall of the firm return conditionally on a stress event,

many draws of the aggregate model are required to simulate a sufficient number of crashes.20

This approach provides very accurate estimates of the true expectation if the number of

simulated data points is sufficiently large. We simulate J1 = 100, 000 draws of the aggregate

model (including only the worldwide stock market return and the aggregate bank CDS

spread). We define a stress event as a simulation with R
(j1)
M,t:t+T ≤ −30%. We denote by

NS,t the number of stress events in the simulations on date t. For each draw identified as

a market crash, we simulate J2 = 1, 000 draws of the bank model. The LRMES of firm i

conditional on a world shock is estimated by

LRMESi,t:t+T = − 1

NS,tJ2

J1∑
j1=1

J2∑
j2=1

R
(j1,j2)
i,t:t+T × I(R(j1)

M,t:t+T ≤ −30%), (A.7)

where I(x) = 1 if x is true and 0 otherwise. Similarly, the CDS MEI is obtained by

CDSMEIi,t:t+T =
1

NS,tJ2

J1∑
j1=1

J2∑
j2=1

Y
(j1,j2)
i,t:t+T × I(R(j1)

M,t:t+T ≤ −30%). (A.8)

19We use the same chi-squared c
(s)
τ in the simulation of the t random variables to preserve the same

dependence structure between the four shocks u
(s)
M,τ , u

(s)
B,τ , u

(s)
ir,τ and u

(s)
iy,τ . The correlation matrix of the

Gaussian draw Ω is extended to the four random variables.
20If we had to simulate the complete model for all firms simultaneously, the computational burden of

estimating systemic risk measures would be too heavy. To give an order of magnitude of the computational
burden, estimating the systemic risk for all firms for one date takes approximately one hour for the model
estimation and the simulation steps, whereas it would take several days if we had to estimate and simulate
the complete model for all firms simultaneously.
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A.5 Model Estimates

Table A4: Parameter estimates – The aggregate model

CDS Equity

Univariate parameters

ω 0.1396 0.0096
(0.049) (0.002)

α 0.1441 0.1120
(0.030) (0.013)

β 0.8483 0.8827
(0.031) (0.012)

Skewed t distribution

ν 4.3386 6.2724
(0.317) (0.597)

λ 0.0700 -0.1387
(0.018) (0.018)

Multivariate parameters

δ1 0.0277
(0.013)

δ2 0.9588
(0.020)

Copula parameters

Degree of freedom ν̄ 7.7810
(1.131)

Correlation ΩMB 0.0238
(0.001)

Note: This table presents parameter estimates of the DCB model with t copula innovations. Estimates
are based on daily data from January 2005 to June 2020 (4,043 observations). Volatility dynamics are for
the return series. Estimated parameters of the skewed t distribution are for the individual innovations.
The degree of freedom ν̄ and the correlation ΩMB correspond to the t copula of the innovation margins.
Numbers in parentheses are the standard errors. Estimates of ω are multiplied by 106.
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Table A5: Parameter estimates – The bank model

ω α β ν λ

CDS return

Banco Santander 0.4939 0.2242 0.7746 3.1279 -0.0246
Bank of America 0.1579 0.1441 0.8549 3.7523 0.0238
Barclays 0.8631 0.2759 0.7148 2.8320 -0.0091
BNP Paribas 0.2340 0.1290 0.8700 3.0234 -0.0209
Citigroup 0.3653 0.2447 0.7460 3.6336 0.0055
Crédit Agricole 0.2145 0.1532 0.8458 3.1059 -0.0101
Credit Suisse 0.2181 0.1721 0.8269 2.9100 -0.0277
Deutsche Bank 0.4734 0.2491 0.7499 3.0121 -0.0175
Goldman Sachs 0.2577 0.1666 0.8207 3.3381 0.0170
HSBC 0.5063 0.1156 0.8361 3.4564 0.0103
ING 0.7072 0.1465 0.8525 2.5443 -0.0295
JP Morgan Chase 0.1447 0.1405 0.8584 3.8217 0.0064
Morgan Stanley 0.3473 0.2066 0.7924 3.0351 -0.0054
Société Générale 0.2412 0.1468 0.8522 3.0370 -0.0378
Standard Chartered 2.1249 0.4399 0.5591 2.7806 0.0040
UBS 0.3998 0.2051 0.7939 3.0129 0.0072
UniCredit 0.4529 0.1688 0.8302 2.8864 -0.0299
Wells Fargo 0.2145 0.1660 0.8330 3.6191 0.0254

Stock return

Banco Santander 0.0374 0.0834 0.9038 5.4737 0.0177
Bank of America 0.0178 0.0749 0.9241 4.3299 0.0452
Barclays 0.0676 0.0865 0.9005 4.1568 0.0486
BNP Paribas 0.0260 0.0550 0.9360 5.6056 0.0540
Citigroup 0.0204 0.0788 0.9198 4.1923 0.0656
Crédit Agricole 0.0216 0.0469 0.9489 4.7220 0.0703
Credit Suisse 0.0256 0.0433 0.9480 4.2585 0.0031
Deutsche Bank 0.0151 0.0456 0.9511 5.0624 0.0115
Goldman Sachs 0.0236 0.0593 0.9311 5.1799 0.0313
HSBC 0.0207 0.0693 0.9185 5.0294 0.0088
ING 0.0267 0.0787 0.9168 4.8209 0.0322
JP Morgan Chase 0.0161 0.0674 0.9275 4.6269 0.0519
Morgan Stanley 0.0257 0.0585 0.9341 4.8788 0.0392
Société Générale 0.0304 0.0803 0.9178 4.6250 0.0547
Standard Chartered 0.1598 0.1341 0.8199 4.2499 0.0449
UBS 0.0200 0.0464 0.9478 3.8728 0.0376
UniCredit 0.0316 0.0843 0.9147 5.5832 0.0295
Wells Fargo 0.0136 0.0821 0.9169 4.6308 0.0460

Note: This table presents parameter estimates of the DCB model with t copula innovations. Estimates
are based on daily data from January 2005 to June 2020 (4,043 observations). Volatility dynamics are for
the return series. Estimated parameters of the skewed t distribution are for the individual innovations.
The degree of freedom ν and the asymmetry parameter λ correspond to the skewed t distribution of the
innovation terms. Estimates of ω are multiplied by 106.
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Table A6: Summary statistics for model estimates, by bank

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Unstressed Stressed ILR Stress Impact

G-SIB LRMES CDSMEI MLR ILR MLR ILR Total Equity Spread

Banco Santander 36.2 107.6 5.41 4.07 3.46 0.66 3.41 1.95 1.46
Bank of America 35.9 165.9 6.80 5.75 4.43 1.83 3.92 2.37 1.55
Barclays 32.7 103.9 2.62 1.57 1.79 -0.33 1.89 0.84 1.06
BNP Paribas 37.3 131.8 3.15 2.22 2.00 -0.14 2.36 1.15 1.21
Citigroup 37.4 167.4 6.01 4.85 3.84 1.13 3.73 2.18 1.55
Crédit Agricole 35.0 151.3 1.81 0.81 1.20 -1.25 2.06 0.61 1.45
Credit Suisse 29.8 115.1 3.66 2.74 2.58 0.62 2.13 1.07 1.05
Deutsche Bank 37.9 107.5 1.96 0.74 1.23 -1.27 2.01 0.73 1.28
Goldman Sachs 34.6 171.8 6.37 5.23 4.19 1.21 4.02 2.18 1.84
HSBC 22.4 104.1 6.95 6.23 5.41 3.96 2.27 1.54 0.73
ING 37.7 86.2 2.86 1.98 1.82 0.21 1.77 1.04 0.73
JP Morgan Chase 34.3 145.8 8.43 7.73 5.58 3.89 3.84 2.85 0.99
Morgan Stanley 38.8 130.0 5.54 4.24 3.42 0.69 3.55 2.12 1.43
Société Générale 38.5 124.1 2.62 1.50 1.64 -0.82 2.32 0.98 1.34
Standard Chartered 28.3 95.6 5.22 4.27 3.74 1.94 2.33 1.48 0.85
UBS 30.1 101.0 6.15 5.33 4.34 2.76 2.57 1.81 0.76
UniCredit 36.1 102.4 2.73 0.98 1.76 -1.76 2.74 0.96 1.78
Wells Fargo 31.1 120.7 11.30 10.62 7.83 6.42 4.20 3.47 0.73

United States 35.4 150.3 7.41 6.40 4.88 2.53 3.88 2.53 1.35
Euro area 37.0 115.8 2.93 1.76 1.87 -0.62 2.38 1.06 1.32
United Kingdom 27.8 101.2 4.93 4.02 3.64 1.85 2.17 1.29 0.88
Switzerland 30.0 108.0 4.91 4.04 3.46 1.69 2.35 1.44 0.91

Notes: All amounts are reported as percentages. Column (7) is the difference between columns (4) and (6).

Column (8) is the difference between columns (3) and (5).
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A.6 Rank correlations between SRISK measures

Figure A3: Rank Correlations between SRISK Measures
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Note: This figure displays Kendall’s tau and Spearman’s rho correlations between SRISKIC
i,t:t+T

and SRISKOriginal
i,t:t+T measures, defined in Section 4.5. Each month, the correlation is computed

for the cross-section of banks’ SRISK measures. The figure shows the data smoothed over three
months (solid lines) and the unsmoothed monthly data (dotted lines).
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Figure A4: Illustration of banks’ ranking by different SRISK Measures
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Note: This figure illustrates the banks’ ranking by SRISKIC
i,t:t+T (the first number in the labels)

and SRISKOriginal
i,t:t+T (the second number in the labels) measures, defined in Section 4.5. The

banks are ranked in the order of decreasing contribution to systemic risk. The rankings are
shown for March 2020, during the Covid-19-induced market stress, when rank correlations were
particularly low (cf. Figure A3).

53



Recent SNB Working Papers

2022-02	 Martin	Indergand,	Eric	Jondeau,	Andreas	Fuster: 
Measuring and stress-testing market-implied bank 
capital

2022-01	 Enrique	Alberola,	Carlos	Cantú,	Paolo	Cavallino,
Nikola	Mirkov: 
Fiscal regimes and the exchange rate

2021-20	 Alexander	Dentler,	Enzo	Rossi: 
Shooting	up	liquidity:	the	effect	of	crime	on	real	estate	

2021-19	 Romain	Baeriswyl,	Samuel	Reynard,	
Alexandre	Swoboda: 
Retail	CBDC	purposes	and	risk	transfers	to	the	central 
bank

2021-18	 Nicole	Allenspach,	Oleg	Reichmann,	
Javier	Rodriguez-Martin: 
Are banks still ’too big to fail’? – A market perspective 

2021-17	 Lucas	Marc	Fuhrer,	Matthias	Jüttner,	
Jan	Wrampelmeyer,	Matthias	Zwicker: 
Reserve	tiering	and	the	interbank	market	

2021-16	 Matthias	Burgert,	Philipp	Pfeiffer,	Werner	Roeger: 
Fiscal policy in a monetary union with downward 
nominal wage rigidity 

2021-15	 Marc	Blatter,	Andreas	Fuster: 
Scale	effects	on	efficiency	and	profitability	in	the	
Swiss banking sector 

2021-14	 Maxime	Phillot,	Samuel	Reynard: 
Monetary Policy Financial Transmission and Treasury 
Liquidity	Premia		

2021-13	 Martin	Indergand,	Gabriela	Hrasko: 
Does	the	market	believe	in	loss-absorbing	bank	debt?	

2021-12	 Philipp	F.	M.	Baumann,	Enzo	Rossi,	Alexander	Volkmann: 
What	drives	inflation	and	how?	Evidence	from	additive	
mixed models selected by cAIC  

2021-11	 Philippe	Bacchetta,	Rachel	Cordonier,	Ouarda	Merrouche: 
The	rise	in	foreign	currency	bonds:	the	role	of	US 
monetary policy and capital controls  

2021-10	 Andreas	Fuster,	Tan	Schelling,	Pascal	Towbin: 
Tiers	of	joy?	Reserve	tiering	and	bank	behavior	in	a
negative-rate environment 

2021-09	 Angela	Abbate,	Dominik	Thaler: 
Optimal monetary policy with the risk-taking channel 

2021-08	 Thomas	Nitschka,	Shajivan	Satkurunathan: 
Habits	die	hard:	implications	for	bond	and	stock
markets internationally 

2021-07	 Lucas	Fuhrer,	Nils	Herger: 
Real	interest	rates	and	demographic	developments 
across	generations:	A	panel-data	analysis	over	two
centuries

2021-06	 Winfried	Koeniger,	Benedikt	Lennartz, 
Marc-Antoine	Ramelet: 
On the transmission of monetary policy to the
housing market 

2021-05	 Romain	Baeriswyl,	Lucas	Fuhrer,	Petra	Gerlach-Kristen,	
Jörn	Tenhofen: 
The dynamics of bank rates in a negative-rate 
environment – the Swiss case

2021-04	 Robert	Oleschak: 
Financial inclusion, technology and their impacts  
on	monetary	and	fiscal	policy:	theory	and	evidence

2021-03	 David	Chaum,	Christian	Grothoff,	Thomas	Moser: 
How to issue a central bank digital currency

2021-02	 Jens	H.E.	Christensen,	Nikola	Mirkov: 
The safety premium of safe assets



54


