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Abstract

We propose a simple model to estimate the risk-neutral loss distribution from the credit
spreads of long-term debt instruments with different seniorities. We apply our model to a
sample of global systemically important banks that have issued bail-in debt in order to meet the
total loss-absorbing capacity (TLAC) requirements established after the global financial crisis.
Bail-in debt is a new debt category that absorbs losses in a gone-concern situation and that ranks
between subordinated debt and non-eligible senior debt. With a structural model for these three
debt layers, we calibrate the tail of the risk-neutral loss distribution such that it is consistent
with the observed market prices. Based on this loss distribution, we find that the expected loss
in a gone-concern situation exceeds TLAC for most banks and that the risk-neutral probability
that TLAC will not be sufficient to cover the losses in such a situation is approximately 50%.
The large expected losses that we find with our model are a consequence of the similar pricing
of bail-in debt relative to other senior debt. We argue that regulators should promote further
clarity about the subordination and the conversion mechanism of bail-in debt to achieve a more
differentiated pricing that is more in line with regulatory expectations.
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1 Introduction

During the global financial crisis, authorities had no other option but to bail out systemically im-
portant financial institutions using public funds to safeguard financial stability and to avoid eco-
nomic damage. After this crisis experience, the G20 leaders agreed to call on the Financial Stabil-
ity Board (FSB) to end this “too-big-to-fail” (TBTF) problem. In response, the FSB published the
Key Attributes of Effective Resolution Regimes for Financial Institutions (Financial Stability Board,
2014), in which it proposes that resolution authorities should have the power to write down unse-
cured and uninsured claims to the extent necessary to absorb losses and recapitalise firms under
resolution (bail-in power). One of the main obstacles to applying this power, however, was that
senior unsecured debt instruments often rank pari passu with operational liabilities, like deposits
or liabilities from derivatives, for which a write down was neither credible nor feasible.

In order to overcome this problem, the FSB established a new international standard for total
loss-absorbing capacity (TLAC) in resolution (Financial Stability Board, 2015). Under this stan-
dard, global systemically important banks (G-SIBs) must meet minimum requirements for TLAC
by issuing a sufficient amount of bail-in debt. In order to be eligible, bail-in debt must be unse-
cured long-term debt that regulators can legally enforce to absorb losses prior to liabilities that
are excluded from TLAC. Since 2019, advanced economy G-SIBs have to comply with this TLAC
standard.

Now that banks have built-up the required loss-absorbing debt capacities, it is important to
assess the credibility of the TBTF reforms from the markets’ perspective. In particular, we want to
answer the question whether market participants believe that G-SIBs have sufficient loss-absorbing
debt to cover the expected losses in a gone-concern situation. For this purpose, it is necessary to
develop a methodology that allows us to infer an expected loss given a gone-concern situation
from the observed market prices of bank debt. If this loss is smaller than the loss-absorbing capac-
ity of G-SIBs, we can argue that the TBTF reforms are credible or at least consistent with market
expectations. We can also try to estimate the probability that losses in a gone-concern situation
exceed the available loss-absorbing capacity. If this probability turns out to be small, we can also
argue that the TBTF reforms have achieved their objectives.

In this paper, we propose a methodology to estimate the market-implied (risk-neutral) loss
distribution in a gone-concern situation. From this loss distribution, we can calculate both the
expected loss and the probability that losses will exceed the available loss-absorbing capacity in a
gone-concern situation. Our methodology is based on a structural debt pricing model, in which
we assume that bail-in debt absorbs losses prior to other senior debt, as is required by the FSB
standard. With this methodology and with the disclosed amounts of loss-absorbing capacities
in the regulatory loss waterfall, we estimate the risk-neutral loss distribution that is consistent
with the observed credit spreads of corresponding debt instruments. The loss distribution in our
model takes a parametric form with one parameter describing the risk-neutral probability of a
gone-concern situation and the other parameter describing the expected loss conditional on a gone-
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concern situation.1

We find that this risk-neutral expected loss is larger than the available amount of bail-in debt
for almost all banks and that the risk-neutral probability of losses exceeding the available amount
of TLAC is high. The risk-neutral loss-distributions of the G-SIBs in our sample imply that in a
gone-concern situation the probability of losses exceeding TLAC is approximately 50%. According
to this finding, market participants doubt that the current TLAC requirements ensure sufficient
loss-absorbing capacity for a gone-concern situation. They consider it likely that senior unsecured
debt that does not qualify for TLAC will also be subject to losses in a gone-concern situation.2

The assumption that market participants believe in a clear loss waterfall is required for estimat-
ing the expected loss distribution but our policy conclusions do not depend on this assumption.
Without a well-defined debt ranking, we cannot decide whether market participants price bail-in
debt similar to other senior debt because they expect very high losses or because they assume that
these two debt categories will often rank pari passu in gone-concern situations. However, both
interpretations are a concern for the credibility of the TBTF reforms. The first interpretation is a
concern because the required loss-absorbing capacity is smaller than the expected losses. The sec-
ond interpretation is also a concern, because market participants do not believe that eligible bail-in
debt absorbs losses prior to other senior debt instruments, as required by the TLAC standard.

Similarly, if market participants were to price senior debt very differently from bail-in debt, we
would be unable to determine, without the assumption of a clear loss waterfall, whether market
participants expect small losses or whether they expect large losses but believe that other senior
debt still profits from a TBTF subsidy.3 In this situation, however, only the second interpretation
would be a concern for policymakers.

We find that the risk-neutral probability of losses exceeding TLAC primarily depends on the
spread difference between bail-in debt and other senior debt, the so-called bail-in risk premium,
and on the available amount of eligible bail-in debt. US G-SIBs have more eligible bail-in debt
outstanding than their European peers but at the same time the bail-in risk premium is relatively
low for US bank holding companies. European banks, especially the ones that issue senior non-
preferred debt, have less eligible bail-in debt outstanding but their risk premium is high compared
to US G-SIBs. Due to this more pronounced bail-in risk premium, we find that the risk-neutral
probability of losses exceeding TLAC is actually lower for European G-SIBs than for US G-SIBs.

As our methodology is based on market prices, the estimated loss distribution reflects market
participants’ views and expectations. Due to investors’ risk-aversion, it may well be that these
risk-neutral loss estimates are larger than the losses that regulators have to expect in an actual
resolution of a G-SIB. In an empirical study, Conlon and Cotter (2014) find that for most EU banks,

1In the context of our model, a gone-concern situation is defined as a stress situation where Tier 2 capital or subordi-
nated debt instruments are subject to losses.

2Note that the TLAC standard does not limit the powers that authorities may have to bail-in any debt instrument.
Therefore, the expectation that an instrument that is not eligible for TLAC may still be subject to losses is compatible
with the TLAC standard.

3In this case, public sector support would be similar to an intermediate loss layer, which ranks between bail-in debt
and other senior debt.

3
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a bail-in of a relatively small fraction of senior debt would have been sufficient to cover the loan
losses in the global financial crisis. As this empirical study does not take into account public sector
support, which stabilised the financial system during this crisis, it may underestimate the loss
absorbing capacity that is required to resolve a bank without such support.

We do not attempt to decompose the spread of banks’ debt instruments into real-world loss ex-
pectations and other spread components that may be related to investors’ risk aversion or liquidity
preferences. Such a decomposition would be strongly dependent on assumptions, as the empirical
data on bank losses in resolution is scarce and often distorted by public sector support measures.
In particular, the new resolution framework and the bail-in tool remain untested for the complex
international business model of G-SIBs.

Despite very different liquidity aspects, we find similar loss expectations both in the credit
default swap (CDS) and in the bond market. Due to higher standardisation and different funding
aspects, the CDS market is generally more liquid than the underlying bond market. A CDS contract
refers to an entire debt category of the reference entity, which makes it less dependent on the
specific terms and conditions of a single bond. As a result of these differences, the CDS spreads
in our data are significantly lower than the bond spreads. Despite these different liquidity aspects
and the different spread levels, we observe a similar relative pricing of different debt categories,
which leads to similar loss expectations in our model.

As a further robustness check, we show that our estimates of the risk-neutral expected loss
do not depend on the amount of stress in the financial markets. We find that during the market
turbulence caused by the Covid-19 pandemic in March 2020, only the parameter for the probability
of a gone-concern situation increased in our model. The parameter for the expected loss given a
gone-concern situation remained roughly constant. In other words, the sharp increase of credit
spreads, which was observed during this market turbulence, can be reproduced with one overall
scaling factor for a given issuer. In our model, a simple scaling of all spreads of a given issuer
leaves the risk-neutral expectations about how losses will be shared between the different debt
categories unchanged.

This finding shows that the substantial expected losses that we measure based on our proposed
methodology are not just artefacts of debt pricing during normal periods. During stress periods
as well, market participants do not clearly distinguish between bail-in debt and other senior debt,
which ranks higher in the banks’ creditor hierarchy. Therefore, it would be imprudent to assume
that in a resolution market participants would suddenly be assured that only bail-in debt could
suffer losses and that other senior debt instruments, which rank pari passu with operational liabil-
ities, would continue to perform.

Market participants’ expectations are very relevant for measuring the success of TBTF reforms.
Even the most elaborate resolution plans and bail-in powers will not end the TBTF issue if they
are not credible in the eyes of market participants. Only if investors are convinced that bail-in debt
can be subject to losses in a gone-concern situation, will they exert market discipline and remove
the TBTF subsidy. However, market participants do not only have to be convinced that bail-in
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debt can be subject to losses. They must also be confident that the operating liabilities of the bank,
which rank pari passu with other senior debt instruments of the operating bank, will continue to
perform, even during a hectic resolution phase. For example, if counterparties cannot be convinced
to stay in derivatives contracts or to roll the banks short-term liabilities, this can lead to a further
destabilisation of the bank and to a disruption of resolution plans. The resulting losses may be
much higher than under an orderly resolution, such that the high losses, which are implied by the
relative pricing of bank debt, may become, to some extent, self-fulfilling.

Our study contributes to a large, international effort of evaluating whether the objectives of the
TBTF reform have been met. In a recent evaluation report (Financial Stability Board, 2021), the FSB
finds that TBTF reforms have reduced market-based measures of systemic risk but that there are
still gaps that need to be closed. Investor and analysts, for instance, report a lack of information
about the resolvability of G-SIBs that is limiting their ability to assess and price the risks of bail-in
debt. Credibility of the TBTF reforms among market participants takes a central place in the FSB
evaluation report, because only a credible bail-in framework can eliminate unjustified funding cost
advantages and enforce market discipline.

Other approaches for measuring the credibility of bail-in debt also look at the pricing of bail-in
debt relative to other debt instruments. The FSB report finds that the credit spread of a bail-in
bond is generally higher than the credit spread of a comparable bond from the same issuer that is
not eligible for TLAC. Researchers and analysts have emphasised, however, that this bail-in risk
premium is relatively small. Afonso et al. (2018) point out that for US G-SIBs the spread difference
between bank holding companies and bank subsidiaries remained quite narrow, even after the
TBTF reforms. For European G-SIBs, the bail-in risk premium is more pronounced, but a strong
demand for the new bail-in debt category also led to a relatively small spread difference between
senior preferred and non-preferred debt (Höpker et al., 2017; Nolan, 2018). Lewrick et al. (2019)
finds that the bail-in risk premium depends on the issuer and on the marketwide level of credit
risk.

The existence of a bail-in risk premium is a necessary condition for a credible TBTF reform. If
there were no measurable bail-in risk premium, market participants would have serious doubts
about the effectiveness of the bail-in tool. The mere existence of a bail-in risk premium, however,
is insufficient evidence that the TBTF reforms have achieved their objectives. Our study makes a
novel contribution to the evaluation effort of the TBTF reforms by proposing a way to determine
whether the observed bail-in risk premium is sufficiently high to be in line with the objectives of
the TBTF reforms.

This paper is organized as follows. We highlight the related literature in section 2 and provide
some additional background on the new TLAC standard and its implementation in different juris-
dictions in section 3. Section 4 introduces our model and discusses its different parametrisations.
It also illustrates how the credit spreads of a G-SIB should evolve according to our model, as the
bank builds up its bail-in debt capacity. Section 5 provides information on our sample, on the bond
and CDS market data, and on the estimation approach. Section 6 presents the results and discusses
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our estimates of the model parameters. In section 7, we discuss the relevance of these results from
a regulatory perspective and argue that the distinction between bail-in debt and other liabilities
should be improved. We summarise and conclude in section 8.

2 Related Literature

There are different strategies to analyse the credibility of a bail-in for G-SIBs based on market data.
One strategy is to compare the credit spreads of G-SIBs to credit spreads of smaller banks or non-
financial firms. Based on this strategy Acharya et al. (2016), for example, find a TBTF subsidy for
the largest financial institutions, which is not seen in non-financial sectors.

Another strategy is to compare the observed credit spreads of G-SIBs to the equity-implied
credit spreads or default probabilities. Conceptually, this strategy is based on the classic Merton
model (Merton, 1974), which has been refined and developed in different ways. Moody’s has de-
veloped the CreditEdge model, which calculates fair-value CDS spreads based on equity market
data. Building on this model, Jobst and Gray (2013) propose a systemic contingent claims anal-
ysis to estimate TBTF subsidies of the financial sector during times of stress. Based on a similar
approach, Allenspach et al. (2020) find that large banks still benefit from a TBTF subsidy. Gud-
mundsson (2016) use a jump diffusion option-pricing approach to estimate implicit government
subsidies for banks. Berndt et al. (2019) propose a methodology to estimate bail-out probabili-
ties based on equity and spread data. Comparing pre- and post-crisis market data for US banks,
they find that the market-implied probabilities of government bailouts have been reduced. Several
studies also compare the pricing of contingent-convertible debt (CoCos) to equity and bail-in debt.
Event studies (Fiordelisi et al., 2020; Hau and Hrasko, 2018) show that, depending on the design
features, market participants consider CoCos as going-concern or gone-concern capital. The FSB
evaluation report (Financial Stability Board, 2021) provides a detailed review on the credibility of
the TBTF reforms and the related literature.

Our paper also compares the pricing of different bank liabilities with option-pricing methods,
but in contrast to the studies above, it focuses entirely on gone-concern debt instruments. Rather
than estimating the value of government subsidies or the probability of bailouts, we estimate the
market-implied losses conditional on a gone-concern situation. For estimating such tail events
in a firms’ asset distribution, gone-concern debt instruments should contain the most relevant
information. In this sense, our paper is similar to the recent paper of Aramonte et al. (2021), which
proposes to estimate the skew in the risk-neutral equity returns distribution based on CDS data.

In terms of data, this paper is closely related to several empirical studies that analyse the bail-in
risk premium, i.e., the spread difference between bail-in debt and other senior bank debt. Lewrick
et al. (2019) finds that this premium is higher for riskier issuers, consistent with the notion of mar-
ket discipline. In the same vein, Lindstrom and Osborne (2020) find that the risk sensitivity of Eu-
ropean banks’ credit spreads has increased since the regulatory reforms. Gimber and Rajan (2019)
highlight that, under the assumption of a credible bail-in, the spreads of senior unsecured debt
should decrease as there are more junior sources in the creditor hierarchy. They find that, ceteris
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paribus, banks with more subordinated and less senior unsecured debt have lower risk premia on
senior unsecured debt. They also find that when banks have more equity and less subordinated
debt they have lower risk premia on both. Pablos Nuevo (2019) investigates the impact of the EU
bail-in framework on the spread difference between subordinated and senior unsecured bonds.
Her results show a convergence for G-SIBs and non-G-SIBs after the introduction of the new bail-
in framework. Her results also point out the relevance of the Tier 1 capital ratio for the pricing
of subordinated debt. We add a structural interpretation to these papers by studying whether the
observed bail-in risk premium is high enough to be consistent with the bail-in framework.

In terms of policy implications, this paper reinforces the findings of several studies that call
for more clarity and less regulatory discretion in banks’ bail-in and resolution frameworks. Tröger
(2019) criticizes the European resolution framework as highly complex and with too much discre-
tion for supervisors and resolution authorities. Hwang (2017) finds theoretically and empirically
that a bail-in is less likely when the trigger is discretionary. Huertas (2019) points out the impor-
tance for investors to have more clarity about the entire resolution process in order to adequately
assess the risks involved in bail-in debt. Similarly, the FSB evaluation report of the TBTF reforms
(Financial Stability Board, 2021) suggests opportunities to enhance the credibility of reforms by
providing more information relating to the operation of resolution frameworks.

3 Regulatory Background

The principles and terms of the new international minimum standard on TLAC are established
in a Term Sheet that the FSB adopted in 2015 (Financial Stability Board, 2015). The purpose of
this minimum standard is to ensure sufficient loss-absorbing capacity to implement an orderly
resolution and to avoid exposing public funds to loss with a high degree of confidence.

The FSB sets both a risk-weighted and a leverage ratio TLAC requirement. Since 1 January
2019, the minimum TLAC for advanced economy G-SIBs must amount to 16% of risk-weighted
assets (RWA) and to 6% of the Basel III leverage ratio exposure (LRE).4 Note that this calibration
corresponds to a doubling of the Basel III minimum capital requirements of 8% and 3%, respec-
tively. Conceptually, the amount of bail-in debt has therefore been calibrated to provide a reserve
tank of capital. As of 1 January 2022, the minimum TLAC requirement will increase to at least 18%
of RWA and 6.75% of LRE. If a G-SIB meets all its Basel III capital requirements, it must build-up
a bail-in debt capacity amounting to the larger of 10% RWA and 3.75% LRE in order to meet this
TLAC requirement.5

For most G-SIBs and all the G-SIBs analysed in this paper, the preferred resolution strategy is a
single point-of-entry (SPE) strategy. This means that they have a single resolution entity that issues
all external TLAC. To ensure the appropriate distribution of loss-absorbing and recapitalisation

4The corresponding Basel III capital buffers must be met in addition to the TLAC minimum requirements.
5A G-SIB may use additional regulatory capital instruments to meet the TLAC requirement but there is the expecta-

tion that at least one third of the minimum TLAC requirement is met with debt instruments to help ensure that there is
sufficient outstanding long-term debt for absorbing losses in resolution.
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capacity within the resolution group, the standard also defines internal TLAC requirements for
material subgroups.

For a debt instrument to be eligible for TLAC it must be fully paid-in, unsecured, issued by the
resolution entity, and have a remaining maturity of at least one year. Deposits, structured notes,
liabilities arising from derivatives or any liabilities that cannot be bailed-in without material legal
risk are excluded from TLAC (excluded liabilities).

The most relevant eligibility criterion in the context of this paper is that TLAC generally must
absorb losses prior to such excluded liabilities of the resolution entity in insolvency or in resolution.
To meet this subordination criterion, TLAC must be either contractually subordinated to excluded
liabilities of the resolution entity (contractual subordination), be junior in the statutory creditor
hierarchy than excluded liabilities of the resolution entity (statutory subordination), or be issued
by a resolution entity that does not have more than 5% of excluded liabilities on its balance sheet
(structural subordination).

In the US, the UK, and in Switzerland, banks make use of their legal entity structures and
meet their TLAC requirements by issuing senior unsecured debt out of their holding companies
(HoldCo), which is structurally subordinated to senior unsecured debt of their operating bank
entities (OpCo). In France, Germany, and other European jurisdictions, a new debt category of
senior non-preferred debt has been created, which ranks between subordinated and other (pre-
ferred) senior debt.6 This new type of senior non-preferred debt will be eligible for TLAC as it will
absorb losses prior to preferred senior debt and excluded liabilities. Figure 1 provides a simpli-
fied overview on the different subordination approaches and the corresponding “waterfall” in the
creditor hierarchy. A detailed discussion of the different resolution regimes in Europe and in the
US can be found in Philippon and Salord (2017).

4 Theoretical Model

In this section, we propose a structural debt model that allows us to extract information about the
tail of a bank’s risk-neutral loss distribution based on the market prices of different debt instru-
ments.

4.1 Risk-neutral pricing of debt layers

In option-pricing theory, we can determine the price of any option that matures at time T if we
know the risk-neutral distribution of the underlying asset at time T. Conversely, if we know the
prices of a complete set of options that matures at time T, we can construct the implied risk-neutral
distribution that is consistent with the observed option prices.

6France only counts debt that has been issued with a specific contractual clause as senior non-preferred debt. Ger-
many has initially pursued a purely statutory subordination approach and made certain senior unsecured bonds eligible
for TLAC by a change in German law. Since 2018, however, German banks also have to declare new bond issues as se-
nior non-preferred in order to be eligible for TLAC. The new senior non-preferred bonds will rank alongside the still
outstanding legacy senior bonds.
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Figure 1: Overview on different subordination types
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Note: Structural subordination is the subordination method applied by US, UK, and Swiss G-SIBs. Contrac-
tual subordination is the subordination method applied by most G-SIBs in the EU.

In the classical Merton model (Merton, 1974), this option pricing approach is applied to a simple
liability structure, consisting of equity and one single debt layer. Black and Cox (1976) generalised
this model to price junior and senior debt layers separately. In the practical application of these
models, the risk-neutral asset distributions is often calibrated based the firm’s equity market prices.

The amount of information that can be extracted from equity prices about the tail of the loss
distribution is limited, as the pay-off function of equity is identically zero as soon as any debt
instrument suffers a loss. However, if a firm has many different debt layers with different senior-
ities, which are all maturing at time T, it should be possible to infer from these debt prices more
information about the tail of the loss distribution.

In order to apply and formalise this idea, we consider a firm with total amount of debt D,
which consists of n debt layers with notional amount Ni. The layers are ordered by increasing
seniority and we denote the upper and lower boundaries of layer i by L+

i and L−
i , respectively. The

following two relations summarise our notation for the debt layers:

0 = L−
1 < L+

1 = L−
2 · · · < L+

n = D (1)

and
Ni = L+

i − L−
i for i = 1 . . . n. (2)

For simplicity, we assume that all debt instruments of the firm are zero-coupon bonds without any
covenants or option features and with a remaining time to maturity of T years. The only difference
between the debt instruments in the different layers is their ranking as claimants on the firm’s

9
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Figure 2: The probability density function p(x) and the loss function gi(x)
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Note: The lhs illustrates the risk-neutral probability density function p(x) for the random variable x = D − VT . The valuation of debt
layers N1, . . . , Nn depends only on the tail of this function, i.e., on the values for x > 0. The rhs shows the loss function gi(x), which
determines the loss per unit of notional amount for an instrument in the debt layer i. Note that the payoff per unit of notional amount
is given by 1 − gi(x).

assets.
Furthermore, we denote the value of the firm’s assets at time T by the variable VT and define

the variable xT = D − VT. If xT is positive, it measures the loss that must be absorbed by debt
instruments at time T. As our model considers only a single time period, we will drop the index
T in the following. The variable x is a random variable and we denote the risk-neutral probability
density function of x by p(x), where x can take any value in the range (−∞, ∞).7

We can describe the payoff of the debt layer i at time T as a function of the variable x. If
x < L−

i , the zero-coupon bonds in debt layer i will pay their full notional amount, Ni. If x > L−
i ,

these bonds will only pay a fraction of the notional amount, and if x > L+
i , they will pay nothing.

The pay-off function of the debt layer i is given by the formula

fi(x) = Ni(1 − gi(x)), (3)

where gi(x) is the loss function for debt layer i and is defined as

gi(x) = min(1, max((x − L−
i )/Ni, 0)). (4)

The probability density function p(x) and the loss function gi(x) are illustrated in Figure 2.
In risk-neutral pricing theory, the arbitrage-free price of any financial claim is given by its ex-

pected payoff under the risk-neutral probability measure, discounted at the risk-free interest rate.
Having introduced the risk-neutral probability density function of the random variable x and the

7As the firm’s assets at time T can take any positive value and as we assume total debt to be constant, x = D −VT can
take any value in the range (−∞, D). As it is very unlikely that the assets of a bank lose all their value, the probability
density function is actually concentrated on a much narrower range. We will only apply our model to debt layers up
to approximately 10% of total debt D. For the pricing of these debt layers, only the total probability that losses exceed
these debt layers but not the actual distribution of these losses is relevant (c.f. Eq. (6)). Therefore it is not necessary to
require that our parametric descriptions of p(x) is strictly zero for x > D.

10



10 11

Figure 2: The probability density function p(x) and the loss function gi(x)
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take any value in the range (−∞, D). As it is very unlikely that the assets of a bank lose all their value, the probability
density function is actually concentrated on a much narrower range. We will only apply our model to debt layers up
to approximately 10% of total debt D. For the pricing of these debt layers, only the total probability that losses exceed
these debt layers but not the actual distribution of these losses is relevant (c.f. Eq. (6)). Therefore it is not necessary to
require that our parametric descriptions of p(x) is strictly zero for x > D.
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pay-off functions of the debt layers, we can express the present value of debt layer i as

vi = e−rT
∫

fi(x)p(x)dx = e−rT Ni

(
1 −

∫ ∞

L−
i

gi(x)p(x)dx
)

, (5)

where r denotes the risk-free interest rate. In the second equation, we have used the definition
in Eq. (3) and the fact that the loss function gi(x) is zero for x < L−

i . The integral in the second
equation is the expected loss per notional amount of layer i under the risk-neutral probability
measure with density function p(x). We denote this expected loss as

li :=
∫ ∞

L−
i

gi(x)p(x)dx =
1
Ni

∫ L+
i

L−
i

(x − L−
i )p(x)dx +

∫ ∞

L+
i

p(x)dx, (6)

where we have used in the second equation the definition of the loss function in Eq. (4).
The present value vi can be translated into a spread over the risk-free rate si with the definition

vi = Nie−(r+si)T. From Eq. (5) and with the definition in Eq. (6), we obtain

si = − ln(1 − li)
T

or li = 1 − e−siT. (7)

If the expected loss under the risk-neutral measure for debt layer i is small, i.e., if li � 1, the spread
is approximately given by li divided by the number of years to maturity,

si ≈
li
T

. (8)

The risk-neutral pricing method satisfies the Modigliani Miller theorem. The expected losses
can be distributed over different layers but the total present value of these expected losses always
remains the same. If we have a debt layer [A, C] with attachment point A and detachment point C
and we split it into a non-preferred debt layer [A, B] and a preferred layer [B, C], it is straightfor-
ward to show from Eq. (5) that the following formulation of the Modigliani Miller theorem holds:

v[A,C] = v[A,B] + v[B,C]. (9)

4.2 Choosing a parametrisation

The risk-neutral probability density p(x) introduced in section 4.1 is not directly observable for
market participants. Therefore, we assume a parametric description of the risk-neutral probability
density p(x) and we determine the parameters based on observable market prices. The most com-
mon parametric description for the density function p(x) is the log-normal density function. If we
denote the implied asset volatility by σ and the current market value of the assets by V0, we can
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write the risk-neutral density function of the Merton model in our notation as

pMerton(x) =
1√

2πσ2T(D − x)
exp


−

[
ln

(
D−x

V0

)
+

(
r − σ2

2

)
T
]2

2σ2T


 .8 (10)

The log-normal distribution has the advantage that it allows the firm’s equity and debt instru-
ments to be priced with the standard Black and Scholes formulas. A log-normal asset distribution
may work reasonably well for non-financial firms, but Nagel and Purnanandam (2019) show that
this choice overestimates the upside and underestimates the downside potential in banks’ asset
dynamics.

In this study, we will introduce and work with new parametrisations of the density function
p(x) that are more suited for our purposes than the log-normal density of the Merton model. As
we will work only with debt and not with equity instruments, we do not need to know the entire
distribution but only the tail of the distribution that corresponds to a default of the firm. In fact,
from Eq. (5) we see that the valuation of debt instruments in layer i does not depend on p(x) for
values of x smaller than L−

i ≥ 0. Therefore, we need to parametrise the function p(x) only for
x > 0 and we will still be able to price all debt layers of the firm.

The log-normal distribution is not a natural choice for parametrising the tail of a distribution.
The two parameters of the Merton model (current asset value and asset volatility) describe the head
of the distribution as they are related to the first two moments of the entire distribution. If we are
only interested in the tail of the distribution, it is more natural to work with lower partial moments.
We define the parameters α and λ as the first two lower partial moments of the probability density
function p(x),

α =
∫ ∞

0
p(x)dx and λ =

1
α

∫ ∞

0
x p(x)dx. (11)

The dimensionless parameter α is the probability of a gone-concern situation at time T and the
parameter λ is the expected loss given a gone-concern situation at time T.

A natural parametrisation for tail of p(x) that has the two partial moments as described in
Eq. (11) is the following exponential density function

pexp(x) =
α

λ
e−x/λ for x > 0. (12)

Inserting this function into Eq. (6) and evaluating the integrals, we obtain the following expression
for the expected loss of layer i

lexp,i = αe−L−
i /λ 1 − e−Ni/λ

Ni/λ
. (13)

Note that the expected loss of layer i in Eq. (13) is the product of the probability of default of layer i,
given by the first term αe−L−

i /λ, and the loss given default of layer i, given by the second term. The
loss given default of layer i is approximately 1 for Ni � λ and goes to zero as λ/Ni for Ni � λ.

8Note that pMerton is only defined for x < D but we could extend it to all x by setting it to zero for x > D.
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Figure 3: Comparison of the exponential and the Pareto loss distribution
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Note: Comparison of the exponential and the Pareto loss distribution function with λ = 1. The Pareto density is heavier for small
values and in the tail but is lighter in the head of the distribution (indicated by the black markers). The median of the exponential
distribution is ln 2 ≈ 0.69 and the median of the Pareto distribution is

√
2 − 1 ≈ 0.41 (indicated by the shaded areas).

The exponential probability density function, as defined in Eq. (12), is not the only possible
parametrisation with partial moments as described in Eq. (11). For example, the density distri-
bution could have more weight in the tail and around zero and less weight in the head of the
distribution. An example of such a distribution is the following Pareto distribution9

pPareto(x) =
2αλ2

(x + λ)3 for x > 0, (14)

which is compared graphically to the exponential function in Figure 3. Inserting this density into
Eq. (6) and evaluating the integrals, we obtain the following expression for the expected loss of
layer i

lPareto,i =
αλ2

(L−
i + λ)2

L−
i + λ

L+
i + λ

, (15)

where we have arranged the terms such that the first factor corresponds to the probability of de-
fault of layer i and the second term to the loss given default. In this study, we will work with these
two parametrisations and we will assess how our results depend on the choice.

Besides the expected loss parameter, λ, we are also interested in the conditional probability that
a loss exceeds the total loss-absorbing capacity, given a gone-concern situation. We will denote
this probability as πTLAC or simply as π. More generally, we can define the probability πi as the
probability that the losses exceed the debt layer i in a gone-concern situation. Note that in our
notation, the bank is in a gone-concern situation when the losses reach the debt layers, i.e., if the
random variable x is greater than 0. We can calculate this probability as

πi =
1
α

∫ ∞

L+
i

p(x)dx. (16)

9This is the Pareto distribution with scale parameter λ and shape parameter equal to 2.
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4.3 A stylized example

For a stylized illustration of our model, we first calibrate the model parameters based on typical
values of senior and subordinated credit spreads and typical values of the corresponding debt
layers and then predict with our model what happens as a G-SIB builds up the required mezzanine
layer of bail-in debt.

We assume that the total amount of long-term unsecured debt that the G-SIB has issued amounts
to 7% (or 10%) of LRE and that this amount remains constant. At the beginning, before the G-SIB
starts to issue bail-in debt, this total amount consists only of senior unsecured debt which is not el-
igible for TLAC and subordinated debt. The amount of subordinated debt remains also constant at
0.75% of LRE. We assume further that at the beginning, the G-SIB’s credit spread for subordinated
debt with a maturity of five years amounts to 200bps and the credit spread for senior unsecured
debt with the same maturity amounts to 50bps.

With the formula in Eq. (7), we first translate the two credit spreads into the expected losses
li = 1 − e−siT, where the index i refers to subordinated or senior unsecured debt. Then, we can
determine the two parameters α and λ by solving the two equations li = lexp,i, where lexp,i is
defined as in Eq. (13). For the Pareto distribution, we solve the equations li = lPareto,i, where lPareto,i

is defined as in Eq. (15). The results are shown in Table 1 for both the exponential and the Pareto
loss distribution.

Table 1: The model parameters in the stylized example

Model 7% debt 10% debt
α λ λ̃ wwww α λ λ̃

exponential 11.4% 2.1% 1.4%wwww 10.8% 2.9% 2.0%
Pareto 12.4% 2.5% 1.0%wwww 11.6% 3.5% 1.5%

Note: This table shows the model parameters that have been obtained in the stylized example for the exponential and the Pareto loss
distribution. The parameters have been fitted assuming both 7% and 10% of total long-term debt. The parameters for 7% of debt
corresponds to the example shown in Figure 4. λ denotes the expected and λ̃ the median loss. These loss parameters and the amount
of debt are measured in units of LRE.

The parameter α, which provides the probability of a gone-concern situation, does not depend
much on the model or the thickness of the debt layer. Given that the subordinated debt layer is
relatively thin, α is mainly determined by the spread of the subordinated debt instrument (200bps).
As we have assumed a maturity of five years, this amounts to a cumulative probability of a gone-
concern situation of approximately 10%.

The expected loss parameter λ does depend on the thickness of the total debt layer. If the
amount of senior unsecured debt is increased, the expected loss parameter λ in our model has to
increase as well in order to reproduce the assumed senior credit spread of 50bps. For the Pareto
model, the λ is larger than for the exponential model because the Pareto distribution has a heavy
tail. The median loss, which we denote by λ̃ in Table 1, is, however, smaller in the Pareto model
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compared to the exponential model.
We now assume that the G-SIB starts to replace senior unsecured debt with bail-in debt, which

ranks between subordinated and senior debt, keeping the estimated parameters of the loss distri-
bution constant. As our model is consistent with the Modigliani Miller theorem, the credit spreads
that correspond to the different debt layers will change but the total value of the debt layers will
remain constant (cf. Eq. (9)). Figure 4 illustrates the case where the G-SIB has issued in total 7% of
its LRE in the form of unsecured long-term debt.

We discuss the dependence of the credit spreads and the probability of losses exceeding TLAC
by looking at three different levels of TLAC. The three levels of TLAC correspond to the first
issuance of bail-in debt (0.75% of loss-absorbing debt), the level where the bank reaches the FSB
requirement (3.75% of loss-absorbing debt), and the point where the bank has replaced all the
original senior debt with bail-in debt (7% of loss-absorbing debt). These three points are also
shown in Table 2 and are highlighted in Figure 4 by vertical grid lines.

Table 2: Credit spreads and the probability of a loss greater than TLAC in the stylized example

exponential Pareto
Loss-absorbing debt (% LRE) 0.75 3.75 7.00wwww 0.75 3.75 7.00
Spread bail-in debt (bps) 164 85 50wwww 151 77 50
Spread senior unsecured (bps) 50 18 8wwww 50 26 17
Prob. loss greater TLAC (%) 69 16 3wwww 59 16 7

Note: This table shows the bond spreads and the probability of a loss greater than TLAC, conditional on a gone-concern situation, for
the example shown in Figure 4. This example assumes 7% of total long-term debt. The values are shown for three different levels of
loss-absorbing debt and for both the exponential and the Pareto loss distribution.

The credit spread the bank must pay for bail-in debt at its first issuance is relatively high
(164bps for the exponential model) but decreases quite rapidly. The reason for this decrease is
that the expected loss given default for this layer decreases (cf. Eqs. 13 and 15). At the point where
the bank meets the FSB requirement, the spread has reduced to 85bps in the exponential model
and it reaches 50bps at the point where the original debt has been fully replaced.

The credit spread for senior debt also decreases as the bank is building up a lower-ranking
layer of loss-absorbing debt. Starting from its original value of 50bps it reaches 18bps at the point
where the bank meets the regulatory requirement and goes down to only 8bps once the bank has
issued 7% of loss-absorbing debt.

The overall dependence of the spreads in the Pareto distribution is similar to the exponential
distribution. Note, however, that the spread difference between senior unsecured debt and bail-in
debt is smaller in the Pareto distribution, due to its heavy tail.

As expected and as intended by policymakers, the probability of losses exceeding TLAC in
a gone-concern situation decreases as the bank is building up bail-in debt. At the beginning, the
probability is quite high as the subordinated debt layer is relatively thin. Once the bank has reached
the regulatory TLAC requirement, this probability has decreased to approximately 16% in both
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Figure 4: Time development of layers, spreads, and probabilities in the stylized example
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Note: The upper left panel shows how the bank constantly builds up bail-in debt by replacing other senior unsecured debt. The
upper right panel shows how this affects the corresponding credit spreads. The left two bottom panels show the model parameters α
(probability of a gone-concern within five years) and λ (expected loss given a gone-concern situation), which have been calibrated to
reproduce the assumed 50bps senior and 200bps subordinated issuer spreads before the issuance of bail-in debt and which are kept
constant. The bottom right panel shows the time development of the conditional probability of losses exceeding TLAC, π. The vertical
grid line in all panels corresponds to the time where the bank has issued 3% of bail-in debt and hence meets the regulatory TLAC
requirement. Both the loss parameters and the debt layers are measured in units of LRE. The dotted lines in the lower middle panel
show the median loss.
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models and continues to decrease as the bank is issuing more bail-in debt. Note that due to its
heavy tail, this probability decreases more slowly in the Pareto distribution.

5 Data and Methodology

Our sample consists of eleven G-SIBs that we split by region and issuance model for bail-in debt
into three different groups as shown in Table 3. The European G-SIBs issue bail-in debt as senior
unsecured debt out of their holding company (HoldCo) or as senior non-preferred debt out of their
operating company (OpCo). The US G-SIBs issue bail-in debt as senior HoldCo debt.

Table 3: The sample of G-SIBs considered in this study

G-SIB Symbol Country Issuance Bond
Credit Suisse CS CH HoldCo x
UBS UBS CH HoldCo x
Barclays Barclays UK HoldCo x
ING Bank ING NL HoldCo x
Groupe Crédit Agricole CredAgr FR OpCo
BNP Paribas BNP FR OpCo x
Société Générale SocGen FR OpCo x
Deutsche Bank DB DE OpCo x
Bank of America BoA US HoldCo
JP Morgan Chase JPM US HoldCo
Wells Fargo WF US HoldCo x

Note: This table shows the sample of G-SIBs considered in this study together with the symbol used to abbreviate the bank names in
charts and tables. The sample is grouped into three subsamples according to banks’ region and issuance model for bail-in debt. The
sample for the bond spread analysis is smaller as indicated by the last column.

We consider both CDS spreads and bond spreads as market variables for credit spreads. Work-
ing with CDS spreads has the advantage that standardised contracts for the three different types of
debt instruments are available for all G-SIBs in Table 3. We base our analysis on the CDS contracts
with a tenor of five years, as these contracts are the most standard contracts and because five years
is a typical tenor for bail-in debt. For the European G-SIBs that issue bail-in debt out of their op-
erating bank company, we use the CDS contracts that refer to subordinated, senior non-preferred,
and senior preferred debt. For G-SIBs that issue bail-in debt out of their holding company, we
use the CDS contracts that refer to subordinated debt, senior unsecured HoldCo debt, and senior
unsecured OpCo debt. All CDS data are obtained from Markit. More detailed information on the
CDS tickers that we use for each G-SIB can be found in Table A.2 in the Appendix A.1.

Working with bond spreads is more difficult, as, for each G-SIB, we have to find liquid bonds
with standard terms for all three seniorities (subordinated, senior non-preferred / HoldCo, senior
preferred / OpCo). Furthermore, the bonds should have similar maturities of approximately five
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years. Due to these restrictions, the sample of G-SIBs for which we could find suitable bond data
is somewhat smaller than for CDS data (cf. Table 3). The actual bonds that we have used for each
G-SIB can be found in Table A.1 in the Appendix A.1. For these bonds, we obtain the credit spread
with respect to a risk-free government benchmark bond from Refinitiv.

Confirming our results with both synthetic (CDS) and cash (bond) market data is an important
robustness check. The synthetic market tries to replicate the payoff of the cash market in the case
of a gone-concern situation or default.10 In terms of funding or liquidity, there are significant
differences between these two markets. If we find similar results based on either type of market
data we can have some confidence that these findings are not driven by specific aspects of the
cash or synthetic markets but are driven by the common aspect of these two markets, i.e., market
participants expectations about the losses in a gone-concern situation.

We use five quarters of market data from 3Q 2019 to 3Q 2020. We choose to work with a
common time frame for all banks in order to facilitate the comparison of bank-specific results.11

Note that before 3Q 2019, there was not enough good quality CDS data for all banks in the sample.
Separate CDS contracts for non-preferred and preferred senior debt have been traded since 2018
for the French G-SIBs and only since 2019 for Deutsche Bank. The time frame of our analysis
contains a period of significant market stress due to the global outbreak of the Covid-19 pandemic
in March 2020. For our analysis, this has the advantage that we can estimate our parameters both
under normal and stressed market conditions.

For the debt layers, we use the disclosed amounts of Tier 2 capital and bail-in debt and nor-
malise these amounts by dividing them by the banks’ Basel III LRE. Furthermore, we make the
assumption that the total amount of long-term unsecured debt, including subordinated and bail-in
debt, amounts to 7% of the LRE for all banks. We use this uniform assumption as there is not a
sufficiently standardised and consistent reporting of outstanding long-term debt for all banks in
our sample. A uniform assumption for the total amount of long-term debt is reasonable, as banks
build up bail-in debt by replacing other long-term unsecured debt, keeping the total amount of
long-term unsecured debt more or less constant.

Assuming less than 7% of long-term unsecured debt for all banks would not be possible, as
certain US banks in the sample have Tier 2 and bail-in debt outstanding that exceeds 6% of their
LRE. For these banks the amount of long-term OpCo debt is relatively small. European banks have
started to issue bail-in debt more recently and generally still have less bail-in debt than their US
peers. Correspondingly, the amount of senior debt that is not eligible for TLAC is larger for these
banks.

It is conceivable to assume a higher amount of long-term unsecured debt, but our results show
that this would reinforce our main findings even more. The estimates of the expected loss param-
eter λ and of the probability of losses exceeding TLAC, π, increase further if we assume higher

10In order to better align the payoff of the synthetic market with the cash market and, in particular, to make sure that
CDS contracts on banks will pay in the case of a regulatory bail-in, the industry changed the ISDA Credit Derivatives
Definitions in 2014, which led to a significant increase in CDS spreads for European banks. Neuberg et al. (2016) propose
to use the spread difference between the new and old CDS contract to estimate market-implied bail-in probabilities.

11Only for the bond analysis of Société Générale the time frame is shorter as can be seen in Appendix A.6.
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amounts of long-term unsecured debt. Therefore, we discuss in this section only the results based
on the uniform assumption of 7% long-term debt and provide the results for 10% long-term debt
in Appendix A.2.

All the results presented in section 6 are obtained as follows. Based on the credit spreads and
debt layers as inputs, we fit the parameters of the risk-neutral loss distribution for each business
day and for each bank in the observed time period. To reduce the volatility in the results, we
calculate a moving average of the credit spreads over ten business days. As our model has only two
parameters (α and λ), we will calibrate these parameters for each business day by minimizing the
total square distance between the model-based fit and the actual market spread (See Appendix A.3
for further details).

6 Results

In this section, we will estimate the probability of a gone-concern situation (α), the expected loss
given a gone-concern situation (λ), and the probability of losses exceeding TLAC (π) with our
model using the actual credit spreads and debt layers of G-SIBs.

6.1 Aggregated results based on CDS

We start the discussion by looking at the CDS results averaged over all G-SIBs in the sample. Fig-
ure 5 shows the CDS spreads (grey lines) together with the model-implied CDS spreads (coloured
lines) averaged over all banks in the sample.12 The plot shows that, overall, the model-implied
spreads match the actual CDS spreads quite well.

It is worth noting, however, that the model-implied CDS spreads do not match the actual CDS
spreads exactly as the bail-in risk premium is relatively small. According to our model the ob-
served spread difference between bail-in debt and other senior debt (the bail-in risk premium) is
too small given the large spread difference between bail-in debt and subordinated debt. In Fig-
ure 5 we show the fitted spreads assuming an exponentially decaying loss function. If we assume
the Pareto loss distribution, which has fat tails, the fitting improves only slightly and the relatively
small spread difference between bail-in debt and other debt still cannot be reproduced. The dashed
curves in the lower right panel show the fraction of unexplained variance for both the exponential
and the Pareto distribution.

The purpose of our method is not to fit all three CDS spreads exactly but to estimate the ex-
pected loss given a gone-concern situation from a simple risk-neutral loss distribution. In order to
do this, we restrict ourselves to natural and simple parametrisations for the tail of the risk-neutral
probability density function. It would of course be possible to fit all three CDS spreads exactly
with a sufficiently complex parametrisation of the density function.13

12Note, that we first calculate the parameters and the fitted CDS for each bank and business day and then average
these calculate variables and spreads over all banks in the sample.

13The situation here is similar as in standard option pricing theory: The Black Scholes model allows reproducing
the price of one vanilla option with a given strike and maturity exactly, if the volatility of the underlying, σ, is fitted

19



20

Figure 5: Time development of CDS spreads, layers, and parameters averaged over all banks
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Note: The top panel shows the model-implied (colour) and actual (grey) CDS spreads and the corresponding debt layers. The first two
bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected loss given gone concern). The last
bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern) together with the fraction of unexplained
variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss function. The measures in the bottom
panels are shown for both the exponential and the Pareto loss function. The measures in all panels are averaged over all banks in the
sample. Debt layers and losses are measured in % of LRE.

Our calculations show that during a stress period, the risk-neutral probability of a gone-concern
situation increases while the expected loss given a gone-concern situation remains fairly constant.
In Figure 5, the parameter α increases sharply in March 2020 during the Covid-19 market turbu-
lence. The parameter λ, which measure the expected loss given a gone-concern situation, does
not show such a clear peak in March 2020 and remains fairly constant during the entire observa-
tion period. This result is quite important for us because it shows that the expected losses that we
estimate during normal periods are also relevant for periods of stress. If the parameter λ would de-
pend strongly on the overall stress level, the relevance of our findings for gone-concern situations,

correctly. With a constant σ, however, the Black Scholes model does not always produce the correct prices for options
with different strikes. The reason for this is that the restriction to a log-normal risk-neutral distribution of the underlying
is not flexible enough. It is, however, always possible to reproduce all arbitrage-free options prices for a given maturity
and a given underlying exactly by choosing a sufficiently complex risk-neutral distribution of the underlying at maturity.
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which are situations of very high stress, could be questioned.
Figure 5 also shows that the expected loss given a gone-concern situation is quite high and

exceeds the available loss-absorbing capacity. In the sample average, the estimated risk-neutral
parameter λ is approximately 6% of LRE for the exponential model and is even higher for the
Pareto model. This risk-neutral loss estimate is clearly higher than the loss-absorbing capacity of
approximately 4% in the averaged sample.

The risk-neutral probability π that losses will exceed loss-absorbing capacity in a gone-concern
situation is also quite high and depends only slightly on the model choice. In the sample average,
the estimated conditional probability π is approximately 50%. As this probability only depends
on the parameter λ and the amount of loss-absorbing capacity, it is also fairly stable and does not
depend on the amount of stress in credit markets.

6.2 Regional differences

After discussing our main findings for the entire sample, in this subsection we point out a few
regional differences. For this purpose, we group the banks in the sample into three groups as
shown in Table 3 and show the averaged CDS results separately for each group.

In Figure 6, the US banks show the most noticeable differences to the aggregate results that we
have discussed previously. The CDS spreads of the US G-SIBs are compressed and there is almost
no difference between OpCo and HoldCo CDS spreads. Such a small bail-in risk premium cannot
be explained with our model and, consequently, the fraction of unexplained variance, shown in
the lower right panels, is largest for the US banks. A further consequence of these narrow CDS
spreads is that the estimated loss given a gone-concern situation, λ, is very high (more than 10% of
LRE in the exponential model) and quite volatile. The US G-SIBs have the thickest layers of bail-in
debt but due to the very high expected losses, λ, the probability of losses exceeding TLAC, π, is
higher than the average 50% for these banks.

The European G-SIBs that issue bail-in debt as senior non-preferred debt show much wider
CDS spreads. For these banks, the expected losses, λ, are the lowest and quite stable. At the
same time, these banks have the lowest amount of bail-in debt outstanding. For this reason, the
probability π of losses exceeding this relatively thin loss-absorbing debt layer in a gone-concern
situation is not much lower than the average 50%, despite the relatively low λ.

The European G-SIBs that issue bail-in debt out of their HoldCo lie between the previous two
groups. The difference between the HoldCo and OpCo CDS spreads is narrow but not as narrow
as that for the US G-SIBs. This group also ranks between US banks the other European banks in
terms of the outstanding bail-in debt.
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Figure 6: Time development of CDS spreads, layers, and parameters averaged per bank group
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Figure 7: Median of estimated parameters per bank
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Bank δ Spread α λ π Spread α λ π

CredAgr 1.9 CDS 4.8 2.9 52
BNP 2.5 CDS 5.1 3.5 50 Bond 7.1 5.8 66
SocGen 2.6 CDS 6.1 3.4 44 Bond 9.5 8.3 68
DB 5.1 CDS 15.7 4.1 28 Bond 15.3 5.7 39
CS 4.5 CDS 4.1 6.8 50 Bond 9.1 6.0 47
UBS 4.1 CDS 4.1 4.6 41 Bond 7.1 6.1 51
Barclays 3.8 CDS 8.5 5.0 46 Bond 10.7 6.9 57
ING 2.6 CDS 5.7 2.2 31 Bond 7.0 5.4 62
BoA 5.9 CDS 3.6 11.1 59
JPM 4.7 CDS 3.2 11.8 67
WF 5.8 CDS 3.6 13.0 63 Bond 5.7 10.3 57

Note: The median values of the estimated parameters α (probability of gone concern) and λ (expected loss given gone concern) together
with the measure π (probability of loss exceeding TLAC given gone concern). The parameters are estimated using the exponential loss
distribution based on CDS and, if available, bond spreads. δ shows the thickness of the loss-absorbing debt layers (Tier 2 and bail-in
debt). Total long-term unsecured debt is assumed to be 7%. Debt layers and losses are expressed in % of LRE and the other numbers
are in %. The black lines denote the median values.
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6.3 Bank specific results based on bond and CDS data

Figure 7 summarises CDS and bond results by showing the median values of the estimated pa-
rameters per bank. The figure shows the results obtained with an exponential loss distribution.
The same figure with the Pareto loss distribution is shown in Appendix A.4. The charts with the
time-dependent CDS and bond spread results for each bank are shown in Appendix A.5 and A.6,
respectively.

If we compare the results based on bond spreads to the results based on CDS spreads, we see
that the parameter α is higher for bonds than for CDS spreads. This reflects the empirical fact the
bond spreads are typically higher than CDS spreads for financial firms (negative CDS-bond basis).
The comparison shows also that expected loss estimates, λ, are quite similar for bond and CDS
spreads. For the European banks, the λ estimated with bond data is generally somewhat higher
and for Wells Fargo, the only US G-SIB for which we have found a complete set of bond data, the
λ is lower. For Wells Fargo and, to a lesser extent, some European banks, we observe that bond
spreads trade wider after the Covid-19 market turbulence (cf. Appendix A.6). Consequently, the
estimated λ is reduced after the market turbulence. This is a further difference to the CDS results,
where no such change in λ can be observed.

As a reference, we have also included in Figure 7 the median amount of loss-absorbing debt
(Tier 2 instruments and bail-in debt) as a percentage of LRE and we have denoted it as δ. For
almost all banks, except Deutsche Bank and ING, the expected loss estimate, λ, is higher than the
amount of loss-absorbing debt. Only for Crédit Agricole and ING the expected loss, λ, is smaller
than the international TLAC debt requirement of 3.75%.

The results for the loss parameter λ are quite comparable between banks that belong to the
same group. The results for the parameter α vary more between banks in the same group. Notably,
α is significantly higher for Deutsche Bank than for the French banks due to the overall higher CDS
spreads of Deutsche Bank.

7 Discussion and Policy Implications

Our estimates for the risk-neutral losses in a gone-concern situation are quite large compared to
the regulatory requirements for TLAC. This raises the question whether the regulatory objective of
TLAC, to ensure sufficient loss-absorbing capacity for an orderly resolution with a high degree of
confidence, has been achieved.

For this discussion, the distinction between real-world probabilities and risk-neutral probabil-
ities is relevant. As our method relies entirely on market prices, it can provide only risk-neutral
probabilities and loss parameters. Generally, we know that credit market participants are risk-
averse. This means that the credit risk premium paid by bond investors is larger than the actual
credit losses they suffer in the long-term average. Therefore, our risk-neutral loss estimates may
also be larger than the losses that have to be expected in an actual gone-concern situation.14

14This point is actually quite subtle. If the ratio between risk-neutral and risk-averse credit spreads were constant
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It is not the objective of this paper, however, to predict the actual losses in the resolution of a G-
SIB or to provide a new calibration for the TLAC requirements. Ultimately, we have to recognize
that the real-world probabilities and the expected losses for the resolution of a G-SIB cannot be
determined very accurately at this point. Not a single G-SIB has been resolved so far under the
new regulatory framework and therefore the uncertainty about the actual losses that would occur
in such a scenario remains very large, for both regulators and market participants.

The point we are making in this paper is that the pricing of bail-in debt relative to other debt
instruments appears to be at odds with the objectives of the regulatory bail-in concept. The TLAC
requirements should provide sufficient bail-in debt to absorb the expected losses in resolution and
this bail-in debt should absorb losses prior to other debt that is not eligible for TLAC. Our results
imply, however, that market participants expect a probability of approximately 50% that losses
will exceed TLAC in a gone-concern situation, if we assume that bail-in debt absorbs losses prior
to other senior debt. According to this finding, market participants are not convinced that G-SIBs
have sufficient bail-in debt to absorb losses in a gone-concern situation or, alternatively, that it will
absorb losses prior to other senior liabilities.

This result persists even under stressed market conditions, like the global market shock that
occurred due to the Covid-19 pandemic. If market participants were convinced that only bail-in
debt but not other senior debt would be subject to losses in a gone-concern situation, only the
spread of bail-in debt would increase during such a market turbulence. This is clearly not the case.
Our model shows that in a stress situation market participants expect that a gone-concern situation
has become more likely, but their expectations about the losses in such a gone-concern situation
does not change.

This finding should be a concern to policymakers, as it could interfere with the regulatory
resolution plans. For a successful resolution, it is critical that market participants keep trust in
the operating liabilities of a G-SIB. If credit market participants cannot be convinced that certain
liabilities will continue to perform, it will be much more difficult for regulators to perform an
orderly resolution of a G-SIB. If the resolution gets out of control, losses may be much higher than
under an orderly resolution and the market participants’ large loss expectation could become, to
some extent, a self-fulfilling prophecy.

Therefore, regulators should try to establish a clear distinction between bail-in debt and senior
debt, such that there remains no room for doubt that bail-in debt is going to absorb losses prior
to senior debt in a resolution. One possibility for making this distinction quite clear would be to
request that bail-in debt must be contractually subordinated (Tier 2) CoCos. Investors do make a
clear price distinction between these instruments and normal senior debt. There may be other pos-

for a given issuer, it would only affect the overall scaling factor α in our model but not the expected loss parameter λ.
Empirical analysis shows, however, that the ratio of market-implied credit losses to actually observed credit losses is not
uniform for all bonds categories but rather increases with the credit rating of the bond (cf. e.g. Hull (2005)). Therefore, we
can expect that not only the model parameter α but also the model parameter λ could be reduced by a translation of the
risk-neutral to the real-world measure. Such a translation of risk-neutral loss parameters to real-world loss parameters
could be attempted, in principle, but would be strongly dependent on assumptions and is, therefore, beyond the scope
of this paper.
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sibilities to achieve the same objective. Our analysis suggests that making the distinction explicit
helps. The legal distinction between senior preferred and senior non-preferred debt, as it has been
introduced in the EU, leads already to a better price distinction than structural subordination.

So far, banks have been resisting such initiatives quite successfully. Regulators have allowed
that banks promote their bail-in debt as senior debt without contractual subordination. This mar-
keting strategy made it possible for banks to issue bail-in debt with only a small risk premium
compared to other senior debt. At the same time, this lack of distinction has negatively affected
the funding costs for other senior debt, because the loss protection, which a large subordinated
debt layer would provide to senior debt holders, is not sufficiently transparent or credible.

Despite these protection benefits, it is probably true that a clear contractual subordination and
loss-absorption for bail-in debt would lead to a net increase of banks’ funding costs. Such an
increase in funding costs would, however, be in line with the objective of the TBTF reforms, to
reduce TBTF subsidies end to establish credible resolution strategies.

8 Conclusion

In this paper, we introduce a parametric, structural credit model, which is based on standard risk-
neutral pricing theory. Similar to other risk-neutral pricing models, the parameters of this model
can be calibrated based on observed market prices. In this way, we estimate the risk-neutral prob-
ability of a gone-concern situation and the risk-neutral expected loss in a gone-concern situation
from the credit spreads of debt instruments with different seniorities.

The risk-neutral expected losses that we estimate with this approach are quite robust. The
difference between the loss estimates based on CDS and bond spreads is relatively small. Further-
more, we show that different assumptions and parametrisations have little impact and that they
tend to increase, rather than decrease, the expected losses. We also show that our estimates for
the expected losses in gone-concern situations do not change if we go from a normal to a stressed
market environment.

We find that the estimated risk-neutral losses in a gone-concern situation are large compared
to the regulatory requirements for bail-in debt. Consequently, the risk-neutral probability of losses
exceeding the standard calibration of loss-absorbing capacity is also large. Under the risk-neutral
measure, for most banks it is more likely than not that the losses in a gone-concern situation exceed
the loss absorbing capacity.

Our estimates rely entirely on market prices and, as investors tend to be risk averse, we do not
claim that it can be used to calibrate TLAC requirements. We point out, however, that the current
pricing of TLAC instruments raises concerns regarding the regulatory bail-in concept. If market
participants do not believe that primarily bail-in debt will be subject to losses in a gone-concern
situation, it will be difficult to convince them that the liabilities of the operating bank entities will
continue to perform.

Even if regulators believe that the available loss-absorbing capacity of their G-SIB will be suf-
ficient for a successful resolution, it seems imprudent to ignore these market-based loss estimates.
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If already in a turbulent market environment the credit spreads of non-eligible debt instruments
increase sharply and are strongly correlated with the spreads of bail-in debt, we have to assume
that market participants would shun these and other senior liabilities of the bank even more in
a gone-concern situation. This could have severe negative consequences on the funding and the
operations of the G-SIB and could jeopardise an orderly resolution.

In terms of policy implications, our results suggest that regulators should promote clarity and
legal certainty that bail-in debt absorbs losses prior to operational and excluded liabilities. This
could be achieved by a clearer subordination and by more explicit, contractual conversion mecha-
nisms. This should eventually lead to a more differentiated pricing of bail-in debt with respect to
other debt.
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A Appendix

A.1 Bond and CDS static data

Bank Seniority ISIN Ccy Maturity
CS Subordinated XS0957135212 USD 2023-08-08
CS Senior HoldCo US225433AC55 USD 2025-03-26
CS Senior OpCo US22546QAP28 USD 2024-09-09
UBS Subordinated US90261AAB89 USD 2022-08-17
UBS Senior HoldCo CH0302790123 EUR 2022-11-16
UBS Senior OpCo XS1810806635 EUR 2023-01-23
Barclays Subordinated US06738EAC93 USD 2024-09-11
Barclays Senior HoldCo US06738EAE59 USD 2025-03-16
Barclays Senior OpCo US06739FHV67 USD 2024-05-15
ING Subordinated USN45780CT38 USD 2023-09-25
ING Senior HoldCo XS1576220484 EUR 2022-03-09
ING Senior OpCo XS0748187902 EUR 2022-02-21
BNP Subordinated XS1190632999 EUR 2025-02-17
BNP Senior Non-Preferred XS1808338542 EUR 2024-04-17
BNP Senior Preferred XS1068871448 EUR 2024-05-20
SocGen Subordinated XS1195574881 EUR 2025-02-27
SocGen Senior Non-Preferred FR0013311503 EUR 2025-01-23
SocGen Senior Preferred FR0013486701 EUR 2026-02-24
DB Subordinated DE000DB7XJJ2 EUR 2025-02-17
DB Senior Non-Preferred DE000DB5DCS4 EUR 2023-01-11
DB Senior Preferred DE000DL19UC0 EUR 2023-08-30
WF Subordinated USU94974AL37 USD 2024-01-16
WF Senior HoldCo US95000U2C66 USD 2024-01-24
WF Senior OpCo US94988J5R41 USD 2023-08-14

Table A.1: The bonds used in the bond spread analysis. For each bank, we have selected three
liquid and unsecured long-term bonds with a maturity of approximately five years. The bonds
spreads are the benchmark spreads as calculated by Refinitiv.
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Bank Seniority Markit Code Sen. Code
CS Subordinated CSGAG SUBLT2
CS Senior HoldCo CSGAG SNRFOR
CS Senior OpCo CRDSUI-CSAG SNRFOR
UBS Subordinated UBS SUBLT2
UBS Senior HoldCo UBSGRO SNRFOR
UBS Senior OpCo UBS SNRFOR
Barclays Subordinated BACR SUBLT2
Barclays Senior HoldCo BACR SNRFOR
Barclays Senior OpCo BACR-Bank SNRFOR
ING Subordinated INTNED SUBLT2
ING Senior HoldCo INTNED SNRFOR
ING Senior OpCo INTNED-BankNV SNRFOR
CredAgr Subordinated ACAFP SUBLT2
CredAgr Senior Non-Preferred ACAFP SNRLAC
CredAgr Senior Preferred ACAFP SNRFOR
BNP Subordinated BNP SUBLT2
BNP Senior Non-Preferred BNP SNRLAC
BNP Senior Preferred BNP SNRFOR
SocGen Subordinated SOCGEN SUBLT2
SocGen Senior Non-Preferred SOCGEN SNRLAC
SocGen Senior Preferred SOCGEN SNRFOR
DB Subordinated DB SUBLT2
DB Senior Non-Preferred DB SNRLAC
DB Senior Preferred DB SNRFOR
BoA Subordinated BACORP SUBLT2
BoA Senior HoldCo BACORP SNRFOR
BoA Senior OpCo BACF-BankNA SNRFOR
JPM Subordinated JPM SUBLT2
JPM Senior HoldCo JPM SNRFOR
JPM Senior OpCo JPM-ChaseBkNA SNRFOR
WF Subordinated WFC SUBLT2
WF Senior HoldCo WFC SNRFOR
WF Senior OpCo WFC-BankNA SNRFOR

Table A.2: The CDS data are obtained from Markit. We use the five year tenor and the Markit legal
entity codes and seniority codes as shown in the table above. For European (US) banks we use
the currency EUR (USD) and the doc clause MM14 (XR14). The CDS spread is the ParSpread as
calculated by Markit.
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A.2 Results assuming 10% of long-term debt

Figure A.1: Median of estimated parameters per bank assuming 10% of long-term debt
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Bank δ Spread α λ π Spread α λ π

CredAgr 1.9 CDS 4.5 3.8 60
BNP 2.5 CDS 4.9 4.4 58 Bond 6.8 8.0 74
SocGen 2.6 CDS 5.8 4.2 52 Bond 9.3 10.6 74
DB 5.1 CDS 15.3 4.7 32 Bond 14.9 6.7 46
CS 4.5 CDS 4.0 8.5 58 Bond 8.9 7.4 54
UBS 4.1 CDS 3.9 5.5 47 Bond 6.9 7.8 59
Barclays 3.8 CDS 8.1 6.2 53 Bond 10.4 8.6 64
ING 2.6 CDS 5.6 2.3 33 Bond 6.6 7.4 71
BoA 5.9 CDS 3.5 14.1 66
JPM 4.7 CDS 3.1 15.6 74
WF 5.8 CDS 3.5 17.0 70 Bond 5.6 12.8 63

Note: The median values of the estimated parameters α (probability of gone concern) and λ (expected loss given gone concern) together
with the measure π (probability of loss exceeding TLAC given gone concern). The parameters are estimated using the exponential loss
distribution based on CDS and, if available, bond spreads. δ shows the thickness of the loss-absorbing debt layers (Tier 2 and bail-in
debt). Total long-term unsecured debt is assumed to be 10%. Debt layers and losses are expressed in % of LRE and the other numbers
are in %. The black lines denote the median values.
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A.3 Technical details of the parameter fitting

If we have more than two layers, we can determine the parameters α and λ such that they min-
imise the sum of the squared differences between model-implied and observed spreads. For
small spreads, the spread si is proportional to the expected loss li (see Eq. (8)) and, for simplic-
ity, we can directly minimise the sum of the squared differences between model-implied and ob-
served expected losses. Similar to Eq. (7), we define the observed expected loss of debt layer i as
l̂i = 1 − e−ŝiT, where ŝi is the observed spread for the debt layer i. Depending on our choice with
respect to absolute or relative differences, we have to minimise the following expressions:

∑
i
(li − l̂i)2 or ∑

i

(li − l̂i)2

l̂2
i

. (17)

Setting the partial derivatives with respect to α and λ to zero, we obtain the following two equa-
tions for absolute differences:

0 = ∑
i
(li − l̂i)

li
α

and 0 = ∑
i
(li − l̂i)

∂li
∂λ

. (18)

and the following two equations for relative differences:

0 = ∑
i

li − l̂i
l̂2
i

li
α

and 0 = ∑
i

li − l̂i
l̂2
i

∂li
∂λ

. (19)

If we introduce the α-independent quantities l̃i = li/α, we can solve the first equations for alpha:

α =
∑i l̂i l̃i
∑i l̃2

i
or α =

∑i l̃i/l̂i
∑i l̃2

i /l̂2
i

. (20)

For the partial derivative with respect to λ, we obtain in the exponentially decaying model

∂lexp,i

∂λ
=

lexp,i

λ

(
1 −

L+
i

λ

)
− α

λ
e−L−

i /λ. (21)

and in the Pareto model

∂lPareto,i

∂λ
= lPareto,i

(
2
λ
− 1

L− + λ
− 1

L+ + λ

)
. (22)

Substituting α with the formulas in Eq. (20), we can determine λ by solving a one-dimensional
root-finding problem, which is numerically very cheap. The results presented are obtained by
minimising the absolute differences. We find no material differences if we minimise the relative
differences.
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A.4 Results based on the Pareto distribution

Figure A.2: Median of estimated parameters per bank based on the Pareto loss distribution
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CredAgr 1.9 CDS 5.3 3.8 44
BNP 2.5 CDS 5.4 4.7 44 Bond 7.4 8.9 62
SocGen 2.6 CDS 6.5 4.7 40 Bond 9.6 14.0 66
DB 5.1 CDS 16.4 5.8 27 Bond 15.8 8.7 39
CS 4.5 CDS 4.2 10.6 48 Bond 9.3 9.4 45
UBS 4.1 CDS 4.2 6.9 39 Bond 7.4 9.4 48
Barclays 3.8 CDS 9.0 7.2 42 Bond 10.9 11.2 55
ING 2.6 CDS 6.1 2.8 27 Bond 7.4 7.9 57
BoA 5.9 CDS 3.6 18.6 58
JPM 4.7 CDS 3.3 20.1 66
WF 5.8 CDS 3.7 22.0 61 Bond 5.8 17.4 56

Note: The median values of the estimated parameters α (probability of gone concern) and λ (expected loss given gone concern) together
with the measure π (probability of loss exceeding TLAC given gone concern). The parameters are estimated using the Pareto loss
distribution based on CDS and, if available, bond spreads. δ shows the thickness of the loss-absorbing debt layers (Tier 2 and bail-in
debt). Total long-term unsecured debt is assumed to be 7%. Debt layers and losses are expressed in % of LRE and the other numbers
are in %. The black lines denote the median values.
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A.5 CDS results per Bank

Figure A.3: Time development of CDS spreads, layers, and parameters for US HoldCo banks
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Note: The top panel shows the model-implied (colour) and actual (grey) CDS spreads and of the corresponding debt layers for 3 US
HoldCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected loss given
gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern) together with the
fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss function. The
measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses are measured
in % of LRE.
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Figure A.4: Time development of CDS spreads, layers, and parameters for European OpCo banks
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Note: The top panel shows the model-implied (colour) and actual (grey) CDS spreads and of the corresponding debt layers for 4
European OpCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected
loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern)
together with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss
function. The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses
are measured in % of LRE.
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Figure A.4: Time development of CDS spreads, layers, and parameters for European OpCo banks

C
re

dA
gr

B
N

P
So

cG
en

D
B

2019−07 2020−01 2020−07

0
50

100
150
200

0
50

100
150
200
250

0

100

200

0

200

400

CDS spreads of European OpCo banks

2019−07 2020−01 2020−07

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

Debt layers

Subordinated Senior Non−Preferred Senior Preferred

C
re

dA
gr

B
N

P
So

cG
en

D
B

2019−07 2020−01 2020−07

0%

10%

20%

0%

10%

20%

0%

10%

20%

0%

10%

20%

α

2019−07 2020−01 2020−07

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

λ

2019−07 2020−01 2020−07

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

π

exponential Pareto

Note: The top panel shows the model-implied (colour) and actual (grey) CDS spreads and of the corresponding debt layers for 4
European OpCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected
loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern)
together with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss
function. The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses
are measured in % of LRE.
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Figure A.5: Time development of CDS spreads, layers, and parameters for European HoldCo
banks
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Note: The top panel shows the model-implied (colour) and actual (grey) CDS spreads and of the corresponding debt layers for 4
European HoldCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected
loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern) together
with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss function.
The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses are measured
in % of LRE.
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A.6 Bond results per Bank

Figure A.6: Time development of bond spreads, layers, and parameters for US HoldCo banks
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Note: The top panel shows the model-implied (colour) and actual (grey) bond spreads and of the corresponding debt layers for the US
bank Wells Fargo. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected loss
given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern) together
with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss function.
The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses are measured
in % of LRE.

38



38 39

Figure A.7: Time development of bond spreads, layers, and parameters for European OpCo banks
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Note: The top panel shows the model-implied (colour) and actual (grey) bond spreads and of the corresponding debt layers for 3
European OpCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ (expected
loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone concern)
together with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the exponential loss
function. The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt layers and losses
are measured in % of LRE.
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Figure A.8: Time development of bond spreads, layers, and parameters for European HoldCo
banks

C
S

U
B

S
B

ar
cl

ay
s

IN
G

2019−07 2020−01 2020−07

0

200

400

600

0

200

400

600

0
100
200
300
400
500

0

100

200

300

Bond spreads of European HoldCo banks

2019−07 2020−01 2020−07

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

0%

2%

4%

6%

Debt layers

Subordinated Senior HoldCo Senior OpCo

C
S

U
B

S
B

ar
cl

ay
s

IN
G

2019−07 2020−01 2020−07

0%

10%

20%

0%

10%

20%

0%

10%

20%

0%

10%

20%

α

2019−07 2020−01 2020−07

0%

10%

20%

0%

10%

20%

0%

10%

20%

0%

10%

20%

λ

2019−07 2020−01 2020−07

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

π

exponential Pareto

Note: The top panel shows the model-implied (colour) and actual (grey) bond spreads and of the corresponding debt layers for
4 European HoldCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ
(expected loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone
concern) together with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the
exponential loss function. The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt
layers and losses are measured in % of LRE.
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Figure A.8: Time development of bond spreads, layers, and parameters for European HoldCo
banks
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Note: The top panel shows the model-implied (colour) and actual (grey) bond spreads and of the corresponding debt layers for
4 European HoldCo banks. The first two bottom panels show the fitted model parameters α (probability of gone concern) and λ
(expected loss given gone concern). The last bottom panel shows the measure π (probability of loss exceeding TLAC given gone
concern) together with the fraction of unexplained variance (dashed lines). The fitted spreads in the top panel are shown for the
exponential loss function. The measures in the bottom panels are shown for both the exponential and the Pareto loss function. Debt
layers and losses are measured in % of LRE.
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