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Swiss National Bank and University of Basel
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Abstract

In this paper, I derive and apply three univariate methods and one bi-
variate method to estimate permanent and transitory components of the
American output growth path during the 1790 to 2017 period. The results
show that statistical tests give little support to the hypothesis of significant
permanent growth rate changes (univariate methods). The “special century”
(1870-1970, as defined by Gordon (2016)) exhibited more volatile permanent
shifts in the output level compared to recent decades (bivariate method).

JEL Classification: E32, E47
Keywords: Output growth, business cycle, permanent and transitory com-
ponents

1 Introduction

The output growth path determines welfare in an economy. Welfare is often
interpreted as the standard of living.1 A growth path is affected by its growth
rate and its initial value. Throughout this paper, I refer to the average growth
rate as the growth path slope, while the initial value (or current value) is referred
to as the growth path level. Both the growth path slope and the growth path level
can change permanently over time, determining the growth path.

∗The author thanks Angela Abbate, Anna Tina Campell, Peter Lustenberger, Cyril Monnet,
Enzo Rossi, Marcel Savioz, Heinz Zimmermann and an anonymous referee for their valuable
comments and suggestions. In addition, the paper benefited from comments by the participants
of the SNB Brown Bag Seminar and the SSES Annual Congress 2018. The views, opinions,
findings, and conclusions or recommendations expressed in this paper are strictly those of the
author(s). They do not necessarily reflect the views of the Swiss National Bank (SNB). The SNB
takes no responsibility for any errors or omissions in, or for the correctness of, the information
contained in this paper.

athomas.lustenberger@snb.ch
1 Standard of living is often approximated by welfare per person. Output measures such as GDP

or GNP are proxies for welfare. See, for instance, Gordon (2016).
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Figure 1: Stylized transitory and permanent changes in the output growth path
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The upper left-hand figure shows simulated growth rates. The dotted blue line is a simulation
with a 5% average growth rate over the whole sample. The dotted red line shows simulations
with, first, an average growth rate of 5% until period 15 (similar to the blue line) and then
with an average growth rate of 1% (the change is indicated by the dashed black line). The upper
right-hand figure shows the growth path according to the simulated growth rates from the upper
left-hand figure. The blue line shows the growth path without any change in the average growth
rate, while the dash-dot red line shows the growth path with a change. This change is a slope
change in the growth path (permanent). The lower left-hand figure plots a transitory shift (dash-
dot orange line) in period 15, while the lower right-hand figure shows a level shift (dash-dot
green line) in period 15, as indicated by the dashed black line. Following Blanchard & Quah
(1989), a transitory shift in the growth path is associated with a transitory disturbance, while a
level shift in the growth path refers to a permanent disturbance.

A permanent change in the growth path slope can heavily affect future output
outcomes. An average growth rate of 5% per year leads to a doubling of the
growth path level compared to an average growth rate of 1% per year over a
period of 15 years. Obviously, a permanent change in these growth rates, such
as a shift in average growth from 5% to 1%, determines the growth path. The
upper left-hand and right-hand panels of Figure 1 illustrate this fact.
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A permanent change in the growth path level (level shift) at a certain point in
time affects the future output growth path. For example, a negative permanent
change shifts the growth path level downwards, and consequently, the economy
cannot maintain the growth path level that would have been reached without
this shift. The lower right-hand panel of Figure 1 shows such a shift. Such a
permanent change also affects the growth path of an economy. Blanchard &
Quah (1989) developed a method to identify such level shifts, which they refer
to as permanent disturbances. For completeness, the lower left-hand panel of
Figure 1 plots the effect of a transitory shift on the output growth path. Blan-
chard & Quah (1989) call these transitory disturbances.

As illustrated, both types of permanent change – a slope change and a level shift
(upper and lower right panels in Figure 1) – affect the future output growth
path. For instance, a negative permanent change means that incomes are lower
and that companies invest less and hire fewer people. Knowledge about such
permanent changes allows the output growth path – and, consequently, the well-
being of society – to be better predicted.

Innovation is the main driver of output growth. Gordon (2016) states that a per-
manent change occurred in US output growth – a slope change – in the 1970s. He
claims that the kind of rapid output growth experienced in the “special century”
from 1870 to 1970 was a one-off event because there were simply not enough new
innovations that could compete with the innovations made during this “special
century”. For instance, he remarks that the invention of the light bulb by Thomas
Edison is difficult to beat. In addition, Gordon (2016) argues that real GDP per
capita understates the improvement in the standard of living during this period.
GDP misses many dimensions that are highly valued by people when they mea-
sure their quality of life. For example, people may value access to a toilet and
piped water more than access to the Internet. Gordon (2016) believes that major
innovations to improve the standard of living have taken place. Thus, he predicts
future output growth to be +0.2% p.a. on average.2 Compared to the average
growth rate in the last two centuries of about 3.5% p.a.,3 this figure constitutes a
permanent slope change in the output growth path.

2 See, for instance, https://www.ted.com/talks/robert_gordon_the_death_of_innovation_

the_end_of_growth?, viewed in August 2017.
3 See Table 1.
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Has there been a permanent change in the American output growth path? To an-
swer this question, I perform two exercises – one related to slope changes and the
other related to level shifts. In the first exercise, I estimate average growth rates
and execute statistical tests to investigate possible permanent changes in the
growth path slope over time. As robustness checks, I estimate permanent com-
ponents of output growth in two additional frameworks. Within these frame-
works, a significant change in the permanent component is equal to a slope
change in the output growth path. a) I apply the Hodrick-Prescott filter (HP
filter) to derive the permanent component. I also calculate confidence bands for
those estimates following Giles (2012) suggestion. b) I use survey forecasts to
estimate permanent components. In addition, the cross-sectional dispersion of
forecasts is used as narrow confidence bands. In the second exercise, I apply the
procedure suggested by Blanchard & Quah (1989) to estimate permanent distur-
bances in a bivariate framework. Within this framework, a permanent change
(permanent disturbance) constitutes a level shift in the output growth path.

To this end, I use time series of the US economic output beginning in 1790, al-
though survey forecasts started only in the late 1960s. I also collected American
unemployment rates beginning in 1869. The unemployment rates are incorpo-
rated in the bivariate framework by Blanchard & Quah (1989).

This paper presents four novelties. First, I perform statistical tests on average
growth rates and growth rates per capita from 1790 to 2017 (a very long pe-
riod) and subsamples relating to Gordon (2015) and Gordon (2016). Second, I
use confidence bands when applying the HP filter. Third, I use survey fore-
casts to estimate average growth rates, including the use of their cross-sectional
dispersion as narrow confidence bands. And finally, I apply the procedure by
Blanchard & Quah (1989) to data beginning in 1869.

The results indicate that there was no significant change in either yearly or quar-
terly average growth rates and, thus, no significant slope change in the output
growth path. In addition, robustness checks support this conclusion. Permanent
disturbances à la Blanchard & Quah (1989) – associated with level shifts in the
output growth path – are more volatile prior to the Second World War compared
to the post-war period. Thus, more severe level shifts in both directions (posi-
tive and negative) seem to be an important feature of Gordon’s “special century”
from 1870 to 1970.
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Is Gordon (2016) correct when he claims that the average output growth (slope)
has decreased in recent decades? Overall, the hypothesis of a permanent change
in the output growth path finds no statistical support. Although it is possible
that a permanent change occurred, it was not large enough to be statistically
significant. Furthermore, the level shift (permanent) observed during the Great
Recession (2008-2009) was the largest in recent decades. However, compared to
the pre-war period, this shift seems rather small. In addition, Gordon’s predic-
tion of US growth of approximately +0.2% for the decades to come cannot be
validated today. Only time will tell what the future holds. Quoting Paul Krug-
man seems appropriate: “Is he [Gordon] right? My answer is a definite maybe.”4

This paper is structured as follows. Section 2 provides a literature review and
Section 3 describes the data. Section 4 estimates average growth rates over time
(slope changes), while Section 5 adds to robustness. Section 6 elaborates on
a bivariate time series approach to estimate permanent level shifts. Section 7
concludes the paper.

2 Literature review

In this section, I provide a short literature review. The literature on output and
economic growth is extensive. Therefore, I focus on only two types of studies,
which are selected based on their statistical methods. The first type includes
univariate time series models, while the second type refers to bivariate time
series models. In this paper, I use univariate methods to estimate slope changes,
while a bivariate method is applied to investigate level shifts. Figure 1 presents
the distinction of slope changes and level shifts in a stylized manner.

2.1 Literature on univariate time series models

The literature proposes several procedures for the univariate decomposition of
transitory and permanent components. Some examples include Beveridge &
Nelson (1981), Nelson & Plosser (1982), Campbell & Mankiw (1987a,b, 1989)
and Cochrane (1988). These examples apply three methods to decompose per-
manent from transitory components.

4 Krugman, P. (2016, January 25), “Paul Krugman Reviews ’The Rise and Fall of American
Growth’ by Robert J. Gordon”, The New York Times. Retrieved from http://www.nytimes.com.
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The first method makes use of so-called unobserved components models. Bev-
eridge & Nelson (1981) introduce a procedure for decomposing non-stationary
time series into permanent and transitory components. Nelson & Plosser (1982)
also decompose output into a growth component and a cyclical component us-
ing an unobserved components model. They find that shocks to the growth
component contribute substantially to the variation in observed output. Thus,
they associate shocks to the growth component with real disturbances.

The second method, which estimates autoregressive-moving-average (ARMA)
models, helps to determine permanent and transitory components. Campbell
& Mankiw (1987a,b, 1989) apply an ARMA approach using the change in log
GNP to calculate impulse response functions. They find that a 1% innovation
in real GNP increases the univariate forecast of GNP by over 1% over any fore-
seeable horizon (up to 80 quarters, i.e., 20 years). “If fluctuations in output are
dominated by temporary deviations from the natural rate of output, then an un-
expected change in output today should not substantially change one’s forecast
of output in, say, five or ten years.”

In the third method, Cochrane (1988) uses a nonparametric approach. His idea
is that the behaviour of covariances dies out in stationary processes, while they
are persistent in non-stationary processes. The idea of Cochrane (1988) is to es-
timate k-Variances of log GNP to its lag k and plot them against k. i) If the data
follow trend stationarity, the plot declines towards zero; ii) if the data follow a
random walk, the plot should stay constant; iii) if the data follow a mixture of
permanent and temporary components, the plot goes to the random walk vari-
ance, i.e., it decreases but stays positive at the random walk variance. Cochrane
(1988) finds little long-term persistence in GNP.

However, the (likely) most often used decomposition is currently the Hodrick-
Prescott filter (HP filter, see Hodrick & Prescott (1997)). This filter decomposes
univariate time series into a trend component (permanent) and a cyclical com-
ponent (transitory) using a quadratic form. Giles (2012) shows how to construct
confidence bands for the permanent component of the HP filter.

Hamilton (2017) criticizes the HP filter while pointing to three issues: i) Series
generated by the HP filter exhibit spurious dynamic relations that are not based
on the underlying data-generating process. ii) Filtered values in the middle are
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different from those at the sample start and end. iii) A statistical formaliza-
tion of the problem typically produces values for the smoothing parameter (λ)
that differ from common practice. Hamilton (2017) thus proposes an alternative:
Regress a quarterly time series at t + h on the four most recent values as of date
t. Then, produce forecasts using the estimated model and calculate forecast er-
rors. This approach meets all the objectives that users of the HP filter require,
but with none of its drawbacks. Hamilton’s method is in the spirit of Campbell
& Mankiw (1987a,b, 1989) in the sense that a permanent change should lead to
persistent changes in forecasts.

Another method that is similar to Hamilton’s method is to use survey forecasts
as permanent component estimates. For instance, Coibion et al. (2017) use long-
run forecasts from Consensus Forecasts to approximate the growth rates of poten-
tial output. The difference between actual and potential output indicates where
we are on the cycle component. Coibion et al. (2017) report that “estimates of
potential output have been systematically revised downward since the Great Re-
cession”. However, their general conclusion is that an “[a]bsence of clear ways
to precisely estimate potential output in real-time suggests that the practice of
relying on ‘judgement’ by professional economists should not be discontinued
anytime soon.”

In Section 4, I estimate average growth rates. In Section 5, I present two ro-
bustness checks. First, I calculate the permanent components using the HP filter
and add confidence bands to the HP filtered time series. Second, I use sur-
vey forecasts to estimate permanent components of output growth and add the
cross-sectional dispersion as narrow confidence bands.

2.2 Literature on bivariate time series models

The most famous example of a bivariate model of permanent and transitory
components of output is Blanchard & Quah (1989). These authors develop a
bivariate time series model called vector autoregression (VAR), using real GNP
growth and the unemployment rate. They implement a structure for the VAR
as follows: They assume two kinds of disturbances, each uncorrelated with the
other, and neither has a long-run effect on unemployment. They also assume,
however, that supply disturbances have a long-run effect on output, while de-
mand disturbances do not. Their empirical finding is that output fluctuations
are driven mainly by demand disturbances (no permanent effect).
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Lippi & Reichlin (1993) criticized Blanchard & Quah (1989) because their VAR
estimation is based on an arbitrary assumption about the moving-average rep-
resentation; namely, the assumption that the determinant of the moving-average
matrix polynomial is of a modulus less than one. Blanchard & Quah (1993) agree
with Lippi & Reichlin (1993), but they (Blanchard & Quah (1993)) point out that
Lippi & Reichlin (1993) derived similar quantitative results when adjusting the
model according to their criticism.

Keating & Nye (1998) estimate a model in the spirit of Blanchard & Quah (1989),
using data for ten developed countries in the nineteenth and twentieth centuries.
Observations for the US begin in 1870. In contrast to Blanchard & Quah (1989),
Keating & Nye (1998) use the change in the price level instead of the unemploy-
ment rate. They find that the Blanchard & Quah (1989) model is not supported
by nineteenth-century data.

A second example of a bivariate model that estimates the permanent compo-
nent in output growth is Cochrane (1994), who estimates two bivariate VARs –
GNP-Consumption and Stock Returns-Dividend. Both include their ratios as the
independent variable since they exhibit high predictive power. He subsequently
finds that disturbances to GNP are almost entirely transitory.

In Section 6, I apply the procedure by Blanchard & Quah (1989) to long time
series beginning in 1869. In contrast, Blanchard & Quah (1989) use only post-
war data. To the best of my knowledge, such long time series of output and
unemployment in the Blanchard & Quah (1989) framework have not been used
previously.

3 Data on output

In this section, I describe the data sources for quarterly and yearly real GDP and
real GDP per capita time series.

Yearly US real GDP and US real GDP per capita time series data are from 1790 to
2017. Data are available in millions of 2009 dollars (i.e., level data).5 The growth

5 The series are from https://www.measuringworth.com/usgdp/, downloaded in June 2018. The
series are called Real GDP (millions of 2009 dollars) and Real GDP per capita (year 2009 dollars).
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Figure 2: Realized real output growth and real output per capita growth (1790–
2017)
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The figure plots realized US real GDP growth and US real GDP per capita growth at a yearly
frequency starting in 1790 (upper) and realized US real GDP growth and US real GDP per capita
growth at a quarterly frequency beginning in Q1-1947 (lower). Grey shaded areas are the NBER
recessions.

rates are calculated in log differences (log[yt] − log[yt−1]) · 100 with yt as real
GDP in millions of 2009 dollars in year t or real GDP per capita in 2009 dollars
in year t. In addition, I use quarterly US real GDP and US real GDP per capita
from Q1-1947 to Q4-2017.6 I use the quarterly series from Q1-1947 as an explicit
series for the post-war period.

Figure 2 plots yearly and quarterly growth series including the National Bureau
of Economic Research (NBER) recessions shaded in grey. The NBER classifica-
tion of recessions begins in 1854. Figure 2 (upper plot) reveals that yearly growth
rates are much less volatile in the post-war period (after 1947). In addition, the
frequency of economic downturns decreased over time. Recessions are less fre-

6 FRED Ticker: GDPC1, called Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quar-
terly, Seasonally Adjusted Annual Rate and FRED Ticker: A939RX0Q048SBEA, called Real gross
domestic product per capita, Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate. Both
downloaded in June 2018.
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Figure 3: Realized real output (1790–2017)
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quent in the post-war period than in the pre-war period, which indicates that in
recent decades, business cycles tend to be longer than they were prior to 1947.

Figure 3 plots the output level. The grey shaded areas indicate recessions iden-
tified by NBER. The output level steadily increases over time, and spikes in the
output growth path are rare. The output level per capita behaves very similarly.

4 Estimating slope changes: Average growth rates

In this section, I calculate average growth rates using the time intervals of Gor-
don (2016), p. 14 and Gordon (2015). Moreover, I test whether a significant
change in average growth rates occurred during the sub-periods. A significantly
different average growth rate estimate would indicate a slope change of the out-
put growth path.
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Figure 3: Realized real output (1790–2017)

1800 1850 1900 1950 2000
Year

0

3000

6000

9000

12000

15000

Bi
llio

ns
 o

f 2
00

9 
D

ol
la

rs

US real GDP and US real GDP per capita (in 2009 Dollars), yearly frequency

0

10

20

30

40

50

Th
ou

sa
nd

s 
of

 2
00

9 
D

ol
la

rs

1800 1825 1850 1875 1900 1925 1950 1975 2000
Year

0

3000

6000

9000

12000

15000

Bi
llio

ns
 o

f 2
00

9 
D

ol
la

rs

US Real GDP and US real GDP per capita (in 2009 Dollars), quarterly frequency

0

10

20

30

40

50

Th
ou

sa
nd

s 
of

 2
00

9 
D

ol
la

rs

Real GDP
Real GDP per capita

The figure plots realized US real GDP (lhs) and US real GDP per capita (rhs) at a yearly frequency
beginning in 1790 (upper) and realized annualized US real GDP (lhs) and US real GDP per capita
(rhs) at a quarterly frequency beginning in Q1-1947 (lower). Grey shaded areas are the NBER
recessions.

quent in the post-war period than in the pre-war period, which indicates that in
recent decades, business cycles tend to be longer than they were prior to 1947.

Figure 3 plots the output level. The grey shaded areas indicate recessions iden-
tified by NBER. The output level steadily increases over time, and spikes in the
output growth path are rare. The output level per capita behaves very similarly.

4 Estimating slope changes: Average growth rates

In this section, I calculate average growth rates using the time intervals of Gor-
don (2016), p. 14 and Gordon (2015). Moreover, I test whether a significant
change in average growth rates occurred during the sub-periods. A significantly
different average growth rate estimate would indicate a slope change of the out-
put growth path.

10

Figure 4: Average real output growth rates (1870–2017)
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The figure shows average real GDP growth rates (blue) and average real GDP per capita growth
rates (red) for the US at a yearly frequency. Sub-samples are as in Gordon (2016).

Gordon (2016) distinguishes three sub-periods, from 1870–1919, 1920–1969, and
1970–2014. In contrast, the five sub-periods identified by Gordon (2015) are
1920–1949, 1950–1971, 1972–1995, 1996–2003 and 2004–2016. If there is a per-
manent change in output growth, the average growth rate should change sig-
nificantly between the sub-periods. I test whether this was indeed the case by
running a regression with time dummies for sub-periods. I refrain from execut-
ing structural break tests because doing so would go beyond the scope of this
paper.

Figure 4 plots the average growth rates for the sub-periods (in Gordon (2016))
and the overall sample for real GDP growth and real GDP-per-capita growth
at a yearly frequency. The average growth rate declined over time from almost
+3.7% points p.a. to around +2.7% points p.a. Over the last 150 years, this figure
amounts to approximately +3.4% points p.a. In contrast, real GDP-per-capita
growth went from +1.7% points p.a. to +2.4% points p.a. before decreasing to
+1.7% points p.a. on average.

Regression results are shown in Table 1. Panel A shows the sub-periods accord-
ing to Gordon (2016). For both yearly and quarterly frequency data, the dummy
for the sub-period from 1970–2017 is not significant. Therefore, average growth
did not change significantly over time. The same is the case for the regressions

11



12

using real GDP per capita growth. These results do not support the hypothesis
of Gordon (2016) that there has been a slowdown in output growth in recent
decades (a decrease in the slope of the output growth path).

Table 1: Average growth rates of output and output per capita (1870–2017)

Panel A: Sample periods as in Gordon (2016)

Yearly real GDP growth Yearly real GDP per capita growth
Estimate t-Stat 95% CI % p.a. Estimate t-Stat 95% CI % p.a.

1870–1919 0.0370* 5.15 0.0229 0.0511 3.70 0.0171* 2.36 0.0029 0.0313 1.71
1920–1969 -0.0003 -0.02 -0.0227 0.0222 3.68 0.0065 0.56 -0.0160 0.0290 2.36
1970–2017 -0.0102 -1.32 -0.0253 0.0050 2.68 -0.0002 -0.02 -0.0155 0.0151 1.69

1870–2017 average in % p.a. 3.36 1.93

Quarterly real GDP growth Quarterly real GDP per capita growth
Estimate t-Stat 95% CI % p.a. Estimate t-Stat 95% CI % p.a.

1947–1969 0.0099* 6.36 0.0069 0.0130 4.04 0.0061* 3.79 0.0029 0.0092 2.45
1970–2017 -0.0032 -1.86 -0.0067 0.0002 2.71 -0.0018 -1.03 -0.0053 0.0017 1.71

1947–2017 average in % p.a. 3.13 1.94

Panel B: Sample periods as in Gordon (2015)

Yearly real GDP growth Yearly real GDP per capita growth
Estimate t-Stat 95% CI % p.a. Estimate t-Stat 95% CI % p.a.

1920–1949 0.0328* 2.26 0.0043 0.0613 3.28 0.0212 1.45 -0.0074 0.0497 2.12
1950–1971 0.0075 0.48 -0.0230 0.0380 4.03 0.0041 0.26 -0.0264 0.0347 2.53
1972–1995 -0.0022 -0.14 -0.0321 0.0277 3.06 -0.0009 -0.06 -0.0309 0.0291 2.02
1996–2003 0.0004 0.02 -0.0295 0.0302 3.32 0.0013 0.08 -0.0285 0.0310 2.24
2004–2017 -0.0148 -0.97 -0.0445 0.0150 1.81 -0.0113 -0.74 -0.0411 0.0185 0.99

1920-2017 average in % p.a. 3.19 2.03

Quarterly real GDP growth Quarterly real GDP per capita growth
Estimate t-Stat 95% CI % p.a. Estimate t-Stat 95% CI % p.a.

1947–1949 0.0045 1.34 -0.0021 0.0110 1.80 0.0001 0.03 -0.0064 0.0066 0.04
1950–1971 0.0056 1.53 -0.0016 0.0127 4.08 0.0062 1.70 -0.0010 0.0133 2.55
1972–1995 0.0032 0.89 -0.0038 0.0102 3.09 0.0049 1.38 -0.0021 0.0119 2.03
1996–2003 0.0040 1.11 -0.0030 0.0110 3.42 0.0056 1.59 -0.0013 0.0126 2.32
2004–2017 0.0000 0.01 -0.0069 0.0069 1.81 0.0024 0.67 -0.0045 0.0092 0.99

1947–2017 average in % p.a. 3.13 1.94

Panel A shows the regression (log[yt] − log[yt−1]) = b + b1920−1969 + b1970−2017 + et where the b’s
with subscripts stand for dummies of the corresponding time period. Thus, b is the average
growth rate from 1870 to 1919 (with similar quarterly data, but beginning in Q1-1947). The
average growth rate between 1920 and 1969 is b + b1920−1969, whereas the average growth rate
between 1970 and 2017 is equal to b + b1970−2017. Similarly, Panel B shows estimates for sub-
periods as in Gordon (2015). The derivation of average growth rates is the same as in Panel A.
The average in % p.a. is the average growth rate p.a. of the observed data. I use Newey-West
standard errors with bandwidth 1 for yearly frequency data and 4 for quarterly frequency data.
95% CI shows the confidence intervals. * p < 0.05.
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Table 1, Panel B shows estimates for sub-periods as in Gordon (2015). Using
these sub-periods, the estimated average growth rates are very similar to those
of Gordon (2015). However, only the intercept for the yearly frequency is signifi-
cant at the 5% level, as all the other estimates are not significantly different from
zero.

To find a significant decrease in mean growth rates using yearly data, the slope
shift needs to be larger than approximately −2.53% points p.a. For quarterly
data, the figure is roughly the same (−2.65% points p.a.).7 Therefore, as long as
growth rates do not fall from +3.5% points p.a. to below +1.0% points p.a. on
average, it is impossible to detect a significant change, given that the standard
deviation remains unchanged. Put differently, as long as American growth rates
do not rise to Indian or Chinese levels,8 the applied statistical tests cannot detect
slope shifts.

To sum up, empirical results do not significantly support the hypothesis of Gor-
don (2016) that there has been a slowdown in output growth. There is no statis-
tically significant permanent change in average output growth rates.

5 Estimating slope changes: Robustness using two

additional methods

Given that in the previous section, I found no significant change in the slope, I
apply two additional methods to support this result. First, I apply the two-sided
HP filter and calculate confidence bands for permanent components estimates
(slope) by applying a method suggested by Giles (2012). Second, I use survey
forecasts to estimate permanent components. This method is similar to Coibion
et al. (2017). Survey forecasts have the advantage that the information set in-
corporated in forecasts is much larger than that, for example, in the method
suggested by Hamilton (2017), and there is no need to account for structural
breaks – this is performed by professional forecasters. In addition to Coibion
et al. (2017), I approximate confidence bands of the mean forecasts using the
cross-sectional standard deviation of reported forecasts. In both the HP filter

7 For quarterly data (Panel A, left-hand side), this is approximately [(1− 0.0067)4 − 1] = −0.0265,
i.e., −2.65% points p.a.

8 See, for example, the World Economic Outlook April 2018 published by the IMF. The U.S. had
a growth rate of +2.5%, while India had +6.7% and China +6.9%
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and survey forecasts, a significantly different permanent component estimate
(or forecast) is associated with a slope change in the output growth path.

5.1 HP filter with a confidence band

In this subsection, I apply the two-sided HP filter to derive permanent compo-
nents of output growth. I also calculate the 95% confidence band for the esti-
mated permanent components by applying Giles (2012) method. I use growth
rates rather than (log) level data, as is common in the literature when applying
the HP filter. The reason for using growth rates rather than (log) level data is
twofold. First, growth rates are useful given the objective of this section, that is,
to investigate the slope of the growth path. Therefore, the estimated permanent
component directly refers to the slope of the output growth path. Second, as
shown in Giles (2012), to calculate confidence bands for the permanent compo-
nent of the HP filtered time series, the series needs to be stationary.9 However,
the difference in the HP trend with growth rates and the first difference of the
HP trend with log level data are very small, i.e., the sample’s start and end
exhibit bigger differences, while in the middle, the differences are almost zero.
This finding points to very similar results for the permanent component esti-
mates.

The crucial parameter λ is λ = 1600 for quarterly data and λ = 6.25 for yearly
data, as is common in the literature.10 Note that as λ decreases, the permanent
component becomes smoother. In addition, as λ decreases, the confidence bands
widen.

Figure 5 plots the actual output growth rate and its permanent component for
yearly and quarterly data when applying the HP filter. The average quarterly
permanent component estimate is +0.77% p.q. (+3.13% p.a., note the time inter-
val is Q1-1947–Q4-2017), while that for the average for yearly data equals +3.65%
p.a. (time interval 1790–2017). The permanent component of growth rates is rel-
atively stable, and there are rarely significantly different estimates. For example,
the derived permanent component growth rate (i.e., slope) during the Great Re-
cession (2008–2009) for yearly data is approximately +1.00%. This estimate is not
significantly different for the whole period prior to 1914 or the post-war period.
In addition, note that estimates are almost never significantly different from zero,

9 See Appendix A for the form of the filter and the calculation of confidence bands.
10 See Ravn & Uhlig (2002).

14



14 15

and survey forecasts, a significantly different permanent component estimate
(or forecast) is associated with a slope change in the output growth path.

5.1 HP filter with a confidence band

In this subsection, I apply the two-sided HP filter to derive permanent compo-
nents of output growth. I also calculate the 95% confidence band for the esti-
mated permanent components by applying Giles (2012) method. I use growth
rates rather than (log) level data, as is common in the literature when applying
the HP filter. The reason for using growth rates rather than (log) level data is
twofold. First, growth rates are useful given the objective of this section, that is,
to investigate the slope of the growth path. Therefore, the estimated permanent
component directly refers to the slope of the output growth path. Second, as
shown in Giles (2012), to calculate confidence bands for the permanent compo-
nent of the HP filtered time series, the series needs to be stationary.9 However,
the difference in the HP trend with growth rates and the first difference of the
HP trend with log level data are very small, i.e., the sample’s start and end
exhibit bigger differences, while in the middle, the differences are almost zero.
This finding points to very similar results for the permanent component esti-
mates.

The crucial parameter λ is λ = 1600 for quarterly data and λ = 6.25 for yearly
data, as is common in the literature.10 Note that as λ decreases, the permanent
component becomes smoother. In addition, as λ decreases, the confidence bands
widen.

Figure 5 plots the actual output growth rate and its permanent component for
yearly and quarterly data when applying the HP filter. The average quarterly
permanent component estimate is +0.77% p.q. (+3.13% p.a., note the time inter-
val is Q1-1947–Q4-2017), while that for the average for yearly data equals +3.65%
p.a. (time interval 1790–2017). The permanent component of growth rates is rel-
atively stable, and there are rarely significantly different estimates. For example,
the derived permanent component growth rate (i.e., slope) during the Great Re-
cession (2008–2009) for yearly data is approximately +1.00%. This estimate is not
significantly different for the whole period prior to 1914 or the post-war period.
In addition, note that estimates are almost never significantly different from zero,

9 See Appendix A for the form of the filter and the calculation of confidence bands.
10 See Ravn & Uhlig (2002).

14

Figure 5: HP filtered permanent component of real GDP growth rates (1790–
2017)
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The figure plots the growth rate (blue line) and its permanent component (trend component, red
line) derived when applying the two-sided HP filter with λ = 1600 for quarterly data and λ = 6.25
for yearly data. The dotted orange lines show the 95% confidence bands for the estimated
permanent component. The thick black line is the trend component derived when using log
level data and then first differentiating the trend component. The grey areas indicate the NBER
recessions.

which is particularly true for the post-war period. There is only one big shift,
which happened during the Great Depression and the Second World War.

Confidence bands widen at the beginning and end of the sample periods be-
cause I apply the two-sided filter, which features a well-known problem at the
sample end points. These points are characterized by spurious dynamics.11

As a robustness check, I applied the same procedure to yearly data from 1950
to 2017 and obtained similar results. A significantly different trend estimate is
almost impossible to find. However, confidence bands become tighter.

11 See, for instance, Hamilton (2017).
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To sum up, it is difficult to find permanent component estimates that are signifi-
cantly different compared to their relative past estimates when applying the HP
filter, which supports the conclusion that there has been no significant perma-
nent change in average output growth rates in recent years.

5.2 Survey forecasts

In this subsection, I use survey forecasts as estimates of the permanent compo-
nent. This approach is in the spirit of Campbell & Mankiw (1987a,b, 1989). If a
permanent change occurs, forecasts should change significantly.

Figure 6: Term structure of cross-sectional mean forecasts (1968–2017)
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The figure plots the term structure of cross-sectional mean forecasts of US real GDP growth
(nowcast to forecast horizon of 5 quarters), including the observed value at time t. Quarterly
data from Q4-1968 to Q4-2017 are taken from the Survey of Professional Forecasters (SPF) collected
by the Federal Reserve Bank of Philadelphia (upper panel) and from Q4-1993 to Q4-2017 from the
Survey by Consensus Economics (lower panel), with annualized quarter-on-quarter percentage
change. Grey shaded areas are NBER recessions.
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Figure 6 plots the term structure of cross-sectional mean forecasts for real GDP
growth from the late 1960s to 2017. The frequency is quarterly. Survey forecasts
are taken from the Survey of Professional Forecasters (SPF, upper panel) compiled
by the Federal Reserve Bank of Philadelphia and the survey by Consensus Eco-
nomics (lower panel). SPF begins in Q4-1968, while Consensus Economics begins
in Q4-1993. Both surveys collect real GDP growth forecasts from professionals.

As Figure 6 reveals, as the forecast horizon increases, the forecasts are less
volatile. The four-quarter-ahead forecast already looks rather stable, which in-
dicates that real GDP growth is stationary and that fluctuations in real GDP
growth are dominated by transitory deviations.12 Thus, it should be sufficient
to use the longest forecast horizon (four quarters) available to estimate the tran-
sitory and permanent components. Participants in both surveys do not report
their confidence about the forecasts. Thus, confidence bands are not available
for either individual forecasts or cross-sectional mean forecasts. However, I use
the cross-sectional standard deviation – dispersion – as a proxy for the standard
deviation used to calculate confidence bands. This variable is a proxy for a nar-
row bound of confidence.

There is a caveat, however. The presented procedure assumes that forecasters
report their forecast honestly, which means that they do not follow any strategic
behaviour when reporting their forecasts.

Figure 7 presents the cross-sectional mean forecasts, their proxied confidence
bands derived when using the cross-sectional standard deviation of reported
forecasts, and the observed growth rates. The upper panel presents SPF obser-
vations, while the lower panel shows Consensus Economics forecasts. The cross-
sectional standard deviation in the Consensus Economics survey is available from
Q3-2007 onwards. The figure reveals that there is almost no permanent compo-
nent estimate at a certain point in time that is outside the proxied confidence
band of all other estimates, which indicates that there is no permanent change
in the slope of the output growth path. Note that the proxied confidence band
for Consensus Economics is smaller than that for the SPF.

12 See, for instance, Campbell & Mankiw (1987b) and Hamilton (2017) for more details about this
argument.
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To summarize, the survey forecasts appear to be relatively stable and do not
reveal any significant change in the slope of the output growth path.

Figure 7: Longer-term forecasts and cross-sectional forecast dispersion (1968–
2017)
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The figure plots the mean forecast for US real GDP growth with the longest possible forecast
horizon in the survey. Quarterly data from Q4-1968 to Q4-2017 are taken from the Survey of
Professional Forecasters (SPF) collected by the Federal Reserve Bank of Philadelphia (upper panel).
Their forecast horizon is 5 quarters ahead. From Q4-1993 to Q4-2017, the Survey by Consensus
Economics is plotted in the lower panel. Their forecast horizon is 4 quarters ahead. Data refer to
quarter-on-quarter percentage change, annualized. The orange lines are proxies for confidence
bands, where I use the cross-sectional standard deviation of forecasts (dispersion) at a certain
date to calculate confidence bands. The grey shaded areas indicate NBER recessions.

6 Estimating level shifts: A bivariate time series model

In this section, I apply the procedure by Blanchard & Quah (1989) – a bivariate
time series model – to estimate level shifts of the output growth path. In Sub-
section 6.1, I explain the idea of Blanchard & Quah (1989). In Subsection 6.2, I
apply the procedure to yearly data from 1869 to 2017 and discuss their impulse
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To summarize, the survey forecasts appear to be relatively stable and do not
reveal any significant change in the slope of the output growth path.

Figure 7: Longer-term forecasts and cross-sectional forecast dispersion (1968–
2017)
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The figure plots the mean forecast for US real GDP growth with the longest possible forecast
horizon in the survey. Quarterly data from Q4-1968 to Q4-2017 are taken from the Survey of
Professional Forecasters (SPF) collected by the Federal Reserve Bank of Philadelphia (upper panel).
Their forecast horizon is 5 quarters ahead. From Q4-1993 to Q4-2017, the Survey by Consensus
Economics is plotted in the lower panel. Their forecast horizon is 4 quarters ahead. Data refer to
quarter-on-quarter percentage change, annualized. The orange lines are proxies for confidence
bands, where I use the cross-sectional standard deviation of forecasts (dispersion) at a certain
date to calculate confidence bands. The grey shaded areas indicate NBER recessions.
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response functions. I also discuss the structural disturbances – one of them is
associated with level shifts.

A permanent change in the Blanchard & Quah (1989) model differs from the
univariate cases in Section 4 and Section 5. In particular, in the univariate cases,
I test whether the average growth rate changed over time (slope changes), while
in the following, a permanent change is interpreted as a level shift of real GDP.
Figure 1 explains this distinction in a stylized manner. A key assumption of this
model is that output growth rates are stationary around a certain level, i.e., there
is no significant change in the slope of the output growth path.13

6.1 The Blanchard & Quah model

In this subsection, I present the VAR (Vector Autoregression) by Blanchard &
Quah (1989) and their long-run restriction, which allows the structural distur-
bances in the economy to be identified. Blanchard & Quah (1989) defined a
reduced-form VAR of the form14

Xt =
(

A1L + A2L2 + · · · + ApLp
)

Xt + εt (1)

with

Xt =

[
∆yt

Ut

]
∼ I (0) , εt =

[
ε

∆y
t

εU
t

]

Xt ∼ I (0) says that Xt is integrated of order zero. Furthermore, L is the lag
operator. εt is white noise, i.e., εt ∼ (0, Σε). ∆yt = log[yt] − log[yt−1]. yt is the
level of real GNP and Ut is the unemployment rate, both at time period t. A1 to
Ap are 2× 2 matrices since there are two variables in the system – output growth
∆yt and the unemployment rate Ut. p is the number of lags in the VAR system.

Blanchard & Quah (1989) use quarterly observations from Q2-1948 to Q4-1987.
They chose p = 8, which corresponds to two years (8 quarters). They demean
their quarterly real GNP growth rates using a structural break in Q4-1973. Sim-
ilarly, they remove a fitted trend line from the unemployment rate. They justify
these adjustments to their data with the assumption that in their theoretical

13 See, for instance, Kilian & Lütkepohl (2017) for a detailed discussion.
14 I follow Kilian & Lütkepohl (2017) closely and use their notation. Kilian & Lütkepohl (2017)

present the method by Blanchard & Quah (1989) in Chapter 10.
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model, both the output growth rate and the unemployment rate are stationary
around a given level, i.e., Xt ∼ I (0). However, they found that post-war data
for the US exhibit a small but steady increase in the average unemployment rate
over their sample and a decline in the average output growth rate, which began
in the 1970s.

Rearranging Equation (1) leads to

(
I2 − A1L − A2L2 − ... − ApLp

)
Xt = A(L)Xt = εt

with I2 as the identity matrix of size 2 × 2. Although the reduced-form VAR in
Equation (1) can be estimated, a structural form is needed in order to obtain an
interpretation of the parameters. Blanchard & Quah (1989) define the structural
form of the economy as15

B(L)Xt = ηt

with B(L) = B0 − B1L − · · · − BpLp. The normalization ηt =
(
ηS

t , ηD
t
)′ ∼ (0, I2)

is imposed. ηt are the structural disturbances. In the model by Blanchard &
Quah (1989), ηD

t are demand disturbances, which are temporary. ηS
t are supply

disturbances, which are permanent. Demand (ηD
t ) and supply (ηS

t ) disturbances
are uncorrelated with each other. Both kinds of disturbances have no long-run
effects on unemployment. However, supply disturbances (ηS

t ) have a long-run
effect on output, while demand disturbances (ηD

t ) have no long-run effect on
output.

Blanchard & Quah (1989) show a simple theoretical model from which their in-
terpretation of the disturbances is derived. Their interpretation of disturbances is
based on a Keynesian view of fluctuations. On one hand, demand disturbances
have short-run effects on output and unemployment due to nominal rigidities.
These effects disappear over time, however. On the other hand, supply distur-
bances affect output in the long-run.

15 Notation is as in Kilian & Lütkepohl (2017).
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Note that B(L) = B0A(L) and B(1) = B0A(1). Kilian & Lütkepohl (2017) state that

ηt = B0εt (2)

Therefore, Σε = B−1
0 B−1

0 ’. The structural moving average (MA) representation is
then written as

Xt = B(L)−1ηt = Θ(L)ηt

Kilian & Lütkepohl (2017) write that any structural disturbance of Xt will fade
away as the horizon increases because Xt is I(0). By construction, output growth
∆yt and the unemployment rate Ut will return to their initial values. However,
the level of real GNP will not necessarily return to its initial (trend growth)
value. The long-run effect equals Θ(1) = ∑∞

i=0 Θi = B(1)−1, which is illustrated
in Figure 1 (lower right panel). If a supply disturbance (permanent disturbance)
occurs, a level shift in output occurs.

To derive such a result, Blanchard & Quah (1989) impose a long-run restriction
on the effect of demand disturbances on output growth. According to Kilian &
Lütkepohl (2017), this situation leads to an exclusion restriction (upper-left value
is 0), which is written as

Θ(1) =

[
θ11(1) 0
θ21(1) θ22(1)

]

Kilian & Lütkepohl (2017) explain that the exclusion restriction guarantees that
demand disturbances do not affect the level of output (yt) in the long run. The
first element of Θ(1) stays unrestricted because aggregate supply disturbances
affect the level of output in the long run. The second row of Θ(1) is unrestricted
because the cumulative responses of the unemployment rate Ut are different
from zero. This is because Ut is stationary. A cumulative response on a station-
ary variable is obviously not 0. According to Kilian & Lütkepohl (2017), we can
write

A(1)−1Σu

[
A(1)−1

]′
= Θ(1)Θ(1)′

and apply a lower triangular Cholesky decomposition to A(1)−1Σu
[
A(1)−1]′ to
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derive Θ(1). From this, we can calculate

B−1
0 = A(1)Θ(1)

which allows us to estimate the structural disturbances ηt when applying Equa-
tion (2).

To summarize, using the above assumptions, it is possible to distinguish the
structural disturbances in the economy. This approach allows the level shifts in
the output growth path to be estimated.

6.2 Estimating the Blanchard & Quah model

In this section, I estimate the reduced VAR by Blanchard & Quah (1989), calcu-
late impulse response functions and identify the structural disturbances in the
economy.

In contrast to Blanchard & Quah (1989), I use yearly real GDP starting in 1869.
Output growth data (yearly GDP growth rates) are described in Section 3. Sources
for the unemployment rate are as follows: For the unemployment rate from 1869
to 1899, I use estimates by Vernon (1994). From 1900 to 1947, I use the unem-
ployment rate provided by the Bureau of the Census (1960).16 From 1948 to
2017, data are downloaded from FRED.17 Figure 8 presents the data. Peculiarly,
the spike in the unemployment rate during the Great Depression (1929–1933) is
impressive. Unemployment is almost double that experienced before and after
the Great Depression.

When estimating their model, Blanchard & Quah (1989) assume that output
growth rates, as well as the unemployment rate, are stationary around a certain
level. Augmented Dickey-Fuller tests reveal that real GDP growth and the un-
employment rate do not exhibit a unit root. The tests were executed with a 1
lag and an intercept. Test values are −7.35 and −4.18, respectively. The corre-
sponding critical value is −2.88. Thus, the null hypothesis of a unit root can be
rejected. The assumption Xt ∼ I(0) (stationarity) is thus satisfied.

16 See Bureau of the Census (1960), Table D 46-47. Unemployment: 1900 to 1957, p. 73.
17 FRED Ticker UNRATE, called Civilian Unemployment Rate, Percent, Annual, Seasonally Adjusted,

downloaded in June 2018.
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Figure 8: Yearly output growth and unemployment rate (1869–2017)
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The figure plots the yearly US real GDP growth rate and the average yearly civilian unemploy-
ment rate in the US from 1869 to 2017. Grey shaded areas indicate NBER recessions.

Furthermore, in Section 4 and Section 5, there is no evidence of changes in aver-
age output growth rates (slope change). Christiano (1992) also casts some doubt
about a structural break in post-war output. Therefore, I refrain from further
structural break tests for output growth. In addition, a regression of the variable
in question on a constant and a trend revealed that real GDP growth and unem-
ployment do not exhibit a trend. Hence, in contrast to Blanchard & Quah (1989),
I simply demean both time series.

Blanchard & Quah (1989) use up to 8 lags in their estimation when using quar-
terly data. Consequently, I use p = 2 lags since the data are at a yearly frequency.
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Figure 9: Impulse-response of a one-standard-deviation disturbance (1869–2017)
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The figure plots the impulse-response function of a one-standard-deviation disturbance in sup-
ply (left panel) and in demand (right panel) for the following 15 years (x-axis). The y-axes denote
simultaneously the log of output and the rate of unemployment.

Figure 9 plots the impulse response function (IRF) of a supply and demand dis-
turbance when estimating the model by Blanchard & Quah (1989).18 The vertical
axes simultaneously denote the rate of unemployment and the log of real GDP.
The observed patterns are very similar to Blanchard & Quah (1989). However,
generally speaking, the impulse-response is less dynamic for yearly data com-
pared to quarterly data estimates by Blanchard & Quah (1989).

Supply disturbances have a permanent effect on the level of output. In contrast
to that found by Blanchard & Quah (1989), the effect is not hump-shaped but
cumulates steadily over time. After approximately five years, the effect is al-
most double the initial value and already stabilized. Supply disturbances do not
affect unemployment permanently, and after four years, the initial disturbance
vanishes. Demand disturbances affect neither the GDP level nor the unemploy-
ment rate permanently, with the initial disturbances fading away after ten years.
Like Blanchard & Quah (1989), demand disturbances have a hump-shaped ef-
fect on the level of output and an inverse hump-shaped effect on unemployment.

18 I used the Matlab Toolbox by Ambrogio Cesa-Bianchi to estimate the reduced-form VAR
and the corresponding IRFs. I downloaded the Toolbox in September 2017, https://sites.
google.com/site/ambropo/home.
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Figure 10: Structural demand and supply disturbances (1871–2017)
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The figure plots the estimated structural demand and supply disturbances from 1871 to 2016.
Both disturbances have a variance of 1 and are uncorrelated with each other by construction.
The grey shaded areas are the NBER recessions.

A permanent change in the level of output is associated with structural supply
disturbances ηS

t . Equation (2) gives the relationship between the reduced-form
VAR innovations εt and the structural disturbances ηt, which are white noise,
i.e., ηt ∼ (0, I2). Given Equation (2), we know Σε = B−1

0 B−1
0 ’. Moreover, I

can estimate Σε since I can estimate εt from the reduced-form VAR and, thus,
I also know A(1). As described in Subsection 6.1, imposing a lower triangular
Cholesky decomposition on A(1)−1Σu

[
A(1)−1]′ leads to an estimate of B0, and

therefore, ηt = B0εt.

Figure 10 presents supply and demand disturbances. The figure illustrates that
both supply and demand disturbances were more volatile before 1947, which
means that large permanent shifts were more common during this period than
during the post-war period. Obviously, permanent shifts in the level of real
GDP were less pronounced in the post-war period. In addition, there was no
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large permanent shift during the financial crisis or during the 1970s (oil crisis)
compared to shifts in the pre-war period.

To sum up, the effect of permanent disturbances on output is similar to that in
Blanchard & Quah (1989). The results show that there were only small perma-
nent disturbances in the post-war period and that both permanent and transitory
disturbances were more volatile in the pre-war period. Gordon’s “special cen-
tury” thus exhibited more volatile permanent level shifts. However, this finding
does not indicate a permanent slope change, as he predicts.

7 Conclusions

In this paper, I derived and applied three univariate methods and one bivari-
ate method to estimate permanent and transitory components of the US output
growth path over a long period of time. The results revealed that there is lit-
tle support for the hypothesis of significant changes in the slope of the output
growth path. The bivariate method showed that permanent shifts in the output
growth path were relatively small in the post-war period. In contrast, Gordon’s
“special century” exhibited more volatile permanent level shifts. Overall, it is
difficult to find permanent changes in the output growth path that are statisti-
cally significant.

Future research may elaborate on more sophisticated models. For example, un-
observed component models may lead to more nuanced conclusions. It would
also be particularly interesting to determine whether the observed productivity
decline and the decrease in r∗ estimates in recent years are statistically signifi-
cant. Adding confidence bands to such estimates is often ignored in the liter-
ature and public debates. As this paper shows, reporting point estimates with
confidence bands may weaken conclusions derived from point estimates that do
not consider confidence bands.
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Appendix A HP filter and confidence bands

In this section, I show how to derive confidence bands for the HP filter trend
component according to Giles (2012).19 The goal of the HP filter is to separate
a time series xt into a cyclical component ct (transitory component) and a trend
component gt (permanent component), that is,

xt = gt + ct (3)

According to Hodrick & Prescott (1997), the HP filter is written as

min
{gt}N

t=1

N

∑
t=1

c2
t + λ ·

N

∑
t=3

[(gt − gt−1)− (gt−1 − gt−2)]
2 (4)

s.t. ct = xt − gt

λ is the parameter that penalizes variations in growth rates of the trend compo-
nent. The larger the λ, the higher the penalty. N is the number of observations.
According to Danthine & Girardin (1989), the HP filter in matrix notation is
written as

min
{gt}N

t=1

c′tct + λ · (Kgt)
′ (Kgt)

with Kgt =




1 −2 1 0 0 ··· 0 0 0
0 1 −2 1 0 ··· 0 0 0
0 0 1 −2 1 ··· 0 0 0
...

...
...

...
... . . . ...

...
...

0 0 0 0 0 ··· 1 −2 1







g1
g2
g3
...

gN




Danthine & Girardin (1989) show that the solution to this problem equals

g∗t =
(

I + λK′K
)−1 xt (5)

where I is the identity matrix of order N, which leads to the covariance matrix

V [g∗t ] =
(

I + λK′K
)−1

V [xt]
(

I + λK′K
)−1 (6)

V [g∗t ] can be used to construct confidence bands for g∗t (permanent component).
The crucial point is how to estimate V [xt], which depends on the underlying

19 In this presentation, I closely follow Dave Giles’s Econometrics blog, see http://davegiles.

blogspot.ch/2011/12/confidence-bands-for-hodrick-prescott.html, viewed in October
2017.
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time series xt. I assume growth rates follow a stationary AR(1)

xt = µ + φ · xt−1 + εt

with |φ|< 1 and εt ∼ N(0, σ2).20 Thus,

V [gt] =
(

I + λK′K
)−1 σ2

1 − φ2




1 φ1 φ2 ··· φN

φ1 1 φ1 ··· φN−1

φ2 φ1 1 ··· φN−2

...
...

... . . . ...
φN φN−1 φN−2 ··· 1



(

I + λK′K
)−1

To construct confidence intervals, I estimate an AR(1). I use the estimates of φ

and σ2 and the diagonal of V [gt] to construct 95% confidence bands.

20 Estimated sample autocorrelation and partial autocorrelation of xt = ∆yt · 100 support this
assumption. Both measures fade away after one lag for quarterly and yearly data.
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