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Abstract

The increased availability of high-frequency data provides new tools for forecasting of variances and
covariances between assets. However, recent realized (co)variance models may suffer from a ‘curse of
dimensionality’ problem similar to that of multivariate GARCH specifications. As a result, they need
strong parameter restrictions, in order to avoid non-interpretability of model coefficients, as in the
matrix and log exponential representations. Among the proposed models, the Wishart autoregressive
model introduced by Gourieroux et al. (2007) analyzes the realized covariance matrices without any
restriction on the parameters while maintaining coefficient interpretability. Indeed, the model, under
mild stationarity conditions, provides positive definite forecasts for the realized covariance matrices.
Unfortunately, it is still not feasible for large asset cross-section dimensions. In this paper we pro-
pose a restricted parametrization of the Wishart Autoregressive model which is feasible even with a
large cross-section of assets. In particular, we assume that the asset variances-covariances have no or
limited spillover and that their dynamic is sector-specific. In addition, we propose a Wishart-based
generalization of the heterogeneous autoregressive (HAR) model of Corsi (2009). We present an em-
pirical application based on variance forecasting and risk evaluation of a portfolio of two US treasury
bills and two exchange rates. We compare our restricted specifications with the traditional WAR
parameterizations. Our results show that the restrictions may be supported by the data and that
the risk evaluations of the models are extremely close. This confirms that our model can be safely
used in a large cross-sectional dimension given that it provides results similar to fully parameterized
specifications.
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1 Introduction

The increased availability of high-frequency data provides new tools for forecasting variances and co-
variances between assets. In particular, after the seminal paper by Andersen and Bollerslev (1998), the
literature on realized volatility has grown enormously; see McAleer and Medeiros (2006) for a review.

While most works focus on the study of univariate series, recently there has been growing theoretical
and empirical interest in extending the results for the univariate process to a multivariate framework.
In this context, two pioneering contributions have been made by Barndorfi-Nielsen and Shephard (2004)
and Bandi and Russel (2005). Barndorff-Nielsen and Shephard (2004) did not consider the presence of
microstructure noise, whereas of the noise has been considered in Bandi and Russel (2005).

Alternative approaches to the high-frequency covariance estimator have recently been introduced by
Hayashi and Yoshida (2005, 2006), Sheppard (2006) and Zhang (2006), among others. For example, instead
of using calendar returns, the Hayashi and Yoshida estimator (HY) is based on overlapping tick-by-tick
returns. Sheppard (2006) analyzed the conditions under which the realized covariance is an unbiased and
consistent estimator of the integrated covariance. Zhang (2006) also studied the effects of microstructure
noise and non-synchronous trading in the estimation of integrated covariance between assets.

Although the literature on multivariate extensions of the realized variance regarding the definition of
new estimators of the realized covariances resulted in a notable amount of academic works, only a few
papers provide financial applications for these new estimators.

One explanation for the scarcity of empirical contributions in multivariate realized volatility analysis
is the difficulty in finding a dynamic specification of a stochastic volatility matrix which satisfies the
symmetry and positivity properties of each forecasted matrix, does not suffer from the so called ‘curse of
dimensionality’ and possesses a closed-form expression for the forecasts at any horizon.

In an interesting paper, de Pooter et al. (2006) investigate the benefits of high-frequency intraday
data when constructing mean-variance efficient stock portfolios with daily rebalancing from the individual
constituents of the S&P 100 index. The author analyzed the issue of determining the optimal sampling
frequency, as judged by the performances of the estimated portfolios. As in Fleming et al. (2001, 2003),
and building on the work of Foster and Nelson (1996) and Andreou and Ghysels (2002), in this paper a

rolling window volatility estimator is used to forecast the conditional variance matrix V; 5:
Vin = exp(—an)Vi 1n + anexp(—an)Ys 1 (1)

where ap can be estimated by means of maximum likelihood for the model

-~

Ty = Vt%zzt (2)
with z S N(0,I) and Y; as the realized covariance matrix estimated using I intraday returns of equal
length h = 1/1. r; is the usual n x 1 vector of daily returns at time ¢ of the n assets composing the
portfolio.

In a related paper, Bandi et al. (2006) evaluate the economic benefits of methods that have been
suggested to optimally sample (in a MSE sense) high-frequency returns data for the purpose of realized
variance and covariance estimation in the presence of market microstructure noise. However, their approach
is different from that in de Pooter et al. (2006); their method is designed to select the time-varying optimal
sampling frequency for each entry in the covariance matrix based on MSE criteria. Subsequently, the

economic gains yielded by the MSE-based optimal sampling are evaluated by comparing the utility gains



provided by optimally sampled realized covariance with realized covariances based on fixed intervals. To
forecast each entry of the covariance matrix, they adopted an ARFIMA(2,d,2) model.

An alternative way to forecast the realized variance/covariance matrix is to adopt a matrix transfor-
mation that guarantees the positive definitiveness of the forecasts.

Bauer and Vorkink (2007) present a new matrix logarithm model of realized covariance stock returns
which uses latent factors as functions of both lagged volatility and returns. The model has several ad-
vantages in that it is parsimonious, does not impose parametric restrictions, and yields positive definite
covariance matrices.

In Chiriac and Voev (2008) a model based on a multivariate, fractionally integrated autoregressive
moving average (ARFIMA) process for the elements of the Cholesky factors of the observed matrix series
is proposed. Denoting with Y; the n X n realized covariance matrix at time ¢, with n the number of
assets considered, the Cholesky decomposition of Y; is given by the upper triangular matrix P;, for which
P,P/ =Y;. Then the following model is used

$(L)D(L)(X; — p) = O(L)er, e ~ N(0, ). (3)

Xt = vech(P;) is the vector obtained by stacking the upper triangular components of the matrix P; in
a vector, ®(L) and ©(L) are matrix lag polynomials and D(L) = diag[(1 — L)%,...,(1 — L)%"], where
di,...,dn are the degrees of fractional integration of each of the m elements of the vector X;. u is a vector
of constants. Parameters in (3) are not directly interpretable. However, the dynamic linkages among the
variances and covariances series as functions of those parameters are derived.

While both the matrix logarithmic transformation and the Cholesky decomposition have the advantage
of guaranteeing the positive definiteness of the covariance matrix, they also have a major drawback: the
coefficients of the model totally rule out any possible interpretation. In other words, there is no way to
check the significance of the interactions between variances and covariances and thus to reduce the number
of parameters in the model by imposing no or limited spillover between the variances and covariances.

A solution to this problem is represented by the Wishart autoregressive model (WAR) proposed by
Gourieroux et al. (2007). The model is based on a dynamic extension of the Wishart distribution. This
specification is compatible with financial theory, satisfies the constraints on volatility matrices, has a
flexible form and, most importantly, maintains the coefficients’ interpretability.

The main innovation proposed in this paper is the introduction of a specific parametrization of the
WAR model. In particular, we show how to achieve a great reduction of the number of parameters
according to an economic criterion which is consistent with standard sectorial asset allocation approaches.
The parametric structure we propose imposes a block structure on the coefficient matrices, hence we name
the model block WAR. The use of block structures in parameter matrices is similar to that in Billio et al.
(2006), Billio and Caporin (2008), Asai et al. (2008). Engle and Kelly (2008) introduce a block structure
for the correlation matrix while Caporin and Paruolo (2008) present a spatial solutions to the course of
dimensionality problem in multivariate volatility models that implies a block structure on the coefficient
matrices. In this paper we assume that the asset variances-covariances have no or limited spillover and
that their dynamic is sector-specific. A pairwise preliminary analysis confirms this assumption and allows
us to substantially reduce the number of parameters implied by the model. In addition, we propose a
Wishart-based generalization of the HAR model of Corsi (2009), named HAR-WAR model. We present an
empirical application based on variance forecasting and risk evaluation of a portfolio of two US treasury

bills (T-bills) and two exchange rates. We compare our restricted specifications with the traditional WAR



parameterizations. Our results show that the restrictions may be supported by the data and that the risk
evaluations of the models are extremely close. This confirms that our model can be safely used in a large
cross-sectional dimension given that it provides results similar to fully parameterized specifications.

In modeling and forecasting volatility, two main trade-offs emerge: mathematical tractability at detri-
ment of economic interpretation and being precise or fast. Our model is an attempt to reconcile, at least
partially, both trade-offs. The former trade-off is crucial for many financial applications, including port-
folio and risk management. The speed-accuracy trade-off is more and more relevant if we consider the
burgeoning phenomenon of algorithmic trading® .

Section 2 introduces the WAR model of Gourieroux et al. (2007), followed by our proposed generaliza-
tion. Section 3 presents the estimation procedure and show an alternative way to estimate the degrees of
freedom of the model, a key element to determine if the density of the Wishart distribution exists. The
dataset we used is presented in Section 4 and an empirical application based on portfolio risk evaluation

is provided in Section 5. Section 6 concludes and gives directions for future research.

2 The block Wishart autoregressive model

In the following we define the basic Wishart auto regressive model of Gourieroux et al. (2007) and then

we introduce the set alternative parametric restrictions that define the block WAR.

2.1 The Wishart autoregressive process

Denote by Y; the time ¢ (realized) covariance for a group of n assets. The sequence of stochastic positive
definite Y; matrices is said to follow a Wishart process if the following relations hold.

At first, the (realized) covariance may be represented as a sum of underlying stochastic processes

K
Y= Z‘rk,t‘r’k,t: (4)
k=1
where zg ¢,k = 1,2,..., K are independent Gaussian VAR(1) processes of dimension n with a common

autoregressive parameter matrix M and common innovation variance 3

Tpt = Mzri 1+ €y, €k t it N(0,%). (5)
When Y; is defined as in (4) and (5) we say it follows a WAR process of order 1, denoted W[K, M, ¥&]. The
transition density of WAR(1) depends on the following parameters: K, the scalar degree of freedom (the
number of underlying VAR processes), strictly greater that n — 1 (the number of assets minus one); M,
the n x n matrix of autoregressive parameters; and ¥, the n X n symmetric and positive definite matrix
of innovation covariances. An important property of the Wishart distribution is that the matrices Y; are
positive definite if and only if K > n and for a non-centered Wishart specification, the distribution of Y;
possesses a density function only when K > n — 1 (hence the condition above). Thus, for K < n — 1 no
density can be defined and for K < n the process Y; is given by a sequence of singular covariance matrices

with degenerate Wishart distribution (Muirhead, 1982). We stress that the interpretation of ¥; from latent

!For instance, using a unique database provided by the Electronic Broking Services (EBS) Chaboud et al. (2009) show
that the participation rate of algorithmic trading to the EUR/USD and USD/CHF turnover in 2008 was more than 50%
(80%).



Gaussian VAR(1) processes is valid for integer valued K only and, in general, any economic or financial
interpretation of the latent processes (zj:) is not necessary. The dynamic of a Wishart autoregressive
process for any K > n — 1 is specified by its conditional Laplace transform, which defines the conditional
expectations of any exponential transformation of element of the matrix Y;,; (see Gourieroux et al. (2007)

for more details):

Uy(I') = ElexpTr(I'Yq1)]
expTr [M'T(I; — 25T) ' MY,]
[det(I4 — 25I)]K/2

In this paper we follow the line of Gourieroux et al. (2007), in which the latent processes are introduces
mainly to provide an intuitive understanding of parameters and results.

From Proposition 2 in Gourieroux et al. (2007) we have:
E; (Yi41) = MY;M' + KX. (6)

The first conditional moment is thus an affine function of the lagged values of the volatility process.

In particular, the WAR(1) process is a weak linear AR(1) process. More precisely we get:

Vig1 = MY;M' + KX + ny1, (7)

where 7;11 is a matrix of stochastic errors with a zero conditional mean. Equivalently, we may represent

Y; conditional mean in the following companion form:

vech(Yiy1) = A(M)vech(Y:) + vech(KZ) + vech(nig1), (8)

where vech(Y') denotes the vector obtained by stacking the lower triangular elements of Y, and A(M)
is a function of M. The error term 7 is a weak white noise, since it features conditional heteroskedasticity
and, even after conditional standardization, is not identically distributed.

In general, WAR processes with higher autoregressive order p may be considered and the Wishart
process can be easily extended to include more autoregressive lags. This is accomplished by replacing the
conditioning matrix MY; M’ with any symmetric positive semi-definite function of ¥;,Y;_1,...,Y: p11.E
However, when the autoregressive order is larger than 1, the interpretation of the Wishart process as the
sum of squares of autoregressive Gaussian processes in no longer valid even for integer K. For a WAR(p)

process, the equivalent of (6) reads:

b
By (Y1) = Y MjYi: ;M) + KX (9)

s=1

In the following, unless differently stated, we will refer only to WAR(1) specifications.

2.2 Interpretation of the coefficients

The principal drawback of many multivariate volatility models is the so-called ‘curse of dimensionality’,
that is, the numbers of parameters is a power function of the cross-sectional model dimension. One of the
main contributions of this paper is to provide a sensible reduction of the parameter space by imposing a
set of restrictions on the standard WAR model. Our modeling approach will be presented in the following

section; here we provide the intuition on parameter interpretation within the WAR model.



In the simple case of a (2 x 2) matrix, as done in Gourieroux (2007), we define the best prediction of
Y: given by a WAR(1) model. Then we present the approaches we suggest to reduce the parameter space.

Consider the (2 x 2) covariance matrix Y;, the autoregressive matrix M and the innovation variance X:

Y; Y;
Y, — 11,t 12,t M= mi; Mig and 5 — 011 012
le,t Y22,t mo1 Moy 012 022

The full WAR(1) model specifies the best prediction of Y;, E[Y;|Y;:_4] as:

a1Y11t-1 +b1Yio—1 +c1Yoo1 +di acYiis1 +b2Yior1 +coYan1 + d
BYi|Yi] = (10)
- azY11¢—1 +b3Y1z 1 +c3Yoo 1 +d3
where a;,bj,c; and dj, 5 = 1,...,3 are scalar parameters. d; corresponds to K times the entries of X.

By construction, the prediction is a symmetric semi-definite positive matrix for any Y; ; which belong to

ST, the set of symmetric positive definite matrices. To express it in terms of M we have:

02 _ a2
ay = miy, b1 = 2mi1mg, €1 = mi,,
ay = mi1ma1, by = miimoy + Moymya, €z = MmiaMmay,

— 2 _ 2
ag = ma, bs = 2ma1maog, cz = m2,,

The effect of the past variances and covariances on the present volatility can be seen immediately.
First, note that the full WAR model allows for spillover between variances and covariances.

Therefore, a possible strategy is to reduce the numbers of parameters by assuming no or limited
spillover between the variances. For instance, setting mi, = 0 implies that the conditional variance of
the first asset depends only on its past shocks and that the second asset variance does not influence the
conditional covariance. Differently, a diagonal specification of M corresponds to the absence of spillovers
between variances and covariances.

Those restrictions on the dynamic model are clearly related with non-causality restriction concerning
volatilities and covolatilities. Linear (in the Granger sense) and nonlinear causalities are investigated
and compared, for a bivariate WAR process, in Jasiak and Lu (2007). Gourieroux and Sufana (2007)
characterize nonlinear causality hypothesis for model based on the conditional Laplace transform (the
WAR process being one of those) and provide interpretations of the linear and quadratic causality in this
framework.

In particular, in the bivariate WAR of order 1, the Granger noncausality relations are defined as
(1) (Y12,Y22)" = Y11 © E[Y11,001|Y11t, Yaor0, Yi2,e] = B[Y11,041|Y11,4]
(2) (Y11,Y12)" = Yoo & E[Yagi11|Y11t, Yaort, Yi2,e] = B[Ya2,041|Y22,4]
(3) (Y11,Y22)" = Y12 © E[Y12,0401(|Y11t, Yoo, Yi2,e] = B[Y12,041|Y12,4]
(4) Y11 » (Y12,Y22)" © E[(Yi2,641, Yaz,041) [Y11,6, Yaor1, Yi2,t] = E[(Yi2,e41, Ya2,641)'[Yi2,t, Yoo 1)
(5) Y1z = (Y11,Y22) & E[(Y11,041, Yoz,e41)[Y11,t, Yoorr, Yioe]) = B[(Ya1,641, Yaz,e41) [Ya1,t, Yoot
(6) Yoz - (Y11,Y12) © E[(Yi1,641, Yio,e41)'|Y11e, Yoo i, Yiat] = E[(Yi1,641, Yize41) [Y11, Yio,4)

where the symbol - indicates the absence of Granger causality. The sufficient and necessary conditions

for Granger linear noncausality are:



(1) (Y12,Y22) - Y11 © mia =0
(2) (Y11,Y12) - Yoo © ma; =0
(3) (Y11,Y22) = Y12 & miimy; =0 and miymay =0
(4) Y11 » (Y12,Y22) © moy =0
(5) Y1z = (Y11,Y22)' © miimis = 0 and mpimas =0
(6) Yap = (Y11,Y12) © mya =0

In the case in which M is diagonal, i.e. when m;» = my; = 0, all noncausality relations (1)-(6) are

satisfied and we have

2
Yiigrr = miYie + Ko + 11,641,

mi1moz Y2t + Ko + N12,t41,

Yio,t4+1

2
Yoo 41 = myYon: + Koag + 122,641,

and thus each entry of Y; depends only on its past values.

This very simple example in two dimensions helps us to identify the coefficients in M that plays a
role in the spillover effect between variances. Using the delta method we can, in fact, easily compute
the standard errors for the a;, b; and c; and thus evaluate which parameters are significant and check the
appropriateness of assumption of limited spillover. We will present now four different parametrizations
for the WAR process that impose no or limited spillover. We also show in the empirical analysis that the

restrictions we impose on the matrix M are justified by the data.

2.3 Specifications of the block Wishart autoregressive model

To derive the block WAR model we impose a set of restrictions on the matrix M. These restrictions come
from a criterion allowing assets to be grouped. Some examples are given by the economic sector of the
stocks entering into an equity portfolio, the type of assets entering into a diversified equity-bond portfolio,
or the geographical reference areas of a group of assets. The main intuition behind asset grouping is that
the clustered variables may share common patterns or common features, and that their variance-covariance
dynamic is similar. In fact, we can presume that assets belonging to the same economic sector may have
a similar reaction to market shocks/news, and are similarly affected by market movements.

Clearly, groups may be defined on a data-driven basis, such as referring to the dynamic properties
of the series mean and/or variances, or on mixed criteria. The comparison of alternative methods for
clustering financial assets is outside the scope of this paper and will not be considered. In the following we
will use a prior: defined groups in order to present our modeling approach and to show, on an empirical
basis, its advantages.

Consider the simple WAR(1) model as in Eq. 7:

Yit1 = MY;M' + KT + nyp1.

Assume that our portfolio consists of n stocks and that we can classify them into N groups, according
to some economic (or data-driven) criterion, as discussed in the previous section (such as the economic

sector or the existence of common patterns in realized variances and covariances).



The N groups have dimension n; with ). n; = n. In addition, the assets are ordered following a group
rule, that is, assets from 1 to n; belong to group 1, assets from n; + 1 to n; + ny belongs to group 2, and

so on. Given this asset classification, the autoregressive matrix M may be partitioned as follows:

My, -+ My
M = S My :
Mpy: -+ Mnyn
where M;; is a matrix of dimension n; x n;.

By imposing a particular structure on the matrices M;; we be able to reduce the number of parameters

of the model. We propose the following specifications:
(i) Mj; =0 Vi#3, t,3=1,...,N,
(ii) M;; =0 and M;; = o;(1,,1',,), Yi#3, t,7=1,...,N
(iii) M;; =0and M;; = (ai1,...,a"™)1y,,), Yi#73 4,7=1,...,N
(iv) M;; =0 and M;; = o;(1,,), Vi#7, ¢,7=1,...,N

where 1, is a n; x 1 vector of ones and I,,, is the identity matrix of dimension n;.

If assets belonging to the same group share common reactions to shocks, we can hypothesize, to some
extent, that their co-volatilities also have a similar behavior. If the groups are sector-specific, model (i)
implies that the variances and covariances of each asset are only influenced by the variances and covariances
of assets belonging to the same class. Therefore, no volatility spillover exists between assets belonging to
different sectors. We named this model block WA R. The number of parameters that needs to be estimated
isn(n+1)/2+ Efvzl n?, along with the degrees of freedom K.

A further reduction of the number of parameters is obtained by imposing a single parameter for each
group, as shown in model (ii). In this case, the variance and covariance of each asset belonging to, say,
group 7 depends on the past values of itself, on the past values of the variances of the other assets of the
same group and on the covariances with those assets via a function of the unique parameter a;. We call
this model restricted block WAR. This models contains n(n + 1)/2 + N parameters in M and ¥ plus K.

Model (iii) relaxes the assumption of spillover between assets belonging to the same sector. It assumes
each matricx M;;, 1 = 1,..., N; to be diagonal, i.e. the autoregressive matrix M is diagonal. In this case
grouping the assets according to some criterion does not affect the parametric space. We named this model
diagonal WAR. For this model, n parameters need to be estimated in the matrix M, plus the n(n +1)/2
parameters in ¥ and the degrees of freedom K. One of the implications of the diagonal structure for M
is that each realized variance is only a function of its past values.

If we assume again that assets belonging to the same sector have common dynamics for the variance,
or if we can find a way to group assets whose volatilities obeys the same process, the number of parameters
can be further reduced. This is the case for model (iv). For each group a single parameter is taken to model
the dynamics of the variances for the assets in the considered group, i.e. the elements on the diagonal of
each M;;, ¢ = 1,..., N are all equal. In total only N + n(n + 1)/2 + 1 parameters are required in this
model. We refer to this model as the restricted diagonal WAR.

It is worth mentioning that the specifications (i)-(iv) are only a subset of all the possible specifications

of the WAR model. In fact, we set all the off-diagonal blocks to zero. The assumption M;; = 0 Vi #



7,%,9 = 1,..., N can be replaced by the same structure we imposed on the matrices M;;: full, scalar,
diagonal and restricted diagonal. This allows us to consider not only the interactions between assets
belonging to the same group, but also interactions between a limited set of groups. Finally, we highlight
that block structured WAR representations induce some restrictions on causality across the variances and
covariances of asset groups. Under (i) we impose noncausality between the variances and covariances of
different asset groups. Under (ii) we also include a common structure of causality within asset groups
variances and covariances. Moreover, (iii) and (iv) impose noncausality across variances and covariances.
In this paper we stick with a structure that ignores the off-diagonal blocks and leave a full generalization
of the WAR model for future works.

2.4 The block HAR-WAR model

One of the stylized facts about asset returns is the long-run temporal dependencies of return volatilities.
The literature on volatility modeling has documented that such temporal dependencies are highly per-
sistent. In particular, the low first-order autocorrelations usually found in empirical analysis (Thomakos
and Wang, 2003), along with their slow decay, suggest that the logarithmic realized standard deviations
do not contain a unit root but exhibit long memory.

To account for this, fractionally integrated autoregressive models (ARFIMA) have been shown to be
effective in empirical modeling (see Andersen et al. (2001a) and Andersen et al. (2001b) among others).
Fractional integration achieves long memory parsimoniously by imposing a set of infinite dimensional
restrictions on the infinite variable lags but completely lacks a clear mathematical interpretation.

Another crucial point is that the long memory observed in the data could be only an apparent behavior
generated from a process which is not really long memory. Indeed, the usual tests can indicate the presence
of long memory simply because the largest aggregation level that we are able to consider is not large enough.
LeBaron (2001) shows that a very simple additive model defined, as the sum of only three different linear
processes (AR(1) processes) each operating on a different time frame, can display hyperbolic decaying
memory, provided that the longest component has a half-life that is long relative to the test aggregation
ranges. Another result from Granger (1980) shows that the sums of an high number of short memory
processes can induce long memory. In Pong et al. (2004) an ARMA(2,1) is proposed to model and forecast
realized volatility. The authors’ choice is motivated by the research of Gallant et al. (1999), who show that
the sum of two AR(1) processes is capable of capturing the persistent nature of asset price volatility. In
their paper Pong et al. (2004) show that the short memory ARMA(2,1) model is as good as long memory
ARFIMA models when forecasting futures volatilities. Motivated by the existence of multiple volatility
components in intraday frequencies, along with the apparent long-memory characteristic, Andersen and
Bollerslev (1997) formulated a version of the mixture-of-distributions hypothesis (MDH) for returns that
explicitly accommodates numerous heterogeneous information arrival processes.

An alternative to ARFIMA is the heterogeneous autoregressive (HAR) model suggested by Corsi (2009)
(see also Ait-Sahalia and Mancini, 2008; Corsi et al., 2007). Extending the heterogeneous ARCH model of
Miiller et al. (1997), the long-memory pattern is reproduced by summing of (a small number of) volatility
components constructed over different horizons. The basic ideas stems from the so called ‘heterogeneous
market hypothesis’ presented by Miiller et al. (1993), which recognized the presence of heterogeneity in
traders. Differently from Andersen and Bollerslev (1997), in this latter view the multi-component structure

in the volatility is to be found in the heterogeneity of agents rather than in the heterogeneous nature of



the information arrival.
Consider the case with a single asset. Defining the k-period realized volatility component by the sum

of the single-period realized volatilities, i.e.

k
1
v/ == /RV,_. 11
( Rv)t—k:tfl k ]:Zl RVis, (11)
the HAR model for realized volatility of Corsi (2009), including the daily, weekly and monthly realized

volatility components, is given by

RV, =ag+ag+ VRVs 1 + au (\/W) + am (\/W) + p. (12)

t—5it—1 t—22:t—1
In Corsi (2009) u; is assumed to be Gaussian white noise., whereas in Corsi et al. (2007), a standardized
normal inverse Gaussian (NIG) is chosen to deal with the non-Gaussianity of the error terms.

In the spirit of the HAR model, we propose here to model the conditional realized covariance matrix
Y; with an autoregressive Wishart process which accounts for the temporal aggregation of the covariance
matrix. We call this process HAR-WAR process. In the sequel, we will show that this process, can be
interpreted as a particular WAR(23) process.

Define the k-period realized covariance matrix component by the sum of the single-period realized

covariance matrices:

1K
Yikt—1 = ZYLJ' (13)
=1

Combining a WAR(p) structure with the temporal aggregation induced by the HAR model, we write the
process Y; as:
Vi = MiYy 1My + MYy 5.4 1 My + M3Y: 504 1 Mz + KZ + 1, (14)

Now, opening the summations and aggregating according to the same lag, we get:

Y, = (MiY;—1Mj)+ (M2K71M£+M3Yi71]\~4§) ++ (15)
(sztfsMé + MaytfsMé) + Mth,sMé + -+ Maytfzzﬂ;fé + (16)
KT + s, (17)

with Mg = %MQ and Mg = \/%Mg

To interpret the process as a WAR(22), we simply rewrite it as:

5 22
Y= MiYeaMj + ) NoYe Ny + ) MsYy ;M + K5 + 7. (18)
i=1 j=6

where
Ny : NyYiN} = MY, M} + MsY; M},

As for the WAR(p) process, the WAR-HAR process permits a vech representation, i.e.

22
vech(Y:) = Z A;j(My, My, M3)vech(Yi_;) + vech(KE) + vech(n:) (19)

=1



where A;(M;N M,, ]\;13) is a matrix function of M;, Ny and Mj.

Since the HAR-WAR model is a WAR(22) characterized using only three autoregressive matrices, the
reduction of the parametric space introduced in Section 2.3 is applied in this new context to matrices
My, M; and M3. This originates what we called the full HAR-WAR, the diagonal HAR-WAR, the re-
stricted diagonal HAR-WAR, the block HAR-WAR and the restricted block HAR-WAR. The relations

between block-structured models and causality restrictions presented in the previous section, are also valid

for the HAR-WAR model.

3 Estimation

3.1 Identification

Following the exposition in Gourieroux et al. (2007), we obtain an analogous identification result for the
block WAR and block WAR-HAR model. For ease of exposition we present only the estimation procedure
for the WAR(1) process with diagonal autoregressive matrix M. The assumption of diagonal M, even if
strict, renders the estimation extremely easy and fast. The extension to the diagonal HAR-WAR case is
straightforward.

Under the assumption that K > n — 1 it is straightforward to show that:

i) K and ¥ are identifiable while the autoregressive coefficients in M (an thus M;, M, and Mj3) are
identifiable up to their sign.

ii) ¥ is first-order identifiable up to a scale factor and M is first-order identifiable up to its sign. The

degree of freedom K is not first-order identifiable but is second-order identifiable.

3.2 First-order identification

Following Gourieroux et al. (2007), the first-order conditional moments can be used to calibrate the
parameters in M and ¥, up to the sign and scale factor, respectively.

As the first-order method of moments is equivalent to non-linear least squares, the estimator is defined

as:
(M, f}*) = Argmin,, 5. 5% (M, £*)
where
T n n 2
(M3 = > > (Yij,t D0 Vi amamuk — Ul-*j)
t=2 i< k=11=1
T
= > |lvech(Y:) — vech(MY; 1 M' + 5¥)||?
t=2
and ¥* = KX.

As mentioned in Gourieroux et al. (2007), any statistical software which accounts for heteroskedasticity
can be used to obtain the estimates. We present here the complete procedure under the assumption that
M is diagonal as we want to emphasize the quickness of the algorithm.

For each Y;,t = 1,...,T of dimensions n X n, we consider the matrix Y, of dimensions T x n(n + 1)/2
build with the vech of Y; for each time ¢t = 1,...,T; i.e. the t-th row of Y is vech(Y;).
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Under the hypothesis that M is diagonal, define a = diag(M) and dg(a) as the diagonal matrix with

the vector a as diagonal. Then
MY, 1M’ = dg(a)Y; 1dg(a) = (aa) O Y; 1 (20)

and
vech(MY; 1M') = vech(aa') ® vech(Y; 1) (21)

where ® denotes the elementwise product. Define [Y]g as the matrix obtained from Y when dropping
the last row, i.e. considering the time from T down to time 2. Define A = vech(aa') and Z = vech(Z*).

The residual matrix W is obtained as
W=[Y]; - (A®ir1)0[Y]] -2 ®ir (22)

where i1 is a T — 1 x 1 vector of ones and ® denotes the Kronecher product.

Then the minimization problem reduces to:
(4,57 = Argming 5. [i7_y (W © W) ingns1y] (23)

With our data set of four assets and 2,174 trading days (see Section 4 for a detailed description), only
1.2 seconds for the diagonal case (0.7 seconds for the restricted diagonal case) on a Pentium 4 PC are
necessary to obtain the estimates. This result, if compared with the 42 seconds required from the same
data set when a DCC model (Engle, 2002) is fitted, represents a great improvement.? For the diagonal
HAR-WAR only 5 seconds are required, and for its restricted version only 3.9 seconds. See Table 8 for all

the other specifications.

3.3 Second-order identification

Whereas the estimation of the entries of the autoregressive matrix M and of the innovation variance ¥
(up to multiplication for a scale parameter) is relatively straightforward, the estimation of the degrees
of freedom poses some challenges. We first present the estimation procedure introduced in Gourieroux
et al. (2007) and then show how the same parameter K can be estimated relying on the fact that, given a
portfolio allocation a, its volatility a'Y;a is gamma-distributed with a shape parameter equal to K.

Consider the simple WAR(1) model. The marginal distribution of the WAR(1) is the centered Wishart
distribution, defined as W (K, 0, £(c0)), where ¥(o0) is computed from

Y(00) = ME(c0)M' + 3. (24)
Thus, the conditional variance of a portfolio’s volatility is given by:

V(a'Via) = %[a'ﬂ*(oo)a]z, (25)

where a is a vector of dimension (n x 1) and X*(c0) = KX(0). A consistent estimator of the degrees of

freedom K can be computed as follows:

Step 1 Compute 3*(c0) as solution of

5% (00) = M5 (c0) M’ + 53*(c0). (26)

2To ensure a fair benchmark, we tested both our Matlab code and the one provided by Kevin Sheppard in his UCSD

toolbox.
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Step 2: Chose a portfolio allocation and compute its sample volatility

2

T
1 1
V(a'Yia) = - > |a'Yia - ; a'Yial| . (27)

t=1

Step 3: A consistent estimator of K is:
K(a) = 2[a'S*(00)a]? /V (a'Y;a) (28)

Step 4: A consistent estimator of & is () = £*/K(a).

A derivation of the above estimator for the general stationary WAR(p) process is reported in the
Appendix.

This method provides consistent estimates of the degrees of freedom but is problematic in two aspects:
first, it needs to estimate the matrix X(c0); second, it makes use of the estimates M and 3, carrying their
estimation error into the estimate of K.

A more direct way that does not need to rely on the estimates of M and ¥ comes from the distribution
of the volatility of a portfolio.

Consider a portfolio allocation @ € R™. We know that the unconditional distribution of Y; is a
W(K,0,%(c0)), a centered Wishart distribution. We can therefore easily show® that

K
a'Via ~ Ga (2, 2a'2(oo)a) , (29)

i.e. the distribution of the portfolio with allocation « is a gamma distribution with the degrees of freedom
K as shape parameter. An unbiased estimator of K can be obtained simply via maximum likelihood
by fitting a gamma distribution to the process a'Y;a?. As shown in Bonato (2008), both estimators
are unbiased but the second one is statistically more efficient. However, it is important to recall that
these results are valid only if a WAR(1) is the true data generator process (DGP). This assumption,
even if realistic, is far from being true, and a divergence in the values of the estimates is expected. In
particular, Bonato (2008) shows that in the presence of extreme observations or when the DGP is not
a Wishart process, the estimates for the degrees of freedom using the WAR model are perceptibly lower
than predicted by the theory via gamma distribution. A comparison of the two estimates should give a
sort of measure of goodness of fit of the WAR model. A perfect fit should bring the two values to coincide.

The value of the degrees of freedom is the key element in determining whether the process is non-
degenerate (K > n) or if it admits density (X > n — 1). Once the estimated degrees of freedom using the
two estimators confirm the stationarity of the process, then the question of which estimator of K is to be
used is no longer an issue, as the forecasted covariance matrices are independent of K. In fact, M and &*
are first-order identifiable and are only required to compute F;(Y;11), as shown in Equation (6). Recall
that 5 = f]*/f{ and K is second-order identifiable. So we do not need K to obtain $*.

4 The data

Our model introduces parametric restrictions by grouping the assets according to their type. For this

reason we consider a portfolio composed of two currencies and two treasury bills. Bonds and currencies

3See, for example, the proof given in Meucci (2005, Technical Appendix, p. 33-34) or the Appendix of this paper.
4When performing the ML estimation one should be careful to the parametrization of the Gamma density function.

According to Meucci's notation, it would be for instance a’'Y;a ~ Ga(K, o' Z(00)at)
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are in fact not likely to be correlated and thus our choice not to impose limited spillover between variances
is justified a priori. As currencies we used USD/CHF and USD/GBP five-minute spot prices provided
by Olsen and Associate Ziirich . USD/CHF prices were available from 2 January 1997 to 9 August 2005
and USD/GBP series was covering the period from 2 January 1997 to 31 October 2006. The second
group consists of the prices of the 10-year and 30-year U.S. treasury bills. These futures are traded at the
Chicago Board of Trade (CBoT) from 7:20 to 14:00 Eastern Standard Time (EST). Our samples contain
five-minute prices from 2 January 1997 to 29 June 2007. We adopted the conventional® practice of using
the futures contract with the largest trading volume. As the contract approached maturity (five trading
days before), we moved to the next contract, ensuring no overlapping periods in the price sequence and
no returns computed on prices from different contracts. Days in which at least one of the series had no
match with the other three (e.g. when the CBoT was closed) were dropped. In addition, 23 October 1997,
9 September 1998, 14 April 2003 and 11 October 2004 were removed from the sample due to the presence
of irregularities. This left us with 2,147 trading days.

Table 1: Summary statistics of five-minute and daily returns. Daily returns are computed as the logarithm of the difference
between the closing price and opening price multiplied by 100. Exchange rates are traded round the clock but as we are

interested in a portfolio, only the trading hours coinciding with the CBoT trading hours were considered.

Return CHF/USD | GBP/USD | T-10Y | T-30Y
Mean 0.0003 -0.0004 0.0001 | 0.0001

Maximum 1.2716 0.6765 0.7856 | 0.7916

5-min | Minimum -1.3690 -0.6763 -1.0124 | -0.8992
St. dev. 0.0575 0.0433 0.0570 | 0.0367

Skewness -0.0322 -0.0145 -0.3391 | -0.4123

Kurtosis 16.1390 10.9153 11.1789 | 19.1486

Mean -0.0250 -0.0277 0.0049 | 0.0076

Maximum 3.1195 1.4240 1.9022 1.0802

Daily | Minimum -2.8374 -2.0079 -1.9112 | -1.3626
St. dev. 0.4967 0.3403 0.4970 | 0.3199

Skewness -0.1294 -0.0722 -0.3460 | -0.3030

Kurtosis 5.3625 4.8464 3.9230 | 4.2370

Currencies are traded around the clock. T-bills are traded during the CBoT trading day and virtually
round the clock on GLOBEX starting from 1 July 2003. As our samples start in 1997 we studied only
the overlapping trading hours, i.e. the trading hours of the CBoT. To remove the overnight effect we did
not consider the first 15 minutes after the opening. Table 1 reports the descriptive statistics for the five-
minute and daily returns for the four asset we considered. Intraday returns were constructed taking the
first differences of the log-prices and multiplying by 100. Daily returns were computed as the logarithm of
the difference between the closing price and opening price multiplied by 100. The typical stylized facts are
observed: negative skewness, excess of kurtosis in both daily and intraday T-bills returns and skewness

close to zero for the exchange rates.

5As done in Martens and van Dijk (2007) and de Pooter et al. (2006) among others.
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The trading day we constructed runs from 7:40 (first observation) to 14:00 (last observation), resulting
in 76 five-minute returns which we used to construct the series realized covariance matrices. Descriptive
statistics for the realized volatilities of the four assets are reported in Table 2. Figure 1 shows the realized

volatilities estimated from the data. The evolution of the realized correlation is presented in Figure 2
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Figure 1: Daily realized volatilities for the two exchange rates and the two treasury bonds.

In the next step we constructed the series of realized covariance matrices using the classical estimator
presented in Andersen et al. (2003) and Barndorfi-Nielsen and Shephard (2004) and used, for example, in

de Pooter et al. (2006):
1

!
Y, = Z Tt—1+ih,hT¢t—144h,h (30)
i=1

We indicate with Y; the realized covariance matrix at time ¢ in order to to be coherent with our previous
notation and because the use of ¥ would probably create confusion as ¥ denotes the covariance matrix of
the Gaussian vector underlying the WAR(1) model. 7¢_1yinn = Pt—14ih — Pt—1+(i—1)/r denotes the (n x 1)
vector of returns for the :-th intraday period on day ¢, for = = 1,...,I, and with n = 4 the number of
assets. I is the number of intraday intervals, each of length A = 1/I. In our case, with a frequency of five
minutes, I = 76. One shortcoming of the covariance matrix estimator we adopted is that it is not efficient
in the presence of market microstructure noise and asynchronous trading (see for example Sheppard, 20086,

Lunde and Voev, 2007, Barndorfi-Nielsen et al., 2008, Mancino and Sanfelici, 2008, among others). We
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think this does not represent an issue here as, first, we use very liquid assets that are traded in the same
markets (CBoT for the futures and OTC for the currencies). This reduces the distortion induced by stale
prices, non-homogenous trading time, data points irregularly spaced, asynchronism, different institutional
features using different trading platforms or exchange systems. Secondly, as shown in Barndorff-Nielsen
et al. (2008) using intraday data of 10 stocks from the Dow Jones index, the estimated realized covariance
matrices based on 5-minute returns are not significantly biased® (compared to the matrices constructed
using the outer products of the open to close returns) even though realized kernels remain the preferred
estimators. In contrast to de Pooter et al. (2006) we did not consider overnight returns. Including
overnight returns would affect only the volatility of the T-bills because currencies are traded 24 hours and
their equivalent to the overnight returns would be the over-weekend return. Therefore we contend that
adding overnight returns to only some components of the portfolio would induce distortion in the realized

volatility of the portfolio itself.

Table 2: Summary statistics for the realized volatilities

Realized volatility | CHF/USD | GBP/USD | T-10Y | T-30Y
Mean 0.2511 0.1422 0.2466 | 0.1022
Maximum 2.9772 1.8661 1.8043 1.3761
Minimum 0.0184 0.0164 0.0276 | 0.0119

St. dev. 0.1856 0.1039 0.1895 | 0.1006
Skewness 5.5066 4.8388 2.6636 | 4.5772
Kurtosis 59.7536 54.3341 14.2783 | 37.2670

5 FEmpirical application

5.1 Estimation results

The first model we estimated is the full WAR(1), in which the matrix M is full. The estimates of the
entries of M and X are reported in Table 3 and 4, respectively. As shown in Equation (10), the impact
of the past values of realized variances and covariances on future realized variances and covariances is
a function of the entries of M, so, rather than checking the significance of the elements of M, we are
interested in checking the significance of the coefficients a;,b;,¢c;, © = 1,...,3, i.e. the coefficients that
directly affect the realized variance-covariance matrix forecasts.

Table 5 reports the estimates and the t-test values of the parameters that determine the best prediction
of Y; as given by a WAR(1) model. For simplicity we will only consider the case of two assets and report
the estimates of the different pairs of combinations of the two currencies and two T-bills we used in our

analysis. The parameter a;, which tells us the effect of the realized volatility at time ¢ — 1 on the realized

6 For a given estimator, say Y; = Coufm, Barndorff-Nielsen et al. (2008) consider the difference d¢ = C’oufm — C’ovtomc

OtoC
t

where Cov is the outer products of the open to close returns, which when averaged over many days provide an estimator

of the average covariance between asset returns. The sample bias is computed as d and the robust variance as &% =
Yo + 222:1 (1 — q%) Yh, where v, = ﬁ E:L;lh n¢ne_p. Here m¢ = di — d and q = int{4(T/100)?/°}. Under the null

hypothesis of no difference between the two estimators at one percent level |\/TJ/E| < 2.326 for each entry of Covfm.
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Figure 2: Evolution of the realized correlations for the four assets in analysis.
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0.4044  0.1033  0.0764  -0.1442
(3.3985) (0.2273) (0.1868)  (-0.2282)
-0.0602  0.5637  -0.0344  0.0600
(-0.2441) (4.2327) (-0.1067)  (0.1235)
0.0323  0.0008  0.7204  -0.1047
(0.2425)  (0.0003) (3.3614) (-0.3092)
-0.0128  0.0489  0.1753  0.4037
(-0.0715) (0.2063) (0.5773)  (0.9577)

Table 3: Estimated latent autoregressive matrix M for the full WAR(1) model. t-ratios in parenthesis.

volatility expected at time ¢, is significant for all the pairs” . We have the same results for the coefficients

"Recall from (10) that a1 = m?, so that the significance test is a one-sided test with 10% level at 1.28.
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0.0424  0.0007  -0.0011  0.0002
(7.9627) (0.1110) (-0.1812)  (0.0445)
0.0197  -0.0017  -0.0023
(3.7092) (-0.3023) (-0.4465)

0.0279  0.0136

(4.8620)  (2.7554)

0.0123

(2.8124)

Table 4: Estimated latent autoregressive matrix ¥ for the full WAR(1) model. t-ratios in parenthesis.

by and c3, the autoregressive parameters for the realized covariances and realized variances of the second
component of the pair. The only exceptions are the couples CHF-GBP and T30-T10. In particular, for the
latter pair, only the autoregressive coefficient for the 30-year U.S. treasury bill is statistically significant.

It is very important to note that the rest of the coefficients are not statistically significant for any
of the different combinations of pairs. This suggests that a reduction of the parameters of the models

hypothesizing a limited spillover is reasonable and to some extent necessary.

CHF-GBP CHF-T30 CHF-T10 GBP-T30 GBP-T10 T30-T10
a; | 0.1613 0.1786  0.1806  0.3279  0.3364  0.5419
(1.5543)  (2.1789)  (2.1754)  (2.2469)  (2.2960)  (1.7310)
ay | -0.0418 0.0130  -0.0027  0.0081 0.0196 0.1304
(-0.4640)  (0.2369)  (-0.0340)  (0.0857)  (0.1500)  (0.5772)
az | 0.0108 0.0009 0.0000 0.0002 0.0011 0.0314
(0.2190)  (0.1184)  (0.0170)  (0.0429)  (0.0750)  (0.2874)
by | -0.0835 0.0260  -0.0054 0.0162 0.0392 0.2607
(-0.3802)  (0.2363)  (-0.0338)  (0.0857)  (0.1500)  (0.5638)
b, | 0.2051 02783  0.2629  0.3783  0.3627  0.2722
(1.2183)  (4.0238)  (3.2827)  (4.1564)  (3.4078)  (0.7471)
bs | -0.1171 0.0406  -0.0078 0.0187 0.0421 0.1417
(-0.4521)  (0.2365)  (-0.0340)  (0.0856)  (0.1491)  (1.3579)
c; | 0.0412 0.0004 0.0040 0.0001 0.0013 0.0161
(0.2635)  (0.0799)  (0.1065)  (0.0417)  (0.0830)  (0.1876)
c; | 01143 -0.0137  -0.0389 0.0062 0.0224  -0.0507
(0.5561)  (-0.1598)  (-0.2135)  (0.0833)  (0.1662)  (-0.3345)
cs | 03173 04356  0.3815 04361  0.3883  0.1602
(1.9316)  (5.4035)  (2.4987)  (5.2972)  (2.5243)  (0.4589)

Table 5: Estimates and t-ratios for the coefficients of Equation (10). Coefficients that are significant at the 10% level are

shown in bold.

The estimates of the autoregressive matrix M and the covariance matrix ¥ for the four specifications
of the WAR(1) model, the diagonal, the diagonal restricted, the block-diagonal and the restricted block-
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diagonal are reported in Table 6 and 7. Standard errors are in parenthesis. Starting at the top left of
Table 6, we see that imposing the same value of the autoregressive coefficient for assets belonging to the
same type is a sensible choice. Consider the diagonal WAR case. For the first two elements of the diagonal
(exchange rates), we have a common parameter 0.4585 against 0.4175 and 0.5636. For the T-bills we have
an autoregressive parameter for the volatilities equal to 0.6481 in front of 0.6583 and 0.6209. Including
spillover between assets belonging to the same sector affects only the autoregressive parameter of the 30-
years T-bill and appears unnecessary as most of the off-diagonal coefficients are not significant at the 5%
level, confirming the findings reported in Table 5. The restricted block diagonal case presents estimates
that are not compatible with the previous cases and this seems to suggest that this kind of specification
might be too restrictive to model the covariance matrix. The estimation results for the HAR-WAR process

are similar to those for the WAR process and are available upon request.

Block WAR Restricted block WAR
0.4080 0.1060 0.2740  0.2740
(3.5332) (0.2383) (4.8680)
-0.0648 0.5626 0.2740  0.2740
(-0.2649) (4.2528)
0.7216 -0.1078 0.3282 0.3282
(3.3565)  (-0.3175) (12.8269)
0.1716 0.4035 0.3282 0.3282
(0.5640)  (0.9389)
Diagonal WAR Restricted diagonal WAR
0.4175 0.4584
(4.2792) (5.9889)
0.5636 0.4584
(4.4107)
0.6583 0.6481
(11.1432) (13.595)
0.6209 0.6481
(6.0008)

Table 6: Estimated latent autoregressive matrix M for the different specification of the WAR(1) model. t-ratios in

parenthesis.

The estimated values for the degrees of freedom are reported in Table 8. To obtain the estimates the
following allocation was used: o = (1 1 1 1)’. Different allocations led to analogous results.

All the different specifications result in a number of degrees of freedom strictly bigger than n, n = 4
being the number of assets making up the portfolio, and thus the Wishart process is stationary and non-
degenerate. All the estimates of K are close to each other except for the restricted block WAR-HAR. The
resulting degrees of freedom equal to 6.5 are slightly bigger than in the other cases and this might be due
to some problem in the optimization routine. Further investigation in this direction is necessary.

In addition to the estimated degrees of freedom, Table 8 also reports the number of parameters for each

model and the CPU time necessary to obtain the estimates on a Pentium IV PC. The advantage of using a
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Block WAR Restricted block WAR

0.0424 0.0007 -0.0002 -0.0003 0.0451 -0.0049 0.0000 0.0000
(8.0529) (0.1140) (-0.0604) (-0.0828) | (11.1560) (-1.2006) (0.0070)  (0.0069)
0.0197 -0.0019 -0.0014 0.0228 -0.0024 -0.0016
(3.7136) (-0.6149) (-0.4363) (5.6421) (-0.7805) (-0.4998)

0.0279 0.0136 0.0371 0.0127

(4.8738) (2.7514) (9.9012)  (3.3877)

0.0124 0.0076
( 2.8801) ( 2.0225)

Diagonal WAR Restricted diagonal WAR

0.0424 0.0011 -0.0004 -0.0004 0.0406 0.0011 -0.0004 -0.0004
(8.1190) (0.3423) (-0.1238) (-0.1264) | (8.5055)  (0.3536) (-0.1201) (-0.1201)
0.0198 -0.0019 -0.0014 0.0230 -0.0021 -0.0015
(3.7920) (-0.6012) (-0.4396) (6.1516) (-0.6732) (-0.4760)

0.0285 0.0154 0.0292 0.0151

(5.6888)  (4.2106) (6.6184)  (4.2865)

0.0128 0.0121

(3.1117) (3.5788)

Table 7:  Estimated latent autoregressive matrix ¥ for the different specification of the WAR(1) model. t-ratios in

parenthesis.

diagonal model (either WAR or HAR), compared with the full counterpart, is notable. The time required
to obtain the estimates ranges from 0.71 to 5 seconds, a great improvement compared, for example, with
the 323 seconds required by the diagonal BEKK of Engle and Kroner (1995), which assumes the same

autoregressive structure for the latent variance-covariance matrix®.

5.2 Variance Forecasting

The ability to forecast the volatility of a financial position is a key factor in many activities like risk
management, portfolio optimization or option pricing, just to mention the most common. For this reason
we preferred to give more emphasis to the out-of-sample forecast of the proposed model, rather than the
in-sample fit and in-sample forecast. Of course, in-sample fit is important to determine the goodness of a
model; however, unreported results showed that the WAR models have a very poor in-sample forecasting
ability. Our suspicion is that the degrees of freedom are unlikely to be constant through time, and therefore
fitting the model to the entire series is not appropriate. To check the variation of the degrees of freedom
within the sample, we split the 2,147 trading days into non-overlapping periods of 30 days. We then
estimated the degrees of freedom for each sub-period. Results are reported in Figure 3. We can clearly see
that the degrees of freedom are far to be constant over time, with values ranging approximately between
3 and 20.

As done by banks and regulators, we use a rolling window to perform one-day-ahead out-of-sample

& Again, to estimate the parameters of the BEKK model we used the Matlab code provided by Kevin Sheppard in the
UCSD Garch toolbox.
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Specification Parameters | CPU time (secs) | K fval Ranking
full WAR 27 117 4.8 209.01 9
block diag. WAR 19 94 4.9 209.11 8
restr. block diag. WAR 13 21 4.8 231.96 5
diagonal WAR 15 1.22 4.8 209.39 2
restr. diag. WAR 13 0.71 4.8 209.80 1
full HAR-WAR 59 531 4.7 189.78 11
block diag. HAR-WAR 35 410 4.7 189.37 10
restr. block diag. HAR-WAR 17 92 6.5 198.52 7
diagonal HAR-WAR 23 3.5 4.6 187.45 4
restr. diag. HAR-WAR 17 2.5 4.7 187.54
DCC 14 42 - -
diag. BEKK 18 639 - - 12
K via gamma dist. ‘ 7.09 ‘ s.e. (0.8) ‘

Table 8: Estimate of the degrees of freedom for the different specifications of the WAR and HAR-WAR models (last
column). The first column reports the number of parameters for each specification. The CPU necessary to obtain the
estimates are reported in the second column. fval is the value of the function (23) at the minimuim.The last row reports the

value of K when it is estimated relying on the gamma distribution for the variance of the portfolio.

forecasts. Our first step is to construct a portfolio with the series of two exchange rates and two treasury
bills. We assume that the value of the portfolio is in dollars and that it therefore carries a long position for
the treasury bills and a short position in currencies. For simplicity, we assume equal (positive) weights for
the treasury bills and equal (negative) weights for the exchange rates. In particular, we assume that the
owner of the portfolio invests 0.75 of his wealth for each of the T-bills and short-sells 0.25 for each of the
currencies to buy CHF and GBP against USD, respectively. The forecasting period runs from 2 January
2003 until 8 August 2005, resulting in 653 one-step-ahead forecasts. For each day the realized variance
of the portfolio is forecast by fitting a WAR model to the series of covariance matrices and re-estimating
the model at each step. As already mentioned above, the degrees of freedom are likely not to be constant
and therefore at each step the model was estimated using a rolling window of 100 trading days, as done

in Ait-Sahalia and Mancini (2008). Table 9 presents the results of the Mincer-Zarnowitz regression:

1/2

IV = by + blEt,l[RV;lﬂ] + error, (31)

where IV; is the realized volatility of the portfolio at time ¢ and E; ;[RV;] is the forecasted realized
volatility. Standard errors are reported in parenthesis. The R? across the models varies from 0.3209
for the full WAR(1) to the 0.3655 for the diagonal HAR-WAR. The moving windows estimation of the
various WAR models delivered acceptable R?, that are, for instance, slightly higher than those reported
in Andersen et al. (2003).

It interesting to note that the full WAR(1) model has a worse performance if compared with its
restricted counterparts. This might be due to the fact that the full model is not the most appropriate as
it carries over the estimation error of the parameters into the forecasts, which means that it is not as good
as a more parsimonious model. It should also be noted that, in terms of R?, the difference between the
diagonal model and the restricted diagonal model is not relevant. Neither is the difference between the

block diagonal and the restricted block diagonal. The diagonal model has the highest R2. This suggests
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Figure 3: Estimated degrees of freedom for the sample split into non-overlapping periods of 30 trading days.

that this simple parametrization is sufficient to capture the dynamics of the variances and covariances.

5.3 Distribution of the portfolio’s realized volatility

As demonstrated in the Appendix, under the WAR hypothesis the realized volatility of a portfolio follows
a gamma distribution with shape parameter K /2, where K denotes the degrees of freedom of the Wishart

process and scale parameter 2w'Y(0co0)w with X(co) solution of
T(00)* = MET(c0)* M’ + E*.

as in (26), where w is the vector of portfolio weights, i.e. w = [-.25 — .25 .75 .75)". Figure 5 (left)
displays the density of the realized volatility of the portfolio under the hypothesis that it follows a gamma
distribution. The dashed red line represents the kernel density of the portfolio’s realized volatility. The
green dash-dot line is the density of a Ga(Kr/2,2w'S(c0)w) where K1 denotes the degrees of freedom
estimated via the gamma distribution. The blue line is the density of a gamma distribution but with
K estimated as in Gourieroux et al. (2007), Steps 1-4. Recall that to obtain both the estimates for K
a=(1111) was used.

In Figure 5 (right) we fitted a gamma distribution to the realized volatility of our portfolio. The blue

line represents the kernel density of the realized variance, the blue line is the gamma fitting and the black
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bo by R?

full WAR(1) 0.0226 0.8988 | 0.3209
(0.0333) | (0.0512)
block diagonal WAR(1) 0.0004 0.9349 | 0.3262

(0.0342) | (0.0526)
restr. block diag. WAR(1) 0.0046 0.9405 | 0.3224
(0.0341) | (0.0524)

diagonal WAR(1) 0.0064 | 0.9434 | 0.3299
(0.0343) | (0.0526)

restr. diag. WAR(1) 0.0059 | 0.9428 | 0.3298
(0.0342) | (0.0526)

full HAR-WAR 0.1387 | 0.7361 | 0.3103
(0.0275) | (0.0429)

block diag. HAR-WAR 0.0685 | 0.8439 | 0.3584

(0.0284) | (0.0442)
restr. block diag. HAR-WAR | 0.0647 0.8440 | 0.3623
(0.0284) | (0.0438)

diagonal HAR-WAR 0.0520 | 0.8630 | 0.3662
(0.0289) | (0.0446)
restr. diag. HAR-WAR 0.0550 | 0.8594 | 0.3655

(0.0286) | (0.0443)

Table 9: Out-of-sample one-day-ahead forecast of IV1/2. The models are estimated on a rolling window of 100 days from
2 January 2003 to 8 August 2005. Standard errors in parenthesis.
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Figure 4: Out-of-sample forecast of the realized variance for the restricted diagonal WAR(1) (red line) and the restricted
diagonal HAR-WAR model (green line). The blue line represents the ex-post observed realized volatility of the portfolio.

dash dot line represents the log-normal density. Numerous studies (Andersen et al., 2003, among others)
show that the logarithm of the realized volatility tends to follow a normal distribution. Is therefore no
surprising that a lognormal distribution clearly better fits the distribution of the realized volatility of the
portfolio when compared to a gamma distribution. On the other hand, the fit provided by the Wishart

model, i.e. a gamma distribution, from a very rough graphical analysis, provides an acceptable alternative®.

5.4 Value-at-Risk performance evaluation

Given the growing need to manage financial risk, risk prediction plays an increasing role in banking and
finance. The Value-at-Risk (VaR) concept has emerged as the most prominent measure of downside market
risk. Regardless of the criticisms levelled at it, regulatory requirements are heavily geared towards VaR. In
the light of the practical relevance of the VaR concept, the need for reliable VaR estimation and prediction
strategies arises. A key ingredient when predicting the VaR of a financial position is the ability to forecast
the conditional variance of the asset considered. To fully test the proposed model we also consider VaR

as an economic criterion to judge the forecast performances. We follow the methodology proposed in Giot

9The assumption of a gamma distribution to model the realized volatility is also at the basis of the multiplicative model
of Engle and Gallo (2006)
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Figure 5: Kernel densities of the realized volatility of the portfolio (red dashed line), density of a Ga(Kr /2, 2w'E(00)w)
where K denotes the degrees of freedom estimated via the gamma distribution (blue line) and density of a gamma distribu-
tion (green dash-dot line) with K estimated as in Gourieroux et al. (2007) [left-hand panel]. Kernel densities of the realized
volatility of the portfolio (red dashed line), gamma (blue line) and log-normal (black dash-dot) distribution fitted to the
series [right-hand panel].

and Laurent (2004), that, to our knowledge is the only paper, along with that by Andersen et al. (2003),
Clements et al. (2008) and Brownlees and Gallo (2008), to deal with VaR and realized volatility.

A series of asset returns 74, ¢t = 1,...,T, known to be conditionally heteroskedastic, is modeled as
follows:

Ty = Ut T+ € (32)

€& = Ol (33)

pe = c(n|Q-1) (34)

or = h(n|Q1), (35)

where ¢(-,Q: 1) and h(,Q; 1) are functions of Q; ; (the information set at time ¢ — 1), and depend
on an unknown vector of parameters 7; v; is an independent and identically distributed (i.i.d.) process,
independent of Q; ;, with E[x;] = 0 and E[v}] = 1. u; is the conditional mean of r; and o; is its
conditional variance. In our setting we assume, for simplicity, a constant mean for all the assets in our
portfolio. In particular, if r; represents the return of the portfolio, u: = p and for the (realized) variance
of the portfolio we have:

RV, = v'Yw, (36)

where w are the portfolio weights as previously chosen. To compute one-day-ahead forecasts for the VaR
of the daily return r; using the conditional realized volatility, we re-estimate the model in Eq. (32) with
constant conditional mean while the conditional variance is proportional to RVj; 1, the one-step-ahead
forecast of the realized volatility of the portfolio; i.e. o7 = ozRV}‘t,l(With o2 being an additional parameter
to be estimated). o2 is used to ensure that the rescaled innovations have unit variance.

We used the same forecasting period as in the previous section. For each model we computed the

one-day-ahead variance and then the one-day-ahead forecast of the VaR. A Gaussian distribution and
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a Student’s ¢ distribution were used to model the residuals z;. Table 10 presents the performances of
the different models in terms of VaR predictions. Forecasts of VaR at level p = 1%,5% and 10% were
computed. For each model and distribution for v, we reported the percentage of violations, i.e. the
percentage of times that the realized return is smaller that the forecasted VaR. A good density forecast
should satisfy two criteria. First, for a given VaR level p, the percentage of violations should be p. Second,
violations should conditionally unpredictable, i.e. a violation of nominal p; VaR today should convey no
information as to whether nominal p, percent VaR will be violated tomorrow.

To check the robustness of the different WAR models in this VaR forecast evaluation, we also report
in Table 10 the p-values of the test proposed in Berkowitz (2001) to evaluate a density forecast. This
test relies on the fact that for a given daily return ry, if the series of one-day-ahead conditional density
forecasts ft‘t,l(rt) coincides with f(r:,I; 1), it then follows under weak conditions that the sequence of

probability integral transformation of r; with respect to ]?t\t—l(')

g = / " Fa(s)ds = B(re) (37)

should be i.i.d. uniformly distributed on (0,1). This transformation was first presented in Rosenblatt
(1952).
If the series of u; is distributed as an i.i.d. U(0,1), then

2 =31 [/ fttl(s)ds} is an i.i.d. N(0,1).

Once the series has been transformed, it is straightforward to calculate the Gaussian likelihood and con-
struct the likelihood ratio (LR) statistics.

In particular, Berkowitz (2001) suggested a test that allows the user to intentionally ignore model
failures that are limited to the interior of the distribution; the proposed LR test is based on a censored
likelihood: the tail of the forecasted density is compared with the observed tail.

First, for different values of p the desired cutoff point VaR = & 1(p) is computed. Then we define the
new variable of interest as

*
zZy =

VaR if 2z > VaR
z, if 2z < VaR.

The log-likelihood function for joint estimation of x and o2 is

Lipolz) = 3 logé(ﬁ(‘z;;#)—l— S 1og(1—¢>(@>> (38)

z*<VaR z*=VaR

B 1 5 1, ., 5 VaR — u

= Z (Elog(27ra ) — %(zt — ) ) + Z log (1 -9 (T . (39)
z*<VaR z*=VaR

To construct the LR test the null hypothesis requires that u = 0, 0? = 1. Therefore the restricted
likelihood L(0,1) is compared to the unrestricted one, L(f,5%). The test statistic is then

LR = —2(L(0,1) - L(3,6%)) (40)

Under the null hypothesis, the test statistic is distributed x2(2).
Table 10 reports, for the different models considered and different assumptions for the residuals, the

percentage of violations along with the p-value of the Berkowitz's test.
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Table 10: VaR failure rate and Berkowitz (2001) test’s p-value

10% 5% 1%
full WAR(1) N 0.1072 0.0490 0.0230
(0.6608) (0.7038) (0.8174)
t 0.1041 0.0490 0.0230
(0.8137) (0.8508) (0.9446)
block diagonal WAR(1) N 0.1041 0.0521 0.0245
(0.6441) (0.6865) (0.7984)
t 0.1026 0.0505 0.0245
(0.7836) (0.8209) (0.9157)
restr. block diag. WAR(1) N  0.1057 0.0536 0.0245
(0.6677) (0.7093) (0.8184)
t 0.1041 0.0521 0.0245
(0.7991) (0.8341) (0.9220)
diagonal WAR(1) N  0.1057 0.0521 0.0245
(0.6705) (0.7121)  (0.8208)
t 0.1041 0.0505 0.0245
(0.7988) (0.8337) (0.9214)
restr. diag. WAR(1) N  0.1057 0.0521 0.0245
(0.6664) (0.7080) (0.8168)
t 0.1041 0.0505 0.0245
(0.7980)  (0.8329)  (0.9208)
full HAR-WAR N 0.1103 0.0658 0.0291
(0.0697) (0.0800) (0.1112)
t 0.1087 0.0658 0.0260
(0.1393)  (0.1574) (0.2104)
block diag. HAR-WAR N 0.1133 0.0536 0.0260
(0.2612) (0.2898) (0.3711)
t 0.1133 0.0536 0.0245
(0.3929) (0.4292) (0.5297)
restr. block diag. HAR-WAR N  0.1149 0.0551 0.0245
(0.3722)  (0.4076) (0.5057)
t 0.1149 0.0551 0.0245
(0.4991)  (0.5392) (0.6474)
diagonal HAR-WAR N 0.1118 0.0475 0.0245
(0.4440) (0.4831) (0.5900)
t 0.1103 0.0475 0.0245
(0.5716) (0.6141) (0.7281)
restr. diag. HAR-WAR N 0.1133 0.0475 0.0245
(0.3707)  (0.4065) (0.5063)
t 0.1133 0.0475 0.0245
(0.5333) (0.5751) (0.6881)
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The relative number of violations is close to the theoretical one and assuming a ¢ distribution for the
residuals does not really improve the forecasting performances. For all the proposed specifications of the
WAR model, the Berkowitz test does not reject the null hypothesis of appropriateness of the forecasted
densities. Therefore all the models provide acceptable VaR forecasts. For the 1% VaR level, the results are
somewhat surprising. The percentage of VaR violations is, for all the specifications, around 2.4% in front
of a theoretical value of 1%. However, the p-values of the Berkowitz test are all higher than the rejection
threshold of, say, 5%. This might be explained by the fact that the test proposed by Berkowitz is not a
pointwise evaluation of the VaR violations, but rather analyzes the entire forecasted densities, or, in our
case, the left tail of the distribution.

Besides the good forecasting performances of the proposed models, we want to stress the fact that
there is no notable difference in the forecasting ability of the different specifications. Therefore, a very
parsimonious (and thus quick to estimate) model like the restricted diagonal WAR is sufficient to model

the riskiness of our portfolio.

6 Conclusions and direction for future research

In this paper we proposed a particular set of restricted specification of the WAR model for realized
(co)variances. Our specifications rely on the ability to group assets according to some criterion, for example
the economic sector, a common feature in the variance-covariance dynamics, and so on. This allowed us to
drastically reduce the number of parameters. A comparison between the different specifications highlighted
that there is no loss when a more parsimonious model is chosen. This is essentially due to the fact that
the restricted model was justified by the data.

However, some aspects of the WAR process need to be clarified. In particular, the degrees of freedom
seem to vary through time and it is not clear by which variables they are driven.

A straightforward extension of the present work involves applying the WAR model to solve concrete
financial problems like dynamic portfolio choice, for instance.

This and other applications of the WAR model are left for future research.
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A Appendix

A.1 Relation between Wishart and gamma distribution

This proof follows the one in the Technical Appendix in Meucci (2005).

If Y is a Wishart distribution, then for any comfortable matrix A we have

AYA! = AX XA+ -+ AXXKA' (41)
= ZhZy+ -+ ZxZg (42)
~ W(K,AXA') (43)
since
X¢ ~ N(0, X) (44)
and
Zi = AX; ~N(0,AXA"). (45)

By taking a row vector, i.e. A = a’, each term in the sum is normally distributed as follows:

Zy = a'Xy ~ N(0,a'Xa). (46)

Now, for any random variable
yi ~ N(0,0%) (47)

the gamma distribution with K degrees of freedom is defined as the distribution of the following variable:

=1y + - +yk ~ Ga(K/2,20%). (48)
and has p.d.f. of the form!®
1 2
K/2.9 2y — K/2—1 _z/20 ] 49
f($| / )40 ) (20_2)K/21—\(K/2)$ e ( )
Therefore from (48)
a'Ya ~ Ga(K/2,2(a'Xa)). (50)

Note that in Meucci (2005) we have a’Ya ~ Ga(K, (a'3a)), because a different parametrization of the

gamma distribution is used.

A.2 Estimation of the degrees of freedom for a general WAR(p) process

We present here a way to derive the estimator of the degrees of freedom K in a general WAR(p) process.
Differently from Chiriac (2007), we do not rely on the interpretation of a WAR process in terms of a
Gaussian VAR process; in fact, for a WAR(p) process with p > 1 this interpretation is no longer valid
(see Gourieroux et al., 2007). Instead, we use the fact that any portfolio of Wishart-distributed matrices

follows a gamma distribution, as shown in the previous section.

10Recall that if z ~ Ga(a,b), then f(z|a,b) = b“l'%(u.) 2@ len/b
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Let Y; € R™ x R™® be a WAR(p) process:

p
E[Yi|ly 1] =Y M;Y: ;M}+ KX. (51)
j=1
where [;_; is the information set available up to time ¢ — 1.
Under stationary conditions, the unconditional mean of the process, F [Y;], is obtained using the law
of iterated expected values:

p
BIYi| = BBVl 1] = 3 M;B[Yi,] M, + K% (52)
j=1
As the unconditional distribution of any WAR(p) process is a centered Wishart distribution, applying

the definition of centered Wishart distribution, we can write:

K
Y; = Z 2kt 2 1) (53)
k=1
where 2 e N(0, Z(00)).
From (53) we have that
K
E[Y; = Z E [zr12), 4
k=1
= KV [Zk,t]
= K%(o0). (54)

Combining this result with (53) and defining $*(c0) = K3(00) and ©* = K3 we get
P
5*(00) = > M;%*(00) M) + B* (55)
j=1
From (48) we know that, for any given vector w € R™

w'Yiw ~ Ga(K/2,2w'%(c0)w). (56)

Knowing the variance of a gamma-distributed random variable, we have

K
V [w'Yiw] = E(2w’2(oo)w)2. (57)
Y (c0) is not observable, but given the estimated matrices Mj, j =1,...,p and %* we can recover

31*(c0) that satisfies (55). Thus:

V[wYiw] = <2w' f]*}({oo) w) (58)

. 2
(w'E*(oo)w) . (59)
Therefore the estimated degrees of freedom are

2(w'5* (00)w)?

K = V [w'Yiw] (60)
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