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Abstract

We combine real estate data with various types of crime data using time and geospa-

tial information to detect discontinuities in transaction densities and pricing around

crime events in Rochester, NY. Discontinuities in transaction densities invalidate causal

inference for price responses implied by the regression discontinuity design (RDD) ap-

proach. However, these discontinuities also capture the liquidity response to crimes

and, together with the commonly emphasized price response, provide a richer picture

of how crime affects housing valuation. A calibrated match-and-bargain model reveals

that house valuations decrease between 6% and 25% after a crime, depending on the

type of crime. These predictions are manifolds of the estimated effect on prices docu-

mented in this paper and in the literature. The welfare effects of crime are not uniform

across market participants and can elicit considerable disappointment to uninformed

buyers that move into a high-crime neighborhood.

Keywords: crime, real estate, liquidity effects, density discontinuity

JEL codes: C31, R21, R23, R30
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1 Introduction

Residential property is an important indicator of economic conditions. We estimate the

impact various types of crime have on real estate and quantify the concomitant welfare

implications. Three stylized facts motivate our study. First, an individual’s risk of being

subject to crime depends on residential location. According to the National Crime Victim-

ization Survey (2008) conducted by the Bureau Of Justice Statistics, 64% of property crimes

and 34% of violent crimes between 2004 and 2008 in the U.S. occurred near or inside the

victim’s home. This leads to the following causal link: An increase in perceived risk of be-

coming a victim of a crime in the neighborhood prompts residents to reduce their reservation

price to sell their house and move to a safer place. Second, residential property is often a

prominent asset in a household’s financial portfolio (Bertaut and Starr, 2000; Wolff, 2016).

Primary residence represents more than 60% of total wealth for a typical U.S. household in

the middle of the wealth distribution. Since crime can affect housing valuations and, as a

consequence, household savings, home sale prices become a first-order source of information

to determine the cost of crime. Third, the real estate market is notoriously illiquid. We

define liquidity as the “expected time to sell an asset”, as in Lippman and McCall (1986).

The typical home was between 65 and 93 days on the market in 2018 according to Zillow,

an online real estate and rental marketplace. This gives rise to an identification issue, as

the timing of a house sale is endogenous. Estimates of pricing changes might not accurately

reflect the true cost to residential welfare.

We contribute to the literature along various dimensions. First, crime and real estate

have an endogenous relationship (Ihlanfeldt and Mayock, 2010a,b). Specifically, does crime

devalue housing, or does cheap housing attract individuals more prone to crime? This adds

another identification issue that calls for a careful analysis regarding the direction of causality.

To this end, we consider the housing market shortly before a crime is reported as a control

and as treated thereafter. This procedure is largely inspired by a regression discontinuity

design (RDD) when time becomes the running or sorting variable (Hahn, Todd and Van der

3
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Klaauw, 2001; Lee, 2008; Hausman and Rapson, 2018). Most recent studies on crime evaluate

panel data with yearly frequencies (Bowes and Ihlanfeldt, 2001; Gibbons, 2004; Ihlanfeldt

and Mayock, 2010b; Tita, Petras and Greenbaum, 2006). While their estimates mix short-

run and long-run effects of crime levels, we identify the immediate effect of individual crimes

and find that the effects vanish within a few months and a few hundred meters from the

crime location.

Second, while RDD motivates our econometric approach, we explain why this setup does

not warrant causal inference. In particular, our pricing and density estimations aim to

detect a discontinuity around crime events. However, since the density in general displays a

discontinuity, the estimated pricing coefficients do not warrant a causal interpretation.

Third, by quantifying the effect of crime on market liquidity, we add an important twist to

the crime-housing relationship, which has been neglected in the literature. For this purpose,

we estimate density functions and interpret jumps in the frequency of house sales as a boost

or reduction in liquidity. Hence, our statistical approach can be characterized as detecting

local discontinuities in outcomes (McCrary, 2008; Otsu, Xu and Matsushita, 2013).

Fourth, rather than using citywide housing and crime indices, as is often used in related

work, we employ geospatial data that account for the granularity of housing markets. Our

smallest estimation windows contain only transactions that are no further away than 300

meters from the location of a crime, and no more than 30 days before or after the crime

had been committed. This avoids mixing the targeted effects with the long-run effects of

individual crimes on future crime and of a house sale on the real estate market, as well as any

further interaction effects between crime and real estate. Some previous studies also employ

geospatial data, but their application of panel data methods requires spatial and temporal

aggregation. As far as we know, only Gibbons (2004) and Ihlanfeldt and Mayock (2010b)

used a dataset with similar spatial granularity.

Fifth, we account for delayed market responses due to strategic considerations in the

real-estate market. In particular, transaction-relevant information is transmitted only slowly,
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coordination frictions give rise to delays, and the bargaining process takes time. According

to Zillow, a closing period of a house sale lasts between 30 and 45 days. This adds an

important dimension to the role time plays in this market.

Sixth, we propose a structural model that replicates our estimates and, unlike direct

estimates, yields meaningful and interpretable conclusions of how crime impinges on resi-

dential welfare. In the Appendix, we provide an analysis of two counterfactual policies, one

involving crime fighting and the other crime prevention.

Seventh, we shed light on which type of crime matters most. Previous research has

either used a single crime variable or, when more than one crime variable was used, yields

mixed results (Ihlanfeldt and Mayock, 2010a). We examine four types of crime – shootings,

assaults, burglaries, and robberies – with data from the city of Rochester, New York, and

for the period from 2009 to 2017.

Four novel results emerge from our statistical analysis, and two economic insights follow

from our model calibration. The four statistical facts can be summarized as follows. (i)

Crime is a determining factor for both prices and liquidity. In general, the relative liquidity

response is a manifold of the price response. This first stylized fact provides three take-aways.

First, price responses do not capture the full effect of crime. Second, two-dimensional re-

sponses need to be collapsed into a single response to assess the welfare implications for local

residents. We address this with a structural model calibration. Third, a causal interpretation

for price responses obtained from an RDD is unlikely to hold. (ii) The sign of the liquidity

effect depends on the type of crime. While liquidity increases immediately after a shooting,

hinting at fire sales from sellers wanting to leave the affected area, the other three types of

crime depress market liquidity on impact. This suggests immediate market freezes with oc-

cupants sitting out a temporary crime spell. (iii) Violent crimes eventually lead to a delayed

market freeze. The liquidity boosting effect of shootings is replaced by an opposite response

after 30 days, while the existing market freeze exacerbates after an assault. (iv) Liquidity

effects die out when we expand the estimation windows. This is an important extension
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relative to papers that estimate the effect of crime using annual frequencies and larger spa-

tial spheres of influence. While these papers provide aggregate effects by compounding the

initial direct effect from an individual crime with long-run effects, our estimates pin down

the short-run effects that are attributable to individual crimes.

The two economic insights from the model calibration are as follows: (1) Information

asymmetries and learning can explain the differences in market response between shootings

and the other three crimes. The alternative explanation of time-consuming bargaining,

where a house owner accepts a purchasing offer received before a crime occurred, does not

accommodate the immediacy with which liquidity slumps in its wake. (2) The welfare losses

arising from price and liquidity effects are considerable. Shootings reduce aggregate welfare

by approximately 25% of housing values. Assaults and robberies decrease welfare by 14%

and burglaries by 6%. This is equivalent to a reduction in the price for an average house

of USD 19,400 after shootings, USD 12,000 after assaults, USD 5,500 after robberies, and

USD 13,300 after burglaries. In comparison, the price response to crimes per square meter

in the direct estimation is much lower. For example, for shootings, the price response is

only 0.44%. This sizable difference between estimates and calibration is attributable to the

neglect of liquidity effects. From the calibration, we conservatively infer an annual national

welfare loss of USD 2,324 billion from burglaries, USD 1,775 billion from robberies, USD

1,599 billion from assaults, and USD 419 billion from shootings.

The remainder of the paper is organized as follows. Section 2 nests our approach in

the existing literature. Section 3 describes the data, followed by the estimation in section

4. Section 5 presents the concomitant welfare implications. Section 6 concludes the paper.

Additional results can be found in the Appendix.
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2 Related Literature

The protection of personal well-being and private property is essential to a well-functioning

society. Accordingly, crime features high on the list of social ills (Helsley and Strange,

1999). One negative effect of crime repeatedly shown in empirical studies is on house prices

or values. A question still open for debate is what determines crime in the first place.

Levitt (2004) surveys the validity of a wide variety of crime determinants. Dills, Miron and

Summers (2008) argue that economists know little about the effectiveness of factors such as

arrest rates and punishment. Reverse causality, where policy responds to crime, creates an

endogeneity bias when crime variables are regressed on policy variables. This type of bias

was largely ignored in early studies.1

Critical for our identification strategy is whether cheap housing attracts residents more

prone to commit crimes. One possible reverse causality in our setup is that poverty and

inequality increase crime rates. This claim is supported by strain theory (Merton, 1938),

social disorganization theory (Shaw and McKay, 1942), and the economic theory of crime

(Becker, 1968).2 All three theories can tie cheap housing to crime, for which there is cor-

roborating empirical evidence, for example, by Land, McCall and Cohen (1990) and Kelly

(2000) based on aggregate measures of inequality and poverty. Freeman (1996), Grogger

(1998), and Machin and Meghir (2004) associate a decline in wages in the low-wage labor

market with an increase in crime, whereas the evidence on the relationship between unem-

ployment and crime is mixed (Chiricos, 1987; Eide, Aasness and Skjerpen, 1994; Freeman,

1983, 1995).3

1For example, Ehrlich (1972) and Wilson and Boland (1978) focused on the cross-sectional association
between police and crime.

2The strain theory argues that the relative success of others puts pressure on the less successful members
of society. The social disorganization theory predicts a rise in crime whenever mechanisms of social control
weaken. Poverty weakens the ability of a society to self-regulate because of social instability and residential
mobility. According to the economic theory of crime successful members of society have goods that are worth
stealing whereas unsuccessful ones face lower opportunity cost to become criminals.

3Looking at educational outcomes, Aizer (2008) found that the causal effect of crimes can be overstated
because children who are more likely to be exposed to crimes also face other disadvantages, such as the lack
of good educational opportunities.
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A counterargument for cheap housing causing crime is that theft in poor neighborhoods is

less rewarding. Adam Smith (1776, p. 670) already observed that crime and the demand for

protection from it are both motivated by the accumulation of property. Some authors found

that crime correlates positively with property values, for example, Case and Mayer (1996)

in the Boston area and Lynch and Rasmussen (2001) in Jacksonville, Florida. However,

this does not rid an empirical analysis of the endogeneity issue. Instead, reverse causality

becomes nonmonotone in property values, making instrumenting difficult.

Studies about crime face potential omitted variable problems in both the cross section and

time series dimensions (Aliyu et al., 2016). In the first dimension, crime rates may covary

with other geographic amenities that researchers cannot adequately control for. Second,

crime rates may change as the composition and characteristics of neighborhoods change.

Reductions in crime levels may be associated with other changes that increase property

values (Linden and Rockoff, 2008; Gibbons, 2004). Hence, various endogeneity issues have

to be dealt with, which have led to a predominance of papers using panel data techniques

such as first-differencing or quasi-experimental techniques such as instrumental variables

and differences-in-differences. While the endogeneity of crime is widely recognized, from

19 studies reviewed by Ihlanfeldt and Mayock (2010a; 2010b), only six treated crime as an

endogenous variable, and only one fully validated the choice of instrumental variables.4

A direct quantitative comparison of our analysis with studies using panel data and various

instruments is difficult because all panel data studies are subject to some form of aggregation,

usually regressing average property values on average crime rates. Some studies pool different

types of crime (Bowes and Ihlanfeldt, 2001).

A further critical issue is that crime is undercounted, resulting in a “dark figure” (Mac-

Donald, 2001) that can affect panel data approaches. Lower-income, younger, and male

victims are in fact more likely to underreport than homeowners (Skogan, 1986). Further-
4Ihlanfeldt and Mayock (2010a; 2010b) mention at least five mechanisms making crime endogenous in a

housing price model. Three would result in a positive crime-housing price relationship, the other two in a
negative relationship.
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more, violent crimes are more likely to be reported than property crimes (National Crime

Victimization Survey, 2008). This implies that a variation in reported crimes over time can

reflect changes in reporting frequency rather than changes in crime rates.5

These caveats notwithstanding, panel-data approaches have examined various issues.

While Bowes and Ihlanfeldt (2001) looked at the nexus of residential property as well as

access to public transport and crime and found a decrease in housing prices in high-crime

areas, Gibbons (2004) reported that vandalism, graffiti and arson (but not burglaries) had a

significant negative impact on house prices in London. Ihlanfeldt and Mayock (2010b) em-

ployed a distributed-lag panel data model for various crimes – murder, robbery, aggravated

assault, burglary, auto theft, larceny, and vandalism – and concluded that only an increase in

the density of aggravated assaults and robberies lowered housing values in the neighborhood.

How does our evidence compare with that reported in Ihlanfeldt and Mayock (2010a,b)?

A direct comparison is not possible because we do not examine robberies and aggravated

assaults based on a distributed-lag panel data model. However, these authors’ findings

that burglaries do not affect property values contrasts with our results. This discrepancy

is surprising. A single crime event can trigger a downward spiral in the socioeconomic

composition of communities, referred to as “urban flight” in the literature. As a consequence,

crime-averse neighbors leave the area and are replaced by new residents who, arguably, could

be more prone to criminal behavior. The latter is usually referred to as “contagion” which

is derived from social interaction models where individual behavior depends not only on

individual incentives but also on the behavior of peers and neighbors. Urban flight finds large

empirical support.6 While the empirical evidence also supports the contagion hypothesis,7

contagious effects seem to have a limited scope (Ludwig and Kling, 2007). Taken together,

the cumulative effects from urban flight and contagion as measured in a distributed lag
5Buonanno, Montolio and Raya-Vílchez attempt to bypass the underreporting problems by relying on

victimization surveys to estimate the effect of crime perception on housing prices in the City of Barcelona
from 2004 to 2006.

6See Liska and Bellair (1995); Morenoff and Sampson (1997); Dugan (1999); Cullen and Levitt (1999);
Ellen and O’Regan (2009).

7See Case and Katz (1991); Ludwig, Duncan and Hirschfield (2001); Zenou (2003).
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model, as in Ihlanfeldt and Mayock (2010a,b), are likely to bias the estimates even more

downward than in our case.

Another study related to ours is George E. Tita, Tricia L. Petras and Robert T. Green-

baum (2006), who link 43,000 house sales from Columbus, Ohio, to crimes at the census

tract level for 189 tracts between 1995 and 1998. To mitigate the effect of reverse causal-

ity, the authors use instruments and classify neighborhoods as “low,” “medium,” and “high”

income. Violent crimes are shown to have a stronger impact on housing prices than prop-

erty crimes. However, Ihlanfeldt and Mayock (2010a,b) point out that the ad hoc nature of

instrumentation makes it difficult to interpret their results.

Two further studies that have some bearing with us examine whether living close to a

convicted sex offender reduces house prices. Both find that having a registered sex offender

moving into a house close-by reduces house prices by 2% (Pope, 2008) and 3% to 4% (Linden

and Rockoff, 2008). In both studies, these effects are localized and quickly decline with the

locational distance to the offender.

3 Data

Our analysis uses data from the city of Rochester, New York, from 2009 to 2017. This

choice is simply motivated by the availability of their data. Rochester has approximately

206,000 inhabitants and is the seat of Monroe County that counts approximately 742,000

inhabitants (U.S. Census Bureau). The county-wide median household income was USD

60,240 in 2018, below the national level of USD 63,179. Not only income but also house

prices are (considerably) lower than those across the country. The local median house price

is USD 135,000, which compares with the national median of USD 227,000. At the same

time, Monroe County exhibits a relatively low crime rate, ranking 9th among the 143 counties

in New York State for which the FBI (2014) reports violent crime rates for 2014 and 5th for

property crimes. While the crime rates of Monroe County are among the lowest in the state,

10
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the city of Rochester reports a higher rate of burglaries (for every 100,000 inhabitants) than

any countywide rate in New York State.

We collected data from two different sources and connected the observations using geo-

spatial and time information. The first dataset was provided by the Department of Taxation

and Finance of New York State and sums up to 1,491,244 individual property transactions

in New York State between May 6, 2008 and May 15, 2018.8 The dataset includes the

transaction date, the total sales price, and the size of each property. We omitted transactions

with a total sale price below USD 50,000 and above USD 3,000,000 as well as properties

smaller than 100 square meters or larger than 10,000 square meters. The dataset further

classifies each house and transaction into categories. We selected sales involving “one family

year-round residences”, which are done “at arm’s length”. The latter excludes foreclosures

and transactions between relatives. We used the services of OpenCage to convert the house

address into longitude and latitude information.

The second source is the Rochester Police Department’s Open Data Portal, which includes

two different datasets. The first lists 3,655 shootings between January 15, 2000 and October

23, 2018 for the city of Rochester, NY. The shooting dataset defines when and where a

crime was committed. The second dataset lists 89,897 crimes between January 1, 2011,

and December 31, 2017. These data have observations for the other three types of crime

considered in this paper, that is, burglaries, robberies and aggravated assault.

We analyzed the various types of crime separately. Let C denote the total number of

crimes of a certain type and individual crimes indexed by c. A date realization is indicated

by Tc and the geospatial information by Lc = [Lc1 Lc2] where Lc1 (Lc2) represents the lati-

tude (longitude) measurement. H denotes the number of house sales indexed by h. Time

and geospatial data of sales are denoted similar to crimes. In addition, the property size

is indicated by Sh and is measured in (the logarithm of) square meters. Ph mirrors the

(logarithm of the) total sales price, while P h is the (logarithm of the) price per square meter
8Excluding transaction data from the five boroughs that make up New York City: Bronx, Kings, New

York, Queens, and Richmond.
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(PPSM), which is the sales price normalized by the property size, or P h = Ph − Sh. We

transformed the geospatial information into distance by linking crimes and sales pairwise

into C × H = I crime-sales observations indexed by i. In particular, we characterize the

time between crime c and sale h by Ti = Th − Tc so that Ti > 0 if sale i occurred after

a crime. Furthermore, our measure for distance (in km) between crimes and house sales,

Di =
√
(Lc1 − Lh1)

2 + (Lc2 − Lh2)
2, has a direct interpretation in terms of locational dis-

tance. Finally, Xi = {Ti, Di, Si, Pi} stands for realization i with distribution Fi (X) with the

probability density function fi (X).

Figure 1 shows the spatial distribution of crime events in Rochester, NY, against locations

of house sales in the vicinity of the crimes. All crimes are registered inside the city limits.

Arguably, the effect of crime is not contained by city limits. For this reason, we also included

house transactions in neighboring townships. The blue dots display house transactions that

are either in the city limits or within 600 meters of a crime. Family year-round residences

form a donut-like shape around the city center with a small bite on the southwest side where

the Rochester international airport is marked by a dark gray area as a point of reference.

Crimes concentrate on the city center where fewer single-family residences are found and are

shown in red. The relevant dataset eventually contains 19,148 house transactions, 15,035

burglaries, 5,201 robberies, 6,447 assaults, and 1,744 shootings.

12
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Figure 1: Geospatial distribution of crime and house transaction events in Rochester city.
Red crosses represent individual crime events against the distribution of house transactions
represented by blue dots. The horizontal axis displays longitude information, and the ver-
tical axis displays latitude information. The dark gray area in the southwest highlights the
location of the airport as a point of reference. The lines mark the city limits.

4 Estimation

This section describes our estimation. A preliminary analysis of the data is provided in

subsections 4.1 and 4.2. Econometric issues are discussed in subsection 4.3, and the statistical

specifications are in subsection 4.4. In subsection 4.5 we explain why causal inference ï¿œ

la RDD is inappropriate for our setup although it motivates much of the statistical toolbox

we apply. The results for liquidity and price responses to the various types of crimes are
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summarized in subsections 4.6 and 4.7, respectively.

4.1 Preliminary analysis

In this subsection, we discuss the pattern of key variables around crimes and summarize

them in Table 1. The main insights are as follows: First, the number of house transactions

increases after shootings and decreases after burglaries and robberies. Second, there is some

evidence that assaults temporarily delay transactions. Both observations are evidence of

fire sales and market freezes and are in line with our estimation results provided in Table

2. Third, price changes attributable to crime are negligible or insignificant. We put this

down to the large heteroscedasticity among houses. Fourth, we distinguish between house

sales that are finalized before and those after a crime. The former observations belong to

the control group and the latter to the treatment group. We find some significant changes in

covariates around crime events but in general small absolute differences between the control

and the treated observations.

We discard observations outside an estimation window to focus on the immediate effect.

This avoids mixing in long-run effects that might arise because of policy responses or a

change in a neighborhood’s composition. In particular, let vT denote the maximum number

of days between a crime and a house transaction and vD the maximum locational distance.

Hence, the bandwidth ν = {νT , νD} defines an estimation window. There is no information

regarding the timing of each event during the day. Hence, we dismissed house transactions

that were conducted on the same day a crime was perpetrated.

Table 1 compares the control and the treatment groups for a large (ν = {60 days, 0.6 km})

and a small

(ν = {30 days, 0.3 km}) estimation window. The inequality signs highlight whenever the

mean outcomes of the control and the treatment groups are significantly different from each

other. We allowed the variance in the control and the treatment groups to be different in the

two-sample t test. Because the number of days is negative in the control group and positive
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in the treatment group, the test compares the distributions for absolute realizations. Note

that all observations are equally weighted in Table 1, while most estimations downweight

house transactions further away from crimes using a triangular kernel. See our discussion in

subsection 4.4.

Estimation window Large Small
Group Pool Control Treatment Pool Control Treatment

S
h
oo

ti
n
gs

Number of obs 3,463 1,738 1,725 429 186 <∗∗∗ 243
Mean of Ti -0.05 -30.58 30.71 2.00 -15.84 15.66
Mean of Pi 11.25 11.25 11.25 11.25 11.25 11.25
Mean of P i 5.04 5.05 5.04 5.06 5.03 5.08
Mean of Di 0.41 0.42 >∗∗∗ 0.40 0.20 0.20 0.20
Mean of Si 6.21 6.20 6.21 6.19 6.22 6.17

A
ss

au
lt

s

Number of obs 18,632 9,317 9,315 2,304 1,152 1,152
Mean of Ti 0.29 -29.61 <∗∗

abs 30.19 0.43 -14.74 <∗∗
abs 15.60

Mean of Pi 11.39 11.39 11.39 11.36 11.36 11.36
Mean of P i 5.19 5.19 5.20 5.18 5.19 5.18
Mean of Di 0.41 0.41 0.41 0.20 0.20 0.20
Mean of Si 6.19 6.19 6.19 6.18 6.17 6.18

B
u
rg

la
ri

es

Number of obs 62,128 31,828 >∗∗∗ 30,300 8,223 4,280 >∗∗∗ 3,943
Mean of Ti -0.72 -30.20 30.26 -0.54 -15.21 15.37
Mean of Pi 11.43 11.44 >∗ 11.43 11.42 11.42 11.43
Mean of P i 5.23 5.23 5.23 5.23 5.23 5.23
Mean of Di 0.39 0.39 <∗ 0.40 0.20 0.20 0.20
Mean of Si 6.21 6.21 6.20 6.20 6.19 6.20

R
ob

b
er

ie
s

Number of obs 20,459 10,376 >∗∗∗ 10,083 2,659 1,382 >∗∗ 1,277
Mean of Ti -0.35 -30.16 30.33 -0.46 -15.45 15.77
Mean of Pi 11.46 11.47 11.46 11.44 11.46 >∗ 11.43
Mean of P i 5.26 5.26 5.27 5.25 5.25 5.25
Mean of Di 0.40 0.40 0.40 0.20 0.20 0.20
Mean of Si 6.20 6.21 >∗∗ 6.19 6.20 6.21 >∗ 6.18

Table 1: Summary statistics for key variables around crime events. Ti refers to the time
difference between a house sale and a crime, Pi is the (log of the) total sales price, P i is
the (log of the) price per square meter, Di is the locational distance between a house sale
and a crime, and Si is the (log of the) property size. Note that ν = {30 days, 0.3 km}
and ν = {60 days, 0.6 km} define the data window. The inequalities indicate that the null
hypothesis of a two-sample t test, applied to the absolute realizations, can be rejected with
a type I error of 10% (*), 5% (**), or 1% (***).

We start by characterizing the mean outcomes for shootings. The first two lines (in each

block) highlight the number of house transactions and the number of days between a crime
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and a house transaction. Arguably, these variables capture the liquidity effect of crime.

The number of sales increases substantially and significantly after shootings for the small

estimation window. The mean (absolute) number of days between shootings and sales does

not vary substantially between the control and the treatment groups. However, the average

for the pooled small window is 2, which appears tilted to the right. Arguably, crime-averse

owners want to leave the area and fire-sales boost house sales, that is, liquidity.

The next two lines show pricing outcomes. We expected that a crime would lead to a

decrease in the total sales price and the price per square meter (PPSM) as the crime event

depresses the expectations of residents and potential buyers regarding the quality of life in

the neighborhood. However, pricing outcomes are statistically indistinguishable between the

control and treatment groups for shootings. Arguably, the idiosyncrasy of house properties is

large, making a direct comparison between the control and the treatment groups inadequate.

The last two lines show the locational distance between crimes and the houses involved

in a transaction as well as property sizes. For shootings, there is a notable decrease in the

physical distance for the large estimation window. Postcrime house purchases are eventu-

ally 20 meters closer to the location of crime. The house transactions are pooled over all

crimes so that neighborhoods from different parts of Rochester are pooled. The sparsity of

houses across neighborhoods can vary so that we are unsure about the interpretation of this

measurement.

There is little to no change in the number of sales observations after an assault. Rather,

the (absolute) number of days between such an event and a transaction increases significantly.

Arguably, the real estate market freezes for a couple of days, while purchases are simply

delayed and not called off completely. The remaining outcomes for prices, locational distance,

and property sizes reveal no substantial change between the control and the treatment groups.

Burglaries, in contrast to shootings, are followed by a significant reduction in the number

of transactions, depressing liquidity. Owners seem to sit out a temporary increase in crime

awareness that might depress housing prices, for which we found some (mild) evidence,
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although only for total sales prices in the large estimation window and at the 10% significance

level. House transactions occur approximately 10 meters further away after a burglary occurs.

Again, the change is only significant for the large estimation window and at the 10% level.

Robberies are also followed by a significant reduction in the number of sales. There is

again (mild) evidence that total sales prices are lowered in the small estimation window.

There is also some evidence that transacted houses are generally smaller. The property size

changes range from 2% to 3% for the large and the small estimation windows, respectively.

A possible interpretation is that there are fewer sales of larger houses after a robbery.

4.2 Graphical Analysis

To convey a better impression of how crime affects house sales, we display the detrended and

recentered transaction data in Figure 2.9 To simplify the discussion, we next introduce our

baseline estimation model. We estimate discontinuities using a linear model with a threshold

interaction, denoted mT (X, δ), whose conditional expectation function reads

mT (X, δ) = δ + δTT + (∆ +∆TT ) I (T > 0) (1)

where δ collects the coefficients {δ, δT ,∆,∆T}. δ and δT capture the level and trend over

time if no crime had been committed. The second part, (∆ +∆TT ) I (T > 0), captures the

change after crime. Our parameter of interest is ∆ and represents the immediate jump in the

endogenous variable at the point of time the crime was committed. The second postcrime

parameter ∆T describes how a variable trends after a crime. However, its main purpose is

to mitigate the impact of observations that come in late in the estimation window and be

subject to indirect long-run effects of crime. Hence, we consider {δ, δT ,∆T} to be nuisance

parameters.10

The data manipulation leading to Figure 2 can be summarized as follows. We dropped
9Compare Imbens and Lemieux (2008); Lee and Lemieux (2010).

10They are not reported but are available upon request.
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observations outside the closer vicinity of crimes (ν = {30 days, 0.3 km}), similar to the

preferred estimation below, assigned house sales to 20 bins of equal size along the time

dimension, and created bin-wide averages. For densities, we divided the number of obser-

vations in a bin by the total number of observations and took the logarithm. Similarly,

distances were first transformed by the logarithm, and then all averages were rotated around

the time trend line and recentered around zero. The black dots represent the detrended and

recentered bin averages, while the horizontal black line displays the trend before a crime.

Hence, a re-estimation of Equation (1) would yield δ = δT = 0. The vertical black lines at

T = 0 display the discontinuity jump ∆ around the time of crime. We colored the jump

green if it was positive and in red if negative and significantly different from zero at the 10%

significance level for a one-sided t test. The yellow lines show the trend after a crime and

are derived from a linear estimation that appears to be nonlinear because of the rescaling of

the vertical axis. Unlike in the full estimation below, the distance to the location of crime is

not considered in these calculations.
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Figure 2: (Dis)continuities in house sales around crime with time plotted on the horizontal
axis. The four rows correspond to different types of crime. Each column corresponds to
a different outcome variable denoted in the column header. The 20 black dots display
detrended and recentered equiwide bin averages, where 10 lead up (follow) the corresponding
offense. The horizontal black line exhibits the trend in the absence of a crime. The vertical
black lines at T = 0 display the discontinuity jump ∆ around the time a crime occurs.
Green implies a significant positive jump, and red implies a negative jump around the time
of crime. The yellow lines to the right of T = 0 are the postcrime trends based on the linear
specification in Equation (1). The vertical axis is rescaled so that the postcrime trend does
not reflect its linear nature visually. The bandwidth (ν = {30 days, 0.3 km}) corresponds to
the small estimation window used in Tables 2 and 3.

We emphasize three issues. First, the directions of the discontinuity jumps in the densities

are in line with the full estimates shown in Table 2. Nonetheless, none of the jumps are

significant although binning biases the noise estimates downward. Second, and in line with

our discussion above, we detect jumps in the pricing process across the board. However,

only robberies seem to significantly depress total sales prices. The other six jumps are not

19



20

significant and, in fact, point equally often to a price decrease as well as an increase. Third,

the two covariates – the distance between the crime to the location of the house and a

property’s size – do not show significant systematic variation between the control and the

treatment groups except for burglaries. Immediately after a burglary, houses are purchased

further away than in the control window, which is in line with our initial analysis for the

large estimation window.

4.3 Econometric Issues

We want to understand how crimes affect local residents by eliciting their responses in the

real estate market. Market prices reveal housing valuations in general. However, there are

several caveats in a direct estimation strategy that we address next.

First and foremost, illiquid markets suggest a strategic component to market valuations

whereby sellers reject an offer for a better one in the future. Hence, price changes incorporate

immediate changes to residential utility as well as changes to (future) resale option valuations.

This calls for an analysis of possible delays in market reactions to crimes. We consider a

delay ξ ≥ 0 in our estimations, exclude observation i if 0 < Ti < ξ and, accordingly, extend

the estimation window.11

Second, as mentioned, a fundamental issue is the direction of causality. As cheap real es-

tate may attract individuals prone to crime, crime rates and real estate prices may correlate

across neighborhoods in the long run. Since we compare the real estate market before and

after a crime, serial dependence in the market or in the underlying crime process can intro-

duce a long-run bias if the estimation window is too large.12 We address serial dependence
11Compare the right panel of Figure 4 in the online Appendix for an example of a delayed response in the

density function.
12For example, assume the instantaneous price effect is negative (∆ < 0) and prices depreciate at rate α

upon an observed price drop independent of its cause. A large estimation window compounds the initial
crime effect with the subsequent self-exciting effect of a price drop. A similar line of thought applies to a
self-exciting effect in crimes. Assume crime is followed by more crime while the instantaneous price effect is
still ∆ < 0. The estimated ∆ is magnified (in absolute terms) by the subsequent crimes if the estimation
window is too large. If, on the other hand, an initial crime gives rise to effective policing, and we might not
be able to pick up any effect.
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in four ways: (i) we allow for a change in the effect of time captured by the coefficient ∆T

in Equation (1), (ii) downweight observations that are further away from the crime event in

time and location, (iii) keep the estimation windows small, and (iv) test explicitly for the

self-exciting effects of each type of crime and the self-exciting effect of house sales.

Tables 8 and 9 in the Appendix summarize the results. Accordingly, the frequencies

of assaults, burglaries, and robberies decrease significantly immediately after such an event.

Both estimations for responses to shootings are also negative but insignificant. The estimates

for ∆ show a sizable and significant reduction in the density of crimes following an event

if we allow for a 30-day delay. House sales depress the density of future sales immediately

and with a 30-day delay. A house sale increases the total sales price immediately and with a

delay but depresses the PPSM in our preferred estimation, which uses a partly linear model.

We motivate this preference below.

Third, another critical question is whether the focus on housing valuations captures the

whole welfare effect of crime. It is well known that crime varies across locations. Grogger

and Willis (2000) show that city centers are more crime ridden than suburbs. As discussed in

the data section, this also applies to our data. The fact that crime varies locally supports our

assumption that the main obstacle for moving from a crime-ridden to a safer neighborhood

can be traced back to transaction costs linked to real estate. In contrast, changes to other

amenities, such as access to educational, professional, or other location-bound opportunities,

arguably factor in less. Households could just move to another neighborhood and keep

enjoying the advantages offered by their old neighborhood. Hence, changes in house owners’

reservation prices arguably capture the largest part of the welfare cost from crime.

Fourth, we assume that crime events are predetermined in a statistical sense. There are

incentives to commit or incite a crime to buy a house cheaper. We cannot rule out such a

possibility but deem it unlikely that our sample is dominated by such instances.
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4.4 Specifications

In this subsection, we describe technical choices that apply to discontinuity estimates in den-

sities and to pricing results. First, the trade-off from a larger estimation window is a gain in

efficiency against a potential bias that may arise from long-run effects. Standard procedures

to pick an asymptotically optimal bandwidth, as described by Imbens and Kalyanaraman

(2012), are inappropriate in our context, as we have distance as a second dimension to account

for. Hence, our bandwidth choices are ad hoc but informed by preliminary data analysis and

motivated by the question of how quickly effects vanish when the estimation window is ex-

panded. For this reason, we report a variety of preferred bandwidths. To keep the estimates

for the liquidity and the price response comparable, we employ similar bandwidth choices.

In particular, for each crime, we use a small (ν = {νT , νD} = {30 days, 0.3 km}) and a large

(ν = {νT , νD} = {60 days, 0.6 km}) estimation window.

Observations further away from the crime event in terms of time and location are down-

weighted. In particular, we employ the triangular kernel for KT (u) = max (0, 1− |u|) and

an upweighted triangular kernel for KD (u) = 2max (0, 1− |u|) so that both integrate to

one, in line with McCrary (2008). Let vT and vD denote the bandwidth with respect to the

temporal dimension in days and the spatial dimension in kilometers; then,

w (X) =
1

vTvD
KB

(
T

vT

)
KD

(
D

vD

)
(2)

assigns a nonnegative weight to a sale at time T with distance D.

Finally, we introduce a second model to accommodate the effect of property sizes. Similar

to Equation (1) it distinguishes between precrime and postcrime observations and reads

mT (X, δ) = δ + δTT + δSS + (∆ +∆TT +∆SS) I (T > 0) (3)

We abstain from using locational distance between a crime and a house sale as a controlling

covariate. The causal interpretation of δD would be difficult. On the one hand, δD > 0 in
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a density estimation can suggest that a crime was anticipated, and potential house buyers

avoided moving into the affected area. On the other hand, as shown in Figure 1, crimes in

Rochester are committed mostly in the city center, where “one family year-round residences”

are sparsely distributed. Consequently, this selection might be driven by confounding fac-

tors. Instead, we downweight observations that are further away as described above and

leave property size as an explanatory variable that arguably correlates monotonically with

socioeconomic factors. To lend credence to our analysis, we provide a placebo estimation

where we synthetically create crime events. Location and season effects are controlled for by

moving the crime dates one year ahead: T placebo
c = Tc − 365.

4.5 The (Lack of) Applicability of RDD

The specifications and issues discussed in subsections 4.3 and 4.4 can be motivated by the

RDD approach. In this subsection, we discuss why we cannot conclude that price changes

capture the full cost of crime.13

RDD identification compares the mean outcome of the control group with the mean

outcome of the treated group, yielding the average treatment effect (ATE) (ATE; Hahn,

Todd and Van der Klaauw, 2001). This is in line with our estimation specifications (1) so

that ∆ captures the ATE. RDD identification rests on two assumptions (Compare discussion

in Lee, 2008). First, the outcome function must be continuous in the assignment (or running)

variable around the threshold that assigns an observation to the control or the treatment

group. The running variable in our setup is time, and the threshold is given by the point

in time a crime is committed. Second, the distribution function must also be continuous

around the threshold. Neither of these assumptions can be tested directly, but both provide

testable predictions. In particular, covariates (if present) should have a continuous outcome

around the threshold. A failure of this prediction suggests that outcomes are not continuous

around a crime event.
13The online Appendix explains the (lack of) applicability of an RDD strategy to our setup in detail.
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We observe property sizes and the locational distance between crime and real estate

transactions. We show and discuss estimates using specification (1) in Table 7 in the Ap-

pendix. The size of transacted properties does not significantly change after crime events.

This suggests that socioeconomic factors do not play a decisive role in the response to crime.

In particular, an increase in property sizes would suggest that owners of larger properties,

who are arguably better off and less likely to be liquidity-constrained, are leaving the area.

This does not seem to be the case.

In contrast, houses are further away from the location of the crime after shootings and

robberies, at least when we allow for a 30-day delay. Such an increase can complement our

conclusion regarding the presence of liquidity effects. For example, an increase in the distance

measurements in the treatment group (compared to the control group) suggests that fewer

houses are sold in the vicinity of a crime, and houses further away are purchased as close

but safer substitutes. This corresponds to a market freeze around the location of a crime.

However, an increase in the distance can also be attributable to a change in the composition

of neighborhoods. Arguably, posh neighborhoods are composed of larger properties so that

houses might be more dispersed because house owners flee from crime. Overall, we are unsure

about how to interpret this result.

The second testable prediction in Lee (2008) is addressed directly with the density esti-

mations below. Simply put, RDD identification requires that the composition of the ex ante

and ex post means do not change. However, density jumps in our data suggest that this

composition changes following a crime. Arguably, the ex post mean contains more crime-

averse sellers than the ex ante mean. Crime-averse owners want to leave the area after a

shooting fire sale, which boosts liquidity. The other types of crime examined in this paper

immediately depress liquidity, which suggests that house owners sit out a temporary price

slump.

These two explanations with opposing predictions show a potential pitfall that may arise

in similar RDD analyses. A failure to detect a discontinuity in the density can result from the
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two possible responses to crime – fire-selling and sitting-it-out – offsetting each other through

different parts of the population. Hence, testing for discontinuity in the density function is

necessary if one pursues the RDD identification strategy. However, the density estimates

provide a direct economic interpretation by determining the liquidity in the housing market

in general, and discontinuities (∆) show liquidity jumps following a crime in particular.

Hence, detecting a nontrivial manipulation of the density around crimes invalidates the

causal inference of the price response. At the same time, liquidity exhibits the observed

jump.

4.6 Liquidity Estimates

Next, we address the impact of crime on the density of house sales as a measure of market

liquidity. As mentioned, this can provide validity to the causal inference of the price effect.

A nonrejection of the null hypothesis that the densities do not experience a jump suggests

that the assumption according to which the outcome is continuous in the assignment variable

around the threshold holds. However, it also yields interpretable insights.

Since we do not observe the density of sales directly, we cannot apply the usual regres-

sion techniques. McCrary (2008) suggests to bin observations as a remedy. Counting the

frequency of observations in each bin creates a regressand variable usable for estimation. We

report point and error estimates as laid out by McCrary (2008) along our tailored results.

Otsu, Xu and Matsushita (2013) highlight three issues with the Wald-type test in McCrary

(2008) that are relevant in our context. First, the variance estimate depends on functional

choices of the weighting function. Second, the confidence interval for ∆ in McCrary (2008)

is not automatically generated but requires plugins that might not always be reliable. Em-

pirical likelihood, as suggested by Otsu, Xu and Matsushita (2013), or bootstrapping, are

remedies to both of these issues. We apply both methods to our binning estimates below.

Finally, McCrary (2008) regresses the level of the density for the binning approach, while we

use the logarithmic transformation of the density to avoid predictions with negative densities.
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Copas (1995), Loader et al. (1996), Hjort and Jones (1996), and Park et al. (2002), among

others, developed a likelihood-based approach for local density estimations. This does not

require a (global) parametric functional form for the density but is based on a local (linear)

approximation, such as Equations (1) or (3). Otsu, Xu and Matsushita (2013) also propose

empirical likelihood-based tests for this approach. Empirical likelihood-based tests have

several advantages.14 More importantly, the simulation study in Otsu, Xu and Matsushita

(2013) demonstrates finite-sample behavior for the local-linear empirical-likelihood estimator

that is superior to the binning estimator, regardless of whether the error inference is based

on the bootstrap or the empirical likelihood approach. We present a small simulation study

in the online Appendix whose results are in line with the general findings in Otsu, Xu and

Matsushita (2013).15

Nonetheless, a simpler alternative than binning and local likelihood is a maximum likeli-

hood estimator whose (global) density is described by the estimation window and Equations

(1) or (3). The advantage of this approach is the (wider) familiarity with maximum likeli-

hood in the literature and the fact that the global density integrates to one, which, in turn,

determines one parameter directly. The disadvantage is that maximum likelihood estimators

are generally not robust against misspecifications.

Surprisingly, we found that the maximum likelihood estimator generally outperformed the

other three density estimators in terms of (absolute) bias and dispersion of estimates. This

applies even when the data generating process provides a misspecification to the estimator.

Hence, we report all results. More reliable estimates obtained from empirical-likelihood and

maximum likelihood principles are presented in the main text. In contrast, the binning

estimates exhibit a much larger degree of uncertainty, prompting us to report the results in

Table 6 in the Appendix as part of a wider effort to show negative effects. We employ the
14See Otsu, Xu and Matsushita (2013) for a discussion.
15There are two minor differences between the estimators proposed by Otsu, Xu and Matsushita (2013)

and the one used here. First, Otsu, Xu and Matsushita (2013) only employ and test for a discontinuity
in the running variable while we also use distance. Second, and similar to McCrary (2008), Otsu, Xu and
Matsushita (2013) who use the level of the density for the binning approach while we employ the logarithmic
transformation of the density.
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estimates of ∆ from the maximum likelihood estimator with a global density described by

Equation (3) for our model calibration below. Our preferred estimates are summarized in

Table 2.

The first row block in Table 2 summarizes our estimations for shootings. The first

row uses only data from the small estimation window (ν = {νT , νD} = {30 days, 0.3 km})

centered around the recorded crimes (ω = 0 days) without any delay (ξ = 0 days). Shootings

are relatively scarce so the small estimation window yields relatively few observations. The

empirical likelihood-based estimates are positive but insignificant. The maximum-likelihood

estimates become larger and turn significant. The point estimates range from 0.21 – when

we do not control for the property size – to 0.33 when we do. Their standard errors suggest

that they are significantly different from zero at the 5% level, which leads us to infer that

assumption (11) does not hold.16 This supports our first and second stylized statistical facts:

(i) Shootings do affect house sales and, more precisely, (ii) increase their frequency.

The second row (of the first row block concerning shootings) uses the small data window

without any delays around synthetic crimes created ω = 365 days before the recorded crimes

at their respective locations. All estimates for ∆ are insignificant, which lends plausibility

to our method.

The third row imposes a delay of 30 days (ξ = 30 days). That is, the first 30-day obser-

vations after a crime are excluded, and observations in the subsequent 30 days are included.

All estimates turn out to be significantly negative, which supports our third stylized fact

according to which (iii) violent crimes lead to a market freeze after some time.

The fourth row expands the data window (ν = {60 days, 0.6 km}) around recorded crimes

(ω = 0 days) without any delay (ξ = 0 days). All significant point estimates for ∆ from the

first row decrease while they remain significant. This supports our last stylized fact that (iv)

the effects of crime die out when we expand the estimation windows.
16An earlier version of this paper excluded houses that were sold for less than USD 100,000 (rather than

houses sold for less than USD 50,000). The point estimates ranged between 0.432 and 0.8436 for the linear
model without controlling for property sizes (Equation (1)) using both binning estimators as well as the
local-linear empirical likelihood estimator. All estimates were positive and significantly different from zero.
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The order of the rows in the following row blocks are organized similarly. We use the

small estimation window first, use the synthetic crimes for a placebo test, impose a delay on

the recorded (factual) crimes, and enlarge the estimation window.

The second row block in Table 2 summarizes the estimates for assaults. All estimates

for the immediate response using the small estimation window are negative and significantly

different from zero (stylized fact (i)). Hence, house transactions become less frequent imme-

diately after an assault, which contrasts with our results for shootings where we found that

sales immediately increase after a shooting (stylized fact (ii)). None of the estimates around

synthetic crimes is significant. A delay of 30 days further depresses liquidity. All point esti-

mates are negative, significant, and larger (in absolute terms, stylized fact (iii)). Finally, all

estimates from the immediate small estimation window decrease (in absolute terms) when

we expand the estimation window (stylized fact (iv)) in the last row of the assault block.

The third row block reports estimation results for burglaries. The estimates for the

immediate ∆ are negative and significant in the first row (stylized facts (i) and (ii)). Sur-

prisingly, the estimates around the synthetic crimes are significant, albeit one is positive and

the other three are negative. There is no clear interpretation of this result, which states that

house sales decline a year before a burglary is committed. Residents might already receive

early signals of a deteriorating neighborhood. A delay shows little absolute change in the

estimates. Hence, burglaries do not produce an excessive delayed effect (stylized fact (iii)).

Finally, expanding the estimation window decreases all estimates in absolute terms when

compared to the small estimation window (stylized fact (iv)).

The last row block reports the density responses to robberies. The estimators show an

immediate and significant decrease in the density after robbery (stylized facts (i) and (ii)).

The synthetic robberies show no irregularities. The delayed effect is milder for the empirical

likelihood-based estimators, while the maximum likelihood estimators increase compared to

the immediate effect. The larger estimation window again supports our stylized fact that

the effects of crimes die out quickly (stylized fact (iv)).
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In summary, we find overwhelming evidence that the density of house transactions

changes at the moment a crime is committed. This supports our first statistical stylized

fact insofar as the densities of house transactions change following a crime event. Shootings

significantly increase the frequency of house transactions – liquidity. The other three types

of crime lead to fewer sales, with six out-of-nine point estimates being significant. This lends

weight to our second statistical stylized fact according to which liquidity can go up or down

after crimes. The delayed response to shootings and assaults, the two violent types of crime

examined in this paper, is negative, significant, and larger in magnitude than the immedi-

ate response. This result supports our third statistical stylized fact. Finally, all immediate

estimates for ∆ become either smaller (in absolute terms), less significant, or both once we

lengthen the data window. This lends support to our fourth statistical stylized fact that

measurable effects die out quickly.

From our results, we can also infer that the distribution function is not continuous around

the threshold, which invalidates the RDD approach. By extension, our estimates for the re-

sponse of prices to crimes do not capture the full effect. Furthermore, the opposing responses

of liquidity to shootings compared with the other three types of crime explain why a direct

estimation strategy can suggest that causal identification of a crime effect on house prices is

valid when in fact it is not. The responses from different parts of the population can offset

each other. The null hypothesis of no jumps in the transaction density function would not

be rejected while the composition of treated and untreated observations changes. Admit-

tedly, the case where different reactions exactly offset each other appears special but can be

relevant for small sample sizes.
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Error inference: Empirical Likelihood Maximum Likelihood

Density approximation: Local Global

Control for property size: no yes no yes

νD νB ξ ω |I| |C| |H| ∆McCrary ∆

S
h
oo

ti
n
gs 0.3 30 0 0 429 268 332 -0.4393

(0.5122)

0.0985

(0.2785)

0.0986

(0.2784)

0.2144**

(0.0926)

0.3321**

(0.1428)

0.3 30 0 365 302 211 239 -0.2563

(0.3787)

-0.3369

(0.3011)

-0.3344

(0.3008)

-0.0403

(0.1217)

-0.0739

(0.2457)

0.3 30 30 0 403 248 319 0.1616

(0.3681)

-0.5527*

(0.3134)

-0.5520*

(0.3133)

-0.3266***

(0.1216)

-0.8966*

(0.5231)

0.6 60 0 0 3463 977 1818 0.0496

(0.1093)

0.1176

(0.0934)

0.1176

(0.0934)

0.0983**

(0.0403)

0.1700***

(0.0645)

A
ss

au
lt

s 0.3 30 0 0 2325 1187 1609 -0.0882

(0.1218)

-0.2888***

(0.1089)

-0.2889***

(0.1089)

-0.1015**

(0.0471)

-0.2045**

(0.1030)

0.3 30 0 365 2121 1234 1507 -0.0224

(0.1149)

-0.0377

(0.1188)

-0.0377

(0.1188)

0.0534

(0.0461)

0.0941

(0.0835)

0.3 30 30 0 2233 1185 1564 -0.1299

(0.1183)

-0.3075***

(0.1131)

-0.3078***

(0.1130)

-0.1333***

(0.0475)

-0.2832**

(0.1128)

0.6 60 0 0 18632 3922 4855 0.0603

(0.0437)

-0.1112***

(0.0394)

-0.1112***

(0.0394)

-0.0317*

(0.0164)

-0.0620*

(0.0339)

B
u
rg

la
ri

es 0.3 30 0 0 8281 4069 3873 0.0500

(0.0579)

-0.2072***

(0.0593)

-0.2072***

(0.0593)

-0.1212***

(0.0250)

-0.2540***

(0.0625)

0.3 30 0 365 8219 4264 3746 0.0722

(0.0551)

2.5159***

(0.0361)

-0.1562***

(0.0599)

-0.0646***

(0.0243)

-0.1291**

(0.0563)

0.3 30 30 0 8157 4065 3859 -0.0185

(0.0511)

-0.2061***

(0.0597)

-0.2062***

(0.0597)

-0.1201***

(0.0250)

-0.2608***

(0.0600)

0.6 60 0 0 62128 10602 6839 0.0248

(0.0196)

-0.1054***

(0.0214)

-0.1054***

(0.0214)

-0.0701***

(0.0105)

-0.1344***

(0.0212)

R
ob

b
er

ie
s 0.3 30 0 0 2730 1120 1854 -0.0074

(0.1085)

-0.2436**

(0.1020)

-0.2435**

(0.1020)

-0.1264***

(0.0441)

-0.2683**

(0.1075)

0.3 30 0 365 2516 1173 1765 0.0627

(0.1027)

-0.0885

(0.1071)

-0.0887

(0.1071)

-0.0158

(0.0273)

-0.0415

(0.0881)

0.3 30 30 0 2662 1094 1788 0.0322

(0.1202)

-0.1942*

(0.1046)

-0.1943*

(0.1046)

-0.1282***

(0.0416)

-0.2809**

(0.1100)

0.6 60 0 0 20459 3258 5128 0.0172

(0.0361)

-0.0816**

(0.0377)

-0.0817**

(0.0377)

-0.0437***

(0.0137)

-0.0936***

(0.0341)

Table 2: Estimates for density jumps around four types of crime. The first row in each row
block uses the small data window centered around crimes. The second row uses a small
data window but centered around synthetic crime events created ω = 365 days prior to
recorded crimes. The third row imposes a delay of ξ = 30 days after a factual crime. The
fourth row uses the large data window centered around factual crimes. |C| (|H|) refers to the
number of crimes (houses) involved that yield the |I| observation used in the estimation. The
estimates (with standard errors in parentheses beneath them) refer to the jump coefficient
∆. Estimates of the other coefficients are available upon request. *, **, and *** indicate
that the value is different from zero with 10%, 5%, and 1% probability, respectively.
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4.7 Price Estimates

Finally, this subsection discusses the price response estimations. We applied a simple local

linear estimator as discussed in Imbens and Lemieux (2008) and used both approximation

models, (1) and (3). Furthermore, we downweighted observations using Equation (2). Re-

ported standard errors follow conventional arguments of asymptotic inference. The estimates

are subject to significant noise, which is remindful of the motto that real estate is about “lo-

cation, location, location”, leading us to employ the partly linear estimator proposed by

Robinson (1988),

Pi = Xiδ + n (Li) + εi (4)

where the linear part Xiδ contains a linear trend around the crime as well as a change in

the intercept and the time trend for Ti > 017 as well as yearly and quarterly dummies. The

non-linear Part n (Li) employs the geospatial information. The assumption on the error

term is E [εi|Xi, Li] = 0 and we allow for heteroscedasticity E [εi|Xi = x, Li = l] = σ2 (x, l).

The conditional expectations of a variable z before the crime associated with observation

i occurred is defined by gz (l) = Ei,Ti<0 [z|Li = l]. Subtracting the conditional expectations

from Equation (4) yields

Pi − gP (Li) = (Xi − gX (Li)) δ + µi + εi (5)

where µi = n (Li) − Ei,Ti<0 [n (Li) |Li] is the innovation to a price index attributable to

location Li. The transformed Equation (5) immediately suggests an infeasible (linear) es-

timator for δ. Feasibility is achieved by casting µi into the residual term and using the

Nadaraya-Watson non-parametric estimator for gx (l).18

17The estimator does not allow for a constant.
18It is suggested to trim observations with a smaller density. Furthermore, the bandwidths are determined

by the estimation windows. Reported standard errors are robust. The function gx (Li) uses all house
transaction observations in our real estate dataset, subject to the spatial distance of house i and transactions
needed to be conducted before the crime occurred. The average number of houses K can be found in Table
3.

31



32

A critical element for the inference of ∆ is that µi is uncorrelated with the innovations in

the regressor variable in location Li, I (Ti > 0)− gI(Ti>0) (Li), where gI(Ti>0) (Li) controls for

the expected crime at location Li. Hence, µi represents postcrime changes in house prices

that we attribute to location Li. Arguably, these changes are small given the relatively

short estimation windows. Furthermore, time dummies in Xi accommodate seasonality and

long-run trends. The advantage of introducing the nonlinear function n (Li) is that location

summarizes housing valuation quite well, not just because of locational amenities, such as

tax regimes and the quality of schools but also because houses in a similar neighborhood

have similar intrinsic characteristics.

In sum, we obtained a couple of interesting results. Only four of the 48 estimates of

∆ using either Model (1) or (3) are significantly different from zero. Note that Model (3)

explicitly controls for property size. Only nine estimations have less than 1,000 observations,

while 15 of the non-placebo estimations have more than 8,000 observations. All significant

estimates are linked to changes in the total house sale price, and two imply a jump in prices

around shootings. One estimate is positive in the first row, suggesting a price increase, while

the other is negative and rather large, implying an average price decrease of approximately

98%. We conclude that house prices are subject to unobserved heterogeneity.

The picture changes dramatically when we employ specification (4). Only two of the 18

nonplacebo point estimates for assaults, burglaries, and robberies are not significant. The

16 significant estimates are all negative and of reasonable size, ranging from 5.2% to 10.3%

price drops. In contrast, estimates around shootings are all insignificant. We attribute this

to the small number of shootings in our sample and do not interpret this result as evidence

that shootings do not impinge on real estate prices. We conclude from these results that our

point estimates of price responses using the partly linear model described in (4) are relatively

precise and reliable.
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Explaining: Price Price/m2

Model (1) (3) (4) (1) (4)

νD νB ξ ω |I| K ∆

S
h
oo

ti
n
gs 0.3 30 0 0 429 61.2 0.2285*

(0.1358)

-4.1517**

(1.8680)

0.0668

(0.0423)

0.1238

(0.1543)

-0.0044

(0.0548)

0.3 30 0 365 302 36.3 -0.2551

(0.2252)

1.4605

(1.0936)

-0.0065

(0.0505)

-0.0743

(0.2939)

-0.0641

(0.0668)

0.3 30 30 0 403 66.7 -0.0259

(0.0999)

0.0579

(1.0817)

0.0335

(0.0490)

-0.0810

(0.1501)

-0.0515

(0.0719)

0.6 60 0 0 3463 124.3 0.0781

(0.0529)

0.4942

(0.6173)

-0.0141

(0.0163)

0.0658

(0.0622)

-0.0345

(0.0229)

A
ss

au
lt

0.3 30 0 0 2325 126.6 -0.0679

(0.0678)

-0.7455

(0.8149)

-0.0733***

(0.0246)

-0.0876

(0.0865)

-0.0322

(0.0326)

0.3 30 0 365 2121 74.4 -0.0672

(0.0699)

0.2168

(0.8376)

-0.0014

(0.0266)

-0.0853

(0.0920)

0.0401

(0.0351)

0.3 30 30 0 2233 119.8 0.1109

(0.0845)

-0.5326

(0.9450)

-0.0929***

(0.0251)

-0.0293

(0.0979)

-0.0680**

(0.0342)

0.6 60 0 0 18632 260.8 -0.0139

(0.0246)

-0.1088

(0.2769)

-0.0885***

(0.0095)

-0.0065

(0.0310)

-0.0798***

(0.0123)

B
u
rg

la
ry

0.3 30 0 0 8281 121.5 -0.0705*

(0.0377)

0.0355

(0.4093)

-0.0643***

(0.0123)

-0.0228

(0.0497)

-0.0218

(0.0166)

0.3 30 0 365 8219 79.4 0.0531

(0.0344)

0.3041

(0.3537)

-0.0080

(0.0123)

0.0135

(0.0446)

-0.0155

(0.0160)

0.3 30 30 0 8157 119.9 -0.0013

(0.0439)

0.1870

(0.4331)

-0.0614***

(0.0130)

0.0257

(0.0518)

-0.0511***

(0.0167)

0.6 60 0 0 62128 250.9 -0.0191

(0.0132)

-0.1281

(0.1504)

-0.0569***

(0.0051)

-0.0190

(0.0168)

-0.0638***

(0.0065)

R
ob

b
er

y 0.3 30 0 0 2730 188.2 -0.0850

(0.0700)

-0.9345

(0.7139)

-0.1091***

(0.0253)

-0.1212

(0.0823)

-0.0536*

(0.0311)

0.3 30 0 365 2516 125.5 -0.0057

(0.0764)

-0.2568

(0.6540)

-0.0200

(0.0263)

-0.0724

(0.0881)

-0.0312

(0.0308)

0.3 30 30 0 2662 182.5 0.0263

(0.0914)

-1.2597

(0.9599)

-0.1063***

(0.0261)

-0.0181

(0.0832)

-0.0528*

(0.0317)

0.6 60 0 0 20459 316.2 -0.0455*

(0.0251)

-0.1413

(0.2679)

-0.0842***

(0.0097)

-0.0347

(0.0304)

-0.0556***

(0.0121)

Table 3: Estimates for jumps in the (log-) sales price and the (log-) price per square meter
around crime events. The four row blocks correspond to the different types of crime. The first
row in each row block uses the small data window centered around crimes. The second row
uses a small data window but centered around synthetic crime events created ω = 365 days
prior to recorded crimes. The third row imposes a delay of ξ = 30 days after a factual crime.
The fourth row uses the large data window centered around factual crimes. The numbers of
observations are identical to those in Table 2. The estimates (with heteroskedasticity-robust
standard errors in parentheses beneath them) refer to the jump coefficient ∆. Estimates of
the other coefficients are available upon request. *, **, and *** indicate that the value is
different from zero with 10%, 5%, and 1% probability, respectively.
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5 A Structural Model

This section aims to elicit the effects of crime on welfare using a structural model that is

fitted to the data points from the previous section. We motivate the use of a structural

model as follows. First, price responses do not capture the full effect of crimes. Rather,

crimes also elicit quantity, that is, liquidity, responses. Second, the question arises how

a policy maker can interpret two-dimensional responses. A structural approach collapses

the price and quantity dimensions into a single dimension. To this end, we develop in

subsection 5.1 a dynamic model that rationalizes our empirical results and enables us to

draw consolidated answers about the welfare costs of crime. In subsection 5.2, we calibrate

the model to estimated moments and discuss the findings in subsection 5.3.

The intuition for the model is as follows: Assume that house owners are well informed

about the current (and persistent) criminal state of their neighborhood. The majority of

buyers are out-of-towners and receive information only with delay. As a result, sellers accept

offers from buyers they would have rejected had a crime not been committed that boosts the

market’s liquidity. Transactions decrease as buyers gradually learn about the level of crimi-

nality in the neighborhood. This scenario replicates the empirical pattern around shootings

well. In contrast, if the fraction of (potential) buyers consisting of local, well-informed res-

idents is large enough, the price offers adjust immediately downward, and some residents

avoid the area altogether. House owners sit out the valuation slump and wait for prices to

recover. As out-of-towners also gradually learn about the true state of the neighborhood,

the initial market freeze can be exacerbated. This scenario replicates the empirical pattern

around assaults, burglaries, and robberies.

The initial response to a switch to a high-crime state is determined by the fraction of

well-informed local home buyers. Well-informed buyers immediately adjust their price offers,

while out-of-towners only learn about the current crime state through local news. Sellers can

take advantage of out-of-towners’ lack of knowledge by accepting their offers and leaving the

area. This leads to a fire-sale phenomenon. The immediate adjustment of the price offers
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by local buyers, on the other hand, leads to a market freeze.

We propose local news as the transmission channel to explain our statistical findings.

Local news is not the only way information about crime is spread but plays a prominent

role in the media landscape. Local television news is dominated by crime (Klite, Bardwell

and Salzman, 1997), and viewing it raises the perceived risk of crime (Romer, Jamieson and

Aday, 2003). Specific to our context, the Pew Research Center (2020) reports that 43% of

adults in Rochester, NY, obtain their local news via television, and 39% report that news

about local crime is important to their daily life, ranking second after the weather.

Our explanation for the different liquidity responses to different crimes is based on infor-

mation asymmetries in the real estate market. Kurlat and Stroebel (2015) detect a positive

correlation between the informedness among buyers, proxied by the fraction of real estate

agents and individuals who moved to a neighborhood from a nearby location, and subsequent

price increases.

One objection to our setup could be that house sales pick up after shootings because

home-owners accept standing offers that they received before a crime had been committed.

However, this does not fit our data when the frequency drops. This also applies to the three

other crimes examined in this paper. One could argue that the buyer, after receiving an

offer from the home-owner before a crime, rejects the offer to submit a lower counteroffer.

However, this would suggest that the type of crime coincides with whom holds an offer, the

buyer or the seller. We deem this unlikely.

5.1 Search-and-Match Model

We describe in this subsection a search-and-match model we developed with the aim of

rationalizing the empirical estimates found in section 4. Time is continuous, continuous

forever, and denoted by t. Agents discount the future with the rate ρ. There is a unit mass

of house owners who sell their property at the “right price” and a unit mass of (potential)

buyers.
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The economy is characterized by two different states that determine whether crimes affect

residents or not. The true state at time t is denoted by ct. ct = h is the high-crime state,

and ct = l is the low-crime state. All residents are subject to disutility if ct = h, but

their experiences vary. Each agent possesses an idiosyncratic and time-invariant measure

of crime aversion denoted b for buyer and s for seller. Both b and s are drawn from an

exponential distribution with parameter σ. This disutility captures the direct cost residents

face in a high-crime state. The switch between the two different states is governed by Poisson

processes. A low-crime state switches to a high-crime state with intensity θh, while a high-

crime state switches to a low-crime state with intensity θl. To keep the distribution of b

and s stationary, we let buyers leave the game after making an offer, regardless of whether

they purchased a house or not. Sellers, on the other hand, only leave after a sale and are

replaced so that the economy remains stationary. In other words, while sellers can wait for a

better offer, buyers have the outside option to move to a different area that we normalize to

zero. This leads sellers to pursue a reservation price strategy. That is, buyers submit their

valuation privately to the homeowner whenever they match according to a Poisson process

with intensity λ. Transaction p creates a linear cost to the buyer and utility to the seller.

Hence, the payment good corresponds to the log-price estimates discussed above.

We further distinguish between informed and uninformed buyers of whom there are η

and 1 − η, respectively. Local buyers (and sellers) have better information about their

neighborhood than out-of-town buyers. Residents are the collective term for sellers who

have not yet sold their houses, buyers who purchased a house in the past, and local potential

buyers who have not yet purchased a house. Residents are perfectly informed about the

crime state. Out-of-town buyers believe the true crime state is high with probability xt and

low with probability 1 − xt. They learn about the true state through news that arrives

according to a Poisson process with intensity µ. This leads the state variable xt to evolve as
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summarized by the equation

ẋt =




−xtµ if ct = l

(1− xt)µ if ct = h

(6)

There is no other way with which buyers update their beliefs. In particular, we assume

buyers make private one-shot offers when submitting a price that equals their reservation

value. This assumption implies that buyers cannot learn from posted prices or from the

rejection of their previous offers.

Possessing a house yields u units of utility per period to a seller and ub utility to a

(successful) buyer. We ensure gains from trade by imposing ub > u. The valuation of a

home buyer in a low-crime or high-crime state is therefore

ρWl (b) = ub + θh (Wh (b)−Wl (b)) (7)

ρWh (b) = ub − b+ θl (Wl (b)−Wh (b)) (8)

respectively. Note that buyers do not have a resell option. The values Wl and Wh are

determined by their respective flow payoffs ub and ub − b and their likelihood and valuation

difference to switch to the other state. The valuations by out-of-town buyers are a weighted

average of these two values Wx (b) = xWh (b)+(1− x)Wl (b) because crime aversion is linear.

Buyers offer their reservation value but can always opt out so that pi (b) = max {Wi (b) , 0}.

The valuation of a homeowner depends on the utility of home ownership, the disutility

from crime, and two additional events. First, as described above, the crime state changes with

intensities θl and θh. Second, buyers present a purchasing offer that arrives with intensity λ

dependent on their crime aversion and the information at hand. For example, if the current

crime state is low and the aggregate belief of out-of-town buyers is x, a seller’s valuation
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with crime aversion s for the two events is given by

Ql (s, x) =
θh

θh + λ
Vh (s, x) (9)

+
λ

θh + λ
η

∫
max {Vl (s, x) , pl (b)} dF (b)

+
λ

θh + λ
(1− η)

∫
max {Vl (s, x) , px (b)} dF (b)

where Vh (s, x) is the continuation value when the crime state switches to “high”. This occurs

with probability θh/ (θh + λ) given that an event occurred. With complementary probability

λ/ (θh + λ), the homeowner receives a purchasing offer. With probability η, this offer comes

from a local buyer who (correctly) believes the current economy is in a low-crime state. With

probability 1 − η, the offer comes in from an out-of-town buyer whose valuation is Wx (b).

In either case, the purchasing offer pi (b) = Wi (b) for i ∈ {l, x} depends on the buyer’s

parameter of crime aversion. The homeowner will accept the offer if and only if it represents

a better value than continuing to live in the house given the true crime state ct = l. A

similar explanation applies to the event valuation of a homeowner with crime aversion s in

a high-crime economy.

The (indirect) utility of a homeowner with crime aversion s in the high-crime state with

belief x by out-of-town buyers is

Vh (s, x) =

∫ ∞

0

(θl + λ) e−(θl+λ)t

[∫ t

0

e−ρτ (u− s) dτ + e−ρtQh (s, x (t))

]
dt

We motivate this expression by starting with the terms inside the square brackets. First,

the homeowner enjoys the house but suffers from crime, u − s, until the next (joint) event

arrives at time t, and the flow utility is discounted continuously by e−ρτ . The next switch (to

a low crime state) or price offer is valued Qh (s, x (t)) and is realized according to a Poisson

process with intensity θl + λ. Note that the aggregate belief x is subject to the learning

process described above.
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What determines trading outcomes? Sellers have three advantages: (i) they remain in the

game and can wait for a higher offer, (ii) have better information than out-of-town buyers,

and (iii) know their crime aversion, whereas buyers submit their reservation values.

5.2 Calibration

Next, we calibrate the model laid out in the previous subsection to the estimates documented

above, which allows us to extract the factual welfare costs caused by crime. In addition, the

model calibration makes it possible to calculate counterfactual scenarios. We provide the

results for these counter-factual calculations in the Appendix to this paper. We target several

moments given by our estimates using the parameters {u, ub, σ, µ, η, λ, θl, θh, ρ}. To reduce

the number of parameters, we set ρ = 0.01 as an approximation to a yearly discount rate.

Unfortunately, the literature does not provide more guidance on this issue.

With the aim of increasing the number of moments, we also target the average (log-)

PPSM available in our data. We also divided the total number of house transactions by the

average number of housing units (1 unit, detached) as reported by the census, which yielded

a probability of selling a house over the course of a year of approximately 4%.

The estimation based on (log-) sale prices yielded implausible (but also insignificant)

positive responses to shootings. The calibration might not succeed, as a large deviation from

the targeted price-response estimates could compromise other targeted estimates as well.

Although the estimates for the postshooting responses in the (log-) PPSM are similarly

imprecise as (log-) sale prices, they are in a more reasonable range when compared to the

other crimes. Furthermore, we target immediate and delayed price responses in the small

estimation window. All responses in the (log-) PPSM to assaults, burglaries, and robberies

in Table 3 are smaller (in absolute terms) than the respective responses in the (log-) sale

prices. Hence, we err on the side of caution eliciting the cost of crime when we calibrate the

model moments to the smaller price responses.

The price and liquidity responses are determined as the difference measured between a
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point of time t = 0 when the economy is in a low crime state (ct = l) and all out-of-towners

(correctly) believe they are about to purchase a house in a low crime economy (xt = 0). We

then transformed the immediate and delayed price and liquidity responses to capture the

percentage deviation after a crime. Table 4 summarizes the results from our calibration.

PARAMETERS Shootings Assaults Burglaries Robberies

u (homeowner) 0.0509 0.0509 0.0506 0.0506

ub (buyer) 0.0509 0.0510 0.0507 0.0511

σ (crime aversion) 396.3 5.2 3.7 2.7

µ (learning) 34.10 3.51 658.95 0.17

θh (switch to high crime) 0.000001 0.000161 0.000559 0.000754

θl (switch to low crime) 0.000001 1.406300 4.493762 2.658492

η (locals) 0.0000 0.7417 0.8798 0.8697

λ (offer arrival) 0.1327 0.0419 0.0642 0.0488

MOMENTS ξ Data Model Data Model Data Model Data Model

Frequency

Level 4.03 8.22 4.03 3.24 4.03 4.28 4.03 3.77

∆ (in %) 0 33.21 32.30 -20.45 -20.56 -25.40 -25.19 -26.83 -27.38

∆ (in %) 30 -89.66 -88.42 -28.32 -28.40 -26.08 -26.23 -28.09 -27.55

Log-price per

square meter

Level 5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04

∆ (in %) 0 -0.44 -1.82 -3.22 -5.02 -2.18 -2.90 -5.36 -5.90

∆ (in %) 30 -5.15 -4.61 -6.80 -5.67 -5.11 -2.93 -5.28 -5.92

Table 4: Calibration results. The top block reports the calibrated parameters, while the
bottom block shows the targeted and predicted moments.

While all parameters have an effect on all computed moments, we can establish some first-

order relationships. First, u and ub jointly determine the average housing valuation, and the

difference between u and ub determines the probability a house is sold in each meeting. The

offer arrival parameter λ determines the frequency of house sales. The fraction of locals η

determines the immediate liquidity response, while the persistence parameters θl and θh as

well as the learning parameter µ determine the delayed responses.

The calibration fits the targeted moments rather well for a model that allows for asym-

metric responses. The qualitative differences in the model’s responses stem from the size of

η, the fraction of informed buyers. The immediate and delayed liquidity effects as well as

the steady state prices are close fits to the targeted moments.

However, the calibration presents some caveats. First, the model predicts a sales vol-
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ume that deviates from the data. In particular, the shooting calibration yields more sales,

while assaults and robberies exhibit fewer sales. Second, we use six moments to calibrate

a nonlinear model with eight parameters.19 Unfortunately, we lack extra moments, so we

are unable to compare outcomes that were not targeted. Third, the statistical estimates for

the self-exciting effect suggest that crimes are (mostly) self-depressing (compare Table 8 in

the Appendix). Our calibration allows for such quick reversals explicitly. In particular, the

estimates would suggest a large θl. The calibrated model suggests that high-crime states

are quite persistent, particularly for shootings. Again, we emphasize that disutility does not

necessarily arise from being a victim of a crime but solely from the fear of becoming a victim.

Finally, the average degree of crime aversion, 1/σ, for shootings is much smaller (≈ 0.0025)

than for assaults (≈ 0.1923), burglaries (≈ 0.2703), and robberies (≈ 0.3704). However, this

is offset by the much longer expected time until the economy switches back to a low crime

state. We discuss the welfare implications below.

These caveats notwithstanding, several plausible features of the results speak in favor

of our calibration. Most calibrated moments closely capture the empirical moments. All

frequency responses match the targeted moments quite well. In particular, the shooting

calibration exhibits an immediate increase, followed by a large market freeze after 30 days.

Some price responses also match the data quite well even when the estimates show some

variability between the immediate and delayed responses.

5.3 Model Dynamics and Welfare Implications

Table 5 summarizes the model dynamics and the welfare calculations for the factual calibra-

tion.
19One could calibrate the model for all scenarios simultaneously, leaving crime-irrelevant parameters

{u, ub, λ} constant across crime types. However, these parameters are already very close, and a joint cali-
bration is very time-consuming.

41



42

FACTUAL CALIBRATION ξ Shootings Assaults Burglaries Robberies

Buyers with high

beliefs (in %)
All

0 8.92 74.42 98.02 86.98

30 93.94 80.65 100.00 87.15

Meetings resulting

in sale (in %)

All pc 61.93 77.33 66.60 77.28

Out-of-towners
0 85.55 98.89 55.67 98.09

30 25.58 80.48 51.24 97.31

Locals
0 24.29 50.45 51.24 52.88

30 24.32 50.45 51.24 52.89

Price

changes

Out-of-towners
0 -1.82%/-1,398$ -0.22%/-192$ -2.67%/-2,461$ -0.41%/-393$

30 -4.61%/-3,546$ -2.74%/-2,425$ -2.93%/-2,693$ -0.58%/-548$

Locals
0 -4.65%/-3,571$ -6.69%/-5,918$ -2.93%/-2,693$ -6.72%/-6,374$

30 -4.65%/-3,576$ -6.69%/-5,919$ -2.93%/-2,693$ -6.72%/-6,374$

Welfare effects

Total 0 -7.46%/-5,733$ -13.41%/-11,855$ -5.93%/-5,457$ -13.85%/-13,132$

Housing 0 -25.23%/-19,393$ -13.61%/-12,038$ -5.97%/-5,496$ -13.98%/-13,261$

Resale 0 17.77%/13,660$ 0.21%/182$ 0.04%/38$ 0.14%/129$

Ex-post 0 -15.88%/-12,205$ -13.06%/-11,553$ -0.29%/-267$ -13.11%/-12,438$

Table 5: Results from the welfare analysis. Note that ξ = pc refers to precrime results when
out-of-towners believe x = 0.

5.3.1 Model Dynamics

The first block of Table 5 displays the fraction of buyers who believe the economy is in

a high-crime state immediately after the economy switches to a high crime state (ξ = 0)

after a 30-day delay (ξ). Remember that all out-of-towners believe the economy was in a

low-crime state (x0 = 0). The fraction of buyers with high-crime beliefs is rather low for

the shooting calibration, as out-of-towners dominate the population of buyers. In contrast,

assaults, burglaries, and robberies start on a higher level of informedness about the true state

of the economy. After 30 days, the majority of buyers are well informed, and in fact, more

buyers know about the high-crime state in the shooting calibration (94%) than for robberies

(87%) and assaults (81%).

The second block documents that the asymmetric responses derive from the number of

informed buyers. In the precrime period (ξ = pc), the majority of meetings between a house

owner and a potential buyer lead to a house sale. However, there is a stark difference between

out-of-towners and local buyers immediately after a crime (ξ = 0). In all but one calibration,
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the rate of success in these meetings increases. Largely uninformed out-of-towners submit

relatively high offers. Only in the burglary calibration do we observe a decline in the success

rate, which we attribute to the steep learning curve. The average time until an out-of-towner

changes his or her belief from a low-crime state to a high-crime state is only approximately

half a day (1/µ ∗ 365 ≈ 0.55). This contrasts with locals who adjust their offers according

to the true state, which leads to a universal decline in the success rate immediately after

the economy switches from a low-crime to a high-crime state (ξ = 0). In fact, the success

rate remains relatively stable for local buyers (ξ = 30), while the analog number for out-of-

towners decreases as they learn about the true state of the economy.

The third block complements our story with pricing dynamics. The offers made by

out-of-towners drop slightly immediately after a crime, ξ = 0. The lower bound for these

price drops is given by those we observe for locals. The relative size of price drops by out-

of-towners is determined by the learning process and crime aversion. It is, for example,

largest in the burglary calibration. While the price change (compared to the precrime offers)

remains largely unchanged in the local population after 30 days, the price offers made by

out-of-towners continue to decline.

5.3.2 Welfare in Calibrated Model

The fourth block of Table 5 documents the welfare effects from the calibrated model. We

emphasize two elements. First, we dissect the immediate welfare effects for homeowners into

two components, the quality of life and the resale option value. Second, we document the

cost of disappointment an uninformed buyer experiences when purchasing a house in a high-

crime state. The first line, labeled “total”, shows that crime uniformly depresses the indirect

utility that homeowners derive from their property. We define this measure by the expected

difference between a homeowner in a high-crime and a low-crime state, Es [Vh (s)− Vl (s)].

Surprisingly, the welfare effect is not largest for shootings. The highest cost arises from

robberies, amounting to approximately 14% of a house value, or a monetary value of USD
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13,100 for an average house in the vicinity of a robbery (compare Table 1). This is closely

followed by the loss attributable to an assault that costs the homeowner approximately 13%

of a house’s value (monetary value USD 11,900). Shootings “only” cost approximately 7%

(monetary value USD 5,700). The smallest effect is caused by burglaries with approximately

6% of house value (monetary value USD 5,500).

This total welfare effect is a composition of two underlying valuation changes. First,

living in a neighborhood after a crime is less enjoyable; residents suffer from fear and anxiety.

Second, a house also loosens in terms of its resale option value, which is affected by the search

friction of the real estate market. With the onset of a high-crime state, the reservation prices

for homeowners shift accordingly so that market value becomes a substitute for retaining

property. We next dissect and discuss these elements.

From the second line of the welfare block, labeled “housing”, we can infer that crime

uniformly depresses the residential experience, which we define as the difference between

a local living in a high-crime state and a low-crime state, Eb [Wh (b)−Wl (b)].20 The loss

is steepest for shootings with a welfare loss equivalent to approximately 25% of the house

value (monetary value USD 19,400). Both assaults and robberies give rise to a welfare loss of

approximately 14% of house value, while the monetary value is slightly higher for robberies

(monetary value USD 13,300) than for assaults (monetary value USD 12,000). Finally, the

loss in quality of life after a burglary amounts to approximately 6% of house value (monetary

value USD 5,500).

The third line captures the role of the real estate market in the allocation of crime disutil-

ity. We determine this resale option measure as the difference between the total and housing

welfare effects, Es [Vh (s)− Vl (s)]−Eb [Wh (b)−Wl (b)]. Noticeably, the liquidity influx after

shootings shifts the crime disutility to uninformed out-of-towners who are unaware of the

current crime state. Hence, the fundamental welfare loss attributable to the change in the

residential experience just discussed is absorbed by a reallocation of the housing unit. The
20Note that the residential utility cancels.
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absorption value is quite large and amounts to approximately 18% for shootings (monetary

value USD 13,700). The other types of crime are not accompanied by the same resale option

value to homeowners. Here, most potential home buyers are well informed about the state

of the economy so that prices reflect a fair valuation. Hence, the offset in the resale option

value is largely attributable to the gains from trade.

The final line in the welfare block, labeled “ex post”, highlights the disappointment an

average out-of-town buyer experiences from bidding for a house immediately after a crime has

been committed. The buyer realizes he or she bought a house in a high-crime neighborhood.

The buyer’s offer succeeds if the ex ante valuation (Wx0 (b)) is larger than the homeowner’s

reservation value (Vh (s, x0)). However, the out-of-town buyer now becomes aware of living

in a high-crime state Wh (b) which is lower than the expected utility derived from living in

the new house.21 The disappointment is largest in the case of shootings, which lead to a loss

of approximately 16% of a house value (monetary value USD 12,200). It does not equate

the gains from the resale option a homeowner has because, by assumption, buyers derive a

higher residential utility than home-owners, ub > u. Disappointment is also high for assaults

and robberies, amounting to approximately 13% of a house value in both cases, but there

are fewer uninformed offers in both calibrations. Losses are smallest for burglaries, which

we attribute to the shorter average duration an agent remains in the high-crime state.

5.4 Comparison with Other Studies

How do our estimates compare to others reported in the literature? One of the first empirical

studies that analyzed the effect of crime on real estate was by Thaler (1978). Thaler (1978)

also applied a hedonic-pricing model to data from Rochester, New York, and came up with
21Hence, the formula is

∫ ∫
(Wh (b)−Wx0 (b)) I [Wx0 (b) ≥ Vh (s, x0)] dF (s) dF (b)

where I [A] is the indicator function, which is equal to 1 if statement A is true and zero otherwise. This is
remindful of the “winner’s curse” in common-value auctions.
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an average cost of property crime of USD 2,560. Anderson (1999) provided a comprehensive

estimation of the annual burden of all crimes in the U.S. of more than USD 1 trillion, while

Lynch and Rasmussen (2001) estimated that high crime areas in Jacksonville, Florida, had

real estate prices discounted by up to 40 percent (or USD 50,000).

An aggregation of estimates requires some care. Simply multiplying the cost per crime

by the number of crimes and the number of houses is misleading, as crimes only affect houses

in their direct vicinity. Aggregation has further implications. For example, Tita, Petras and

Greenbaum (2006) estimated both the effects of the level of criminal activity and changes to

that level on average house prices for whole census tracts in Columbus, Ohio22, from 1994 to

1998. To compare our results with those of Tita, Petras and Greenbaum (2006), we use their

data, holding constant the socioeconomic and physical characteristics of the origin of the

estimate. Specifically, we calculate the total cost of a single crime as follows: An additional

violent (property) crime lowers the average house price by 0.163% (0.009%) for an average

census tract with 3,848 inhabitants.23 The average household has 2.64 members according

to the U.S. Census, so that a census tract has approximately 1.457 houses, which is the

number of houses affected by an average crime in Tita, Petras and Greenbaum (2006). The

FBI reports 1,206,836 violent (7,196,045 property) crimes in 2018 and the Federal Reserve

of St. Louis reports a median house price of approximately USD 325,000. This sums up to

a total annual cost of violent crimes of USD 931 billion and for property crime of USD 307

billion.

How does this compare with our aggregate welfare cost? We register a total of 19,148

housing transactions with an average price of USD118,600 for 16,418 unique houses. The U.S.

Census, on the other hand, documents an average of 43,684 detached single-unit houses be-

tween 2010 and 2017. The factor of total houses over houses in our dataset is 2.66. We calcu-

lated the weighted number of houses in the vicinity of an average crime by 2.66
C

∑C
c=1

∑H
h=1

1
vD

KD

(
D
vD

)
.

22Columbus is the capital of a midwestern state with just below 900,000 inhabitants.
23An aggregation would also require knowing changes of violent and property crimes on a very granular

level. We only highlight the level effect here and ignore the change effect.

46



46 47

This metric provides us with the number of houses that are affected by an average crime,

while it also downweights observations that are further away as they are less affected, in

accordance with our estimation approach. Hence, the number of affected houses is 0.83 for

shootings, 1.25 for assaults, 1.93 for burglaries, and 1.78 for robberies. Shootings occur in

comparatively sparse regions, while burglaries are perpetrated in more densely populated

areas. The average number of crimes per year is 195 for shootings, 915 for assaults, 1,967

for burglaries, and 697 for robberies. Multiplying these numbers together with the welfare

loss in the housing utility and the average house price in our sample provides us with a

back-of-the-envelope estimate for the annual cost for Rochester city residents. Accordingly,

residents lose a monetary value of approximately USD 4.9 million attributable to shoot-

ings, USD 18.5 million to assaults, USD 26.9 million to burglaries, and USD 20.6 million to

robberies. Finally, an aggregation to the U.S. as a whole using the population count ratio

suggests an annual welfare cost of approximately USD 419 billion due to shootings, USD

1,599 billion from assaults, USD 2,324 billion from burglaries, and USD 1,775 billion from

robberies. Note that these estimates are rather conservative, as we use the price level in

Rochester, NY, which is considerably lower than the US-wide level, as mentioned above.

Our estimates of the welfare costs caused just by burglaries or robberies alone are much

higher than the total cost of property crimes based on the data used by Tita, Petras and

Greenbaum (2006). Furthermore, the cost of assaults also far exceeds the numbers reported

by Tita, Petras and Greenbaum (2006). Only shootings remain inside the estimate of violent

crimes found in Tita, Petras and Greenbaum (2006). Our estimates are also higher than the

burden of all crimes found by Anderson (1999).

6 Conclusions

Crime and the fear it generates are important determinants of individual welfare. Crime

causes much pain in society – physical, psychological and pecuniary. One area where the
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effects of crime are likely to be perceptible is the real estate market. The frictions of the

real estate market – of which (il)liquidity is just a reminder – represent the main inhibitor

for moving to a safer neighborhood. Learning about the willingness to move highlighted by

reduced housing prices is only one part. The other important measurement is the degree to

which crime affects liquidity. This is the main motivation for this study.

In detail, we contribute to the literature along various dimensions. First, to establish

directional identification, we consider the housing market shortly before a crime is reported

as a control and treated observations thereafter. Second, we broaden the scope beyond

the price impact of crime on the housing market on which previous work has dwelled by

estimating the liquidity effects of crime. Third, we employ geospatial data that account

for the granularity of housing markets. Fourth, we account for delayed responses to crime.

Fifth, while RDD motivates our econometric approach, we show why this setup does not

warrant causal inference. Sixth, we propose a structural model that replicates our empirical

estimates and, unlike direct estimates, provides meaningful and interpretable conclusions

about residential welfare resulting from crime. Finally, we study the impact of four different

types of crime – shootings, assaults, burglaries, and robberies.

Five results arise from the analysis. First, the main novel contribution we provide to the

existing literature is that price adjustments are not the most important indicator of how

crime affects real estate. The primary response to crimes is instead observed in transactions’

frequency – the density of house sales – which we interpret as liquidity.

Second, a technical implication of the evidence that housing responds mainly through

transaction frequencies and not prices invalidates the applicability of an RDD approach,

however appealing it may be. Our estimations show that the liquidity responses for shootings

are opposite to those from the other three types of crimes, leading to fire sales in the former

and market freezes in the latter. A test that suggests the absence of discontinuity jumps is

non-conclusive in an RDD approach. The densities for two different segments of observations

can shift in opposing directions, effectively offsetting each other in the aggregate. In our
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setting, we detected fire sales offsetting house owners who sit out a temporary price cut.

Hence, typical ATE inference becomes invalid. These caveats notwithstanding, the estimated

moments can be used for the calibration of a structural model. Buyers and sellers have a

heterogeneous and unobservable degree of crime aversion. Our model also accommodates

the observed change in the economic responses when we allow for a delay. Local buyers post

prices that respond immediately to a crime, while out-of-town buyers respond only with

a delay. Asymmetric information can explain both liquidity responses. House transactions

increase after a crime if the group of uninformed buyers is large and decrease when this group

is small enough, which is what we observe in the data around shootings and burglaries.

Third, we show that the direct market impact is most likely of short duration. Expanding

the estimation windows yields more observations but renders most responses smaller (in

absolute terms) or statistically insignificant.

Fourth, we provide aggregate welfare implications of crime and uncover distributional as-

pects associated with it. According to our calibrations, crime negatively affects house owners

whose loss in direct residential utility can be offset if buyers are not informed about the cur-

rent state of the neighborhood. Out-of-town buyers ignorant of a high-crime environment

offer relatively high prices to sellers.

Fifth, our estimates stand out in the literature in terms of granularity.

We test our estimates with varying geographical and temporal bandwidths for robustness.

It turns out that the effects vanish rather quickly over both time and space. This suggests

that our results represent an upper bound on the effects crime exerts on housing property.

One limitation of our study is that estimates for the price effects are rather noisy. Our

approach pools real estate market observations around and across different crime events.

Each individual event is based on only 1.5 to 3.5 house sales on average. This means that

some crimes have no untreated house transactions, while others have no treated house trans-

actions. This does not matter for our density estimates, but it makes control for locational

properties difficult in the estimation of price changes. We remedy this by controlling for the
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location explicitly through a partly linear model.

Several venues for future research follow from our paper. Our study addresses how crime

affects residential valuations and decisions. As such, it looks at the fringe of the topic of

urban flight whose literature focuses on the social composition of neighborhoods. This leads

to the question of what factors are responsible for a neighborhood’s configuration and what

exactly changes after a crime. Answering this question can help us better understand several

important topics, in particular how costs and benefits of crime-related moves among the

population are distributed, to what extent these costs are borne by property owners versus

renters, how city and suburban tax bases are affected, whether highly educated residents

are more responsive to crime, and whether urban flight leaves behind a population with a

greater dependency on city-provided public services.

One critical avenue for answering these questions resides in tackling identification and

matching issues. Our dataset contains the names of the head of the household buying and

selling the property. Unfortunately, house owners who sold their house to flee crime do

not necessarily buy a new one. Rather, they may rent, which reduces the sample size and

creates a selection issue. Similarly, a crime might bring forward the decision of a renter to

buy a property in another part of town. Hence, an important extension of our dataset would

complement it with rental agreements.

A question closely related to ours is whether a drop in the perceived risk of being subject

to a crime leads to an increase in property values. Information about such perceptions is

hard to come by, in particular on a larger scale with granular information regarding location

and time. One potential promising remedy would be to incorporate a (one-sided) density

estimate of crime in house pricing estimates.

A further related issue is whether housing prices bear on crime. An estimated (one-sided)

house price trend could help explain crime frequencies. However, panel data with synthetic

cross sections create noise through aggregation so that using local polynomial approximations

appears more suitable.
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Appendix

Data Description

Figure 3 shows the temporal distribution of all events. The left panel shows the distribution

over years, while the right panel shows the distribution within a representative year. House

sales in Rochester dipped in 2011, which we attribute to the Great Recession. Only burglaries

show a clear downward trend, while other crimes fluctuate throughout the years. The right

panel of the left block shows the seasonal variation. Approximately 14% of house sales

occur in June, which is well above the expected value of 8% given by a uniform distribution.

Crimes also spike over the summer month, but there is a smaller peak around the change of

the year.

Temporal distribution (in %)

Figure 3: Temporal distribution of crime and sales events in Rochester city. The left (right)
panel shows the normalized distribution across years (within a year).
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Further Liquidity Estimates

Table 6 reports the estimates for the density discontinuity using the binning approximation

to the density.
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Error inference: Bootstrap Empirical Likelihood

Density approximation: Binning

Control for property size: no yes no yes
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Table 6: Estimates for density jumps around crime events using the binning-based approx-
imation. The four row blocks correspond to the types of crime. The first row in each row
block uses the small data window centered around crimes. The second row uses a small data
window but centered around synthetic crime events created ω = 365 days prior to recorded
crimes. The third row imposes a delay of ξ = 30 days after a factual crime. The fourth row
uses the large data window centered around factual crimes. The numbers of observations are
identical to those in Table 2. The estimates (with standard errors in parentheses beneath
them) refer to the jump coefficient ∆. Estimates of the other coefficients are available upon
request. *, **, and *** indicate that the value is different from zero with 10%, 5%, and 1%
probability, respectively. 60
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Table 6: Estimates for density jumps around crime events using the binning-based approx-
imation. The four row blocks correspond to the types of crime. The first row in each row
block uses the small data window centered around crimes. The second row uses a small data
window but centered around synthetic crime events created ω = 365 days prior to recorded
crimes. The third row imposes a delay of ξ = 30 days after a factual crime. The fourth row
uses the large data window centered around factual crimes. The numbers of observations are
identical to those in Table 2. The estimates (with standard errors in parentheses beneath
them) refer to the jump coefficient ∆. Estimates of the other coefficients are available upon
request. *, **, and *** indicate that the value is different from zero with 10%, 5%, and 1%
probability, respectively. 60

Locational Distance and Property Size as a Covariate

The assumption that the outcome is continuous around crimes is critical for RDD to apply.

This assumption is not testable directly but provides testable predictions around predeter-

mined covariates Xi (proposition 2c in Lee, 2008.). Specifically, covariates should have a

continuous outcome around the threshold. We have two covariates. Our datasets allow us

to measure the distance between the location of a crime and a house transaction. Further-

more, the dataset also includes measurements regarding the property size. Hence, we can

ask whether these covariates indicate that there is some degree of manipulation around crime

events. In particular, a change in average property size between the control and the treat-

ment groups would point to socioeconomic factors at play. If houses are on average larger

after a crime, then richer households arguably move away, a possibility that poorer individ-

uals might not have. A change in the distance measurements is supportive of the liquidity

estimates. For example, an increase in the distance measurements in the treatment group

(compared to the control group) suggests that houses in the direct vicinity of the crime are

less likely to be sold. This corresponds with a decrease in the density estimates, that is, a

market freeze. On the other hand, a decrease in the distance measurements goes hand in

hand with fire sales. We summarize that there were no meaningful changes in the property

size around any type of crime event. There are some significant differences looking at the

distance measurements.

We follow the procedure of the main analysis, which elicits jumps in the pricing observa-

tions, albeit we will not use the partly linear model, as distance is not a generic observation

such as prices. We start with the summary statistics exhibited in Table 1 in the main text.

Postshooting house transactions involve houses that are significantly closer to the crime lo-

cation in the large estimation window. This does not apply in the small estimation window.

There are no differences between distance or property size before and after assaults in either

the large or the small estimation window. For burglaries, we find an increase in the distance

in the large estimation window, albeit at the 10% significance level. Robberies, on the other
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hand, seem to lead to a decrease in property sizes.

Figure 2 plots the distance (to a crime) and the (log-) size of properties involved in a trans-

action around the respective crime for the small estimation window (ν = {30 days, 0.3 km}).

Only burglaries show a significant increase for the distance measure. This suggests that

houses that are further away appear in the treatment group more often in line with our main

results where burglaries lead to a market freeze.

A specification test regarding the continuity of the two covariates regresses the distance

and the property size using model mT (X), yielding a misspecification by a simple t test with

the null H0 : ∆ = 0. Table 7 summarizes the results for all crimes, estimation windows, and

delay specifications.

We discuss the dynamics of distance to a crime location around crime events first. Two

of the eight estimates for ∆ are significant. The coefficients can be interpreted as changes

in average distances after a crime measured in km. None of the coefficients are larger (in

absolute terms) than 0.03, suggesting that if there is a discontinuity, it is merely a change

of approximately 30 meters. As mentioned above, all but one significant jump corresponds

to a significant estimate of a jump in the density.

Is there a discontinuity in the property sizes involved in house transactions? No.
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Explained variable Distance Property

Size

νD νB ξ ω ∆

S
h
oo

ti
n
gs 0.3 30 0 0 0.0109

(0.0150)

0.0185

(0.0728)

0.3 30 30 0 0.0299**

(0.0149)

-0.0276

(0.0793)

A
ss

au
lt

s

0.3 30 0 0 0.0025

(0.0059)

0.0008

(0.0354)

0.3 30 30 0 0.0029

(0.0060)

0.0471

(0.0356)

B
u
rg

la
ri

es 0.3 30 0 0 0.0051

(0.0031)

-0.0285

(0.0178)

0.3 30 30 0 -0.0001

(0.0032)

-0.0138

(0.0181)

R
ob

b
er

ie
s

0.3 30 0 0 0.0036

(0.0055)

0.0110

(0.0329)

0.3 30 30 0 0.0131**

(0.0054)

-0.0127

(0.0332)

Table 7: Distance between house transactions and crime and log property sizes around crime
events. The four row blocks correspond to the types of crime. The first row in each row
block uses the small data window centered around crimes. The second row imposes a delay of
ξ = 30 days after a factual crime. The estimation employs the linear model in Equation (1).
The estimates refer to the jump coefficient ∆. Estimates of the other coefficients are available
upon request. Asymptotic standard errors are in parentheses. *, **, and *** indicate that
the value is different from zero with 10%, 5%, and 1% probability, respectively.

Serial Dependence of Events

Hausman and Rapson (2018) discuss the problem of serial dependencies when time is used

as a running variable in RDD. There can be two issues in our data. First, crime can be

self-exciting or, because of increased policing, decrease in frequency immediately after a

crime. Second, house sales can also display serial dependency. For example, a house sale

signals that a new owner is committed to staying and takes his or her house off the market.

Alternatively, a house sale might encourage other neighbors to leave the area as well because

of severed social ties to the neighbors who leave.
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Crime on Crime

We discuss our analysis of the effect of crime on crime first. Note that we analyze the rela-

tionship between crimes, which addresses a factual statistical relationship. This is different

from how individuals are affected by crimes. The main analysis focuses on the reactions

of individuals to past crimes and not on the objective probability of becoming a victim of

a crime that is rationally updated because of a crime event. As crimes are clustered ge-

ographically, the sample sizes increase drastically, so that we employ a tighter bandwidth

{νT , νD} = {10 days, 0.1 km}.

Table 8 shows overwhelming evidence that crime frequency reduces after a crime. The

only exception is immediately following a shooting, yet the delayed estimation window allows

us to conclude that shootings eventually taper off. Policing might just require some time.

We observe a similar response in the delayed density estimates for almost all other crime

types.
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Error inference: Empirical Likelihood Maximum Likelihood

Density approximation: Local Global

νD νB ξ ω |I| |C| |H| θMcCrary ∆

S
h
oo

ti
n
gs 0.1 10 0 0 7149 2333 2331 1.7182***

(0.1076)

-0.2037

(0.1674)

-0.0665

(0.0737)

0.1 10 30 0 6845 2253 2251 1.5526***

(0.1014)

-0.4415**

(0.1798)

-0.2655***

(0.0699)

A
ss

au
lt

s

0.3 30 0 0 904 583 583 0.2158

(0.2017)

-0.4069***

(0.1329)

-0.1412**

(0.0566)

0.3 30 30 0 845 525 535 0.0055

(0.1807)

-0.3749***

(0.1357)

-0.1047*

(0.0552)

B
u
rg

la
ri

es 0.15 15 0 0 1467 1204 1205 0.6247***

(0.1621)

-0.5982***

(0.1111)

-0.2038***

(0.0462)

0.15 15 30 0 1466 1212 1223 0.5924***

(0.1486)

691.4587

(1224.9274)

-0.6357***

(0.0497)

R
ob

b
er

ie
s

0.1 10 0 0 2250 1901 1902 1.5874***

(0.1699)

-0.3992**

(0.1684)

-0.1311*

(0.0708)

0.1 10 30 0 2037 1790 1770 1.1487***

(0.1497)

-0.8081***

(0.1788)

-0.3649***

(0.0718)

Table 8: Explaining the density around crime events. *, **, and *** indicate that the value
is different from zero with 10%, 5%, and 1% probability, respectively. The four blocked
rows correspond to the types of crime. The first row in each row block uses the small data
window centered around crimes. The second row imposes a delay of ξ = 30 days after a
crime. Standard errors are in parentheses.

Sales on Sales

Table 9 shows evidence that the housing market is self-depressing in frequency and pricing.

The top left panel exhibits a large and significant drop in transaction frequencies immediately

after a house sale. The effect becomes slightly smaller (in absolute terms) with a 30-day delay

but remains significant. The bottom panel of Table 9 shows that total sales prices increase

immediately and with a delay. The price per square meter, on the other hand, drops. We

are not sure how to interpret this observation.
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Error inference: Empirical Likelihood Maximum Likelihood

Density approximation: Local Global

Control for property size: no yes no yes

νD νB ξ ω |I| θMcCrary ∆

0.1 10 0 0 7149 1.7182***

(0.1076)

-0.6161***

(0.0601)

-0.6162***

(0.0601)

-0.2393***

(0.0240)

-0.5649***

(0.0791)

0.1 10 30 0 6845 1.5526***

(0.1014)

-0.5595***

(0.0592)

-0.5594***

(0.0592)

-0.2266***

(0.0260)

-0.4672***

(0.0059)

Explained variable Price

Model Linear Partly linear

Control for property size: no yes no yes

νD νB ξ ω ∆

0.3 30 0 0 -0.0091

(0.0186)

-0.0183

(0.0244)

-0.0274***

(0.0065)

0.2057***

(0.0149)

0.3 30 30 0 0.0104

(0.0189)

-0.0046

(0.0248)

-0.0256***

(0.0069)

0.2661***

(0.0153)

Explained variable Price /m2

Model Linear Partly linear

Control for property size: no yes no yes

νD νB ξ ω ∆

0.3 30 0 0 0.0133

(0.0211)

0.0266

(0.0278)

-0.0799***

(0.0088)

-0.6464***

(0.0159)

0.3 30 30 0 -0.0247

(0.0222)

-0.0060

(0.0290)

-0.0997***

(0.0092)

-0.5838***

(0.0162)

Table 9: Explaining the density (top) and the normalized log price (middle and bottom
panel) around house sales. *, **, and *** indicate that the value is different from zero with
10%, 5%, and 1% probability, respectively. The first row in each block uses the small data
window centered around crimes. The second row imposes a delay of ξ = 30 days after a
crime. Standard errors are in parentheses.

Counterfactual Calculations

As counterfactuals, we discuss two possible policy responses. First, the police, the local gov-

ernment, and the community at large can install measures that prevent crime. In particular,

an increase in police patrols, the start of neighborhood watch groups, the installment of

streetlights, and an influx of social workers might dampen the prospect of residents falling

prey to crime in the future. Any of these measures contributes to the perception that a
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10%, 5%, and 1% probability, respectively. The first row in each block uses the small data
window centered around crimes. The second row imposes a delay of ξ = 30 days after a
crime. Standard errors are in parentheses.

Counterfactual Calculations

As counterfactuals, we discuss two possible policy responses. First, the police, the local gov-

ernment, and the community at large can install measures that prevent crime. In particular,

an increase in police patrols, the start of neighborhood watch groups, the installment of

streetlights, and an influx of social workers might dampen the prospect of residents falling

prey to crime in the future. Any of these measures contributes to the perception that a
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crime might occur. We translate such policy measures by decreasing the parameter that

determines a switch to a high-crime state by 10%.

Second, a crime-contingent but immediate response to crime can lead to shortening the

perception of duration a neighborhood remains in a high-crime state. A key ingredient, in

addition to the efforts mentioned above, is arguably offenders’ apprehension. As a result,

the economy switches back to a low-crime state faster. To discuss the consequences of such

a change in the environment, we increase the parameter that determines the switch back to

a low-crime state, θl, by 10%.

We start by discussing the response from offenders’ arrest first, which we dub “fight

crime”, followed by our discussion about the other policy responses, which we call “prevent

crime”. To facilitate the discussion, changes compared to the factual calibration are displayed

in parentheses.

Fight Crime

The commitment to fight crime after it has occurred increases the fraction of meetings that

lead to a house sale before it actually occurs. Only shootings show no sizable effect. We

attribute this to the fact that θl in the shooting calibration is much smaller compared to the

other types of crimes. The reason for an increase in successful meetings in the precrime period

is that the comparative advantage between buyers and sellers regarding their willingness to

live in a high-crime state becomes less important so that homeowners are more likely to

accept an offer.

Table 10 summarizes the model dynamics and the welfare calculations for the two counter-

factual scenarios. There is no sizable change in how prices respond to shootings; the relative

change to θl is again insufficient to make a noticeable difference. Additionally, postcrime

prices are largely determined by uninformed out-of-towners. However, there are some siz-

able premiums in price responses to the other crimes, which amount to almost USD 600 for

locals after robberies. Hence, fighting crime leads to conspicuous reductions in price effects.
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The precrime welfare changes compared to the factual results vary only little. The largest

increase in housing welfare is USD 91 for robberies. Fighting crime matters less when it

does not occur, but given that, arguably, crimes are relatively sparse, the rather small gain

accumulates over many transactions.

However, the policy-induced change becomes sizable when we look at the welfare re-

sponses after a crime compared with those of the factual results discussed above. While

housing welfare responses do not change after a shooting, fighting crime reduces the wel-

fare loss from robberies by approximately USD 1,200, by approximately USD 1,100 from

assaults, and still by approximately USD 500 from burglaries. Similarly, out-of-towners are

less affected by the rude awakening of buying a house right after an assault or a robbery.

The monetary recoup from fighting crime is over USD 1,000 in both cases. However, fighting

crime has little effect after shootings and burglaries.

Prevent Crime

Similar to fighting crime, preventing crime generally increases housing liquidity even in the

absence of crimes. A 10% decrease in θh leads to a stronger increase in house sales than a

10% increase in θl across all types of crimes. Unsurprisingly, the price responses at the onset

of a crime are largely unaffected. The strongest change is a USD 55 increase in the price

response immediately after a robbery.

Similar to fighting crime, the precrime welfare effects on residential utility are negligi-

ble. The strongest precrime welfare change in comparison with the factual calibration is

observed for robberies with an increase of USD 100. The prevention of crime yields no

welfare improvement when a crime is committed.
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FIGHT CRIME ξ Shootings Assaults Burglaries Robberies

Meetings resulting in sale (in %) pc 61.93 (0.00) 79.16 (1.83) 68.43 (1.83) 79.13 (1.84)

Price changes
Out-of-towners 0 -1.82%/-1,398$

(0.00%/0$)

-0.19%/-171$

(0.02%/21$)

-2.43%/-2,234$

(0.25%/227$)

-0.36%/-340$

(0.06%/53$)

Locals 0 -4.65%/-3,571$

(0.00%/0$)

-6.09%/-5,384$

(0.60%/534$)

-2.66%/-2,445$

(0.27%/248$)

-6.10%/-5,785$

(0.62%/589$)

Welfare effects

Housing pc (0.00%/0$) (0.02%/18$) (0.03%/28$) (0.10%/91$)

Housing 0 -25.23%/-19,393$

(0.00%/0$)

-12.38%/-10,950$

(1.23%/1,087$)

-5.43%/-4,997$

(0.54%/499$)

-12.71%/-12,059$

(1.27%/1,201$)

Ex-post 0 -15.88%/-12,205$

(0.00%/0$)

-11.90%/-10,521$

(1.17%/1,032$)

-0.26%/-244$

(0.03%/23$)

-11.97%/-11,355$

(1.14%/1,083$)

PREVENT CRIME ξ Shootings Assaults Burglaries Robberies

Meetings resulting in sale (in %) pc 64.24 (2.31) 79.36 (2.03) 68.63 (2.03) 79.33 (2.04)

Price changes
Out-of-towners 0 -1.82%/-1,398$

(0.00%/0$)

-0.20%/-181$

(0.01%/12$)

-2.67%/-2,459$

(0.00%/2$)

-0.36%/-338$

(0.06%/55$)

Locals 0 -4.65%/-3,571$

(-0.00%/-0$)

-6.69%/-5,919$

(-0.00%/-1$)

-2.92%/-2,692$

(0.00%/1$)

-6.72%/-6,376$

(-0.00%/-2$)

Welfare effects

Total pc (0.00%/0$) 0.01%/13$) (0.02%/17$) (0.07%/66$)

Housing pc (0.00%/0$) (0.02%/19$) (0.03%/31$) (0.11%/100$)

Resale pc (-0.00%/-0$) -0.01%/-6$) (-0.01%/-14$) (-0.04%/-34$)

Total 0 -7.46%/-5,733$

(-0.00%/-0$)

-13.41%/-11,855$

(-0.00%/-0$)

-5.93%/-5,457$

(-0.00%/-0$)

-13.85%/-13,132$

(-0.00%/-0$)

Housing 0 -25.23%/-19,394$

(-0.00%/-0$)

-13.61%/-12,038$

(-0.00%/-0$)

-5.97%/-5,496$

(-0.00%/-0$)

-13.98%/-13,261$

(-0.00%/-0$)

Resale 0 17.77%/13,660$

(0.00%/0$)

0.21%/182$

(-0.00%/-0$)

0.04%/38$

(-0.00%/-0$)

0.14%/129$

(-0.00%/-0$)

Ex-post 0 -15.88%/-12,206$

(-0.00%/-1$)

-13.10%/-11,581$

(-0.03%/-29$)

-0.29%/-268$

(-0.00%/-1$)

-13.24%/-12,560$

(-0.13%/-122$)

Table 10: Results from the welfare analysis for the counterfactual calculations. Note that
ξ = pc refers to precrime results when out-of-towners believe x = 0. The results in brackets
refer to the change in comparison with the factual model calibration.
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The precrime welfare changes compared to the factual results vary only little. The largest

increase in housing welfare is USD 91 for robberies. Fighting crime matters less when it

does not occur, but given that, arguably, crimes are relatively sparse, the rather small gain

accumulates over many transactions.

However, the policy-induced change becomes sizable when we look at the welfare re-

sponses after a crime compared with those of the factual results discussed above. While

housing welfare responses do not change after a shooting, fighting crime reduces the wel-

fare loss from robberies by approximately USD 1,200, by approximately USD 1,100 from

assaults, and still by approximately USD 500 from burglaries. Similarly, out-of-towners are

less affected by the rude awakening of buying a house right after an assault or a robbery.

The monetary recoup from fighting crime is over USD 1,000 in both cases. However, fighting

crime has little effect after shootings and burglaries.

Prevent Crime

Similar to fighting crime, preventing crime generally increases housing liquidity even in the

absence of crimes. A 10% decrease in θh leads to a stronger increase in house sales than a

10% increase in θl across all types of crimes. Unsurprisingly, the price responses at the onset

of a crime are largely unaffected. The strongest change is a USD 55 increase in the price

response immediately after a robbery.
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ble. The strongest precrime welfare change in comparison with the factual calibration is

observed for robberies with an increase of USD 100. The prevention of crime yields no
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Table 10: Results from the welfare analysis for the counterfactual calculations. Note that
ξ = pc refers to precrime results when out-of-towners believe x = 0. The results in brackets
refer to the change in comparison with the factual model calibration.
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Online Appendix

The RDD Approach

A house sale i is either untreated (W = 0) or treated (W = 1) , depending on whether it

occurred before (Ti ≤ 0) or after (Ti > 0) a crime, respectively.

Some characteristics of a house sale are unobservable. In particular, heterogeneity in

crime aversion among buyers and sellers is critical for our analysis. Hence, we index outcomes

by i so that

Pi (Wi) = αi + βi [Ti > 0] (10)

where αi = Pi (0) and βi = Pi (1)− Pi (0). The ATE of crimes on prices is labeled β and is

a weighted average of βi over all i.

Formally, identification requires that

F (Pi (0) |Ti = τ) and F (Pi (1) |Ti = τ) are continuous in τ at 0 (11)

E [Pi (0) |Ti = τ ] and E [Pi (1) |Ti = τ ] are continuous in τ at 0 (12)

∀i according to Hahn, Todd and Van der Klaauw (2001).24 Simply put, the outcomes and

the distribution of outcomes of each observation i are continuous in time when the crime

occurs. Here, an observation consists of a combination of a seller, a buyer and a house, which

we call a sale. The limiting difference between values before and after a crime

β = lim
τ↓0

E [P |T = τ ]− lim
τ↑0

E [P |T = τ ] (13)

yields the ATE.

Lee (2008) refines assumptions (11) and (12). We discuss the relaxation regarding as-
24See Imbens and Lemieux (2008) or Lee and Lemieux (2010) for discussions.
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sumption (11) next and address assumption (12) further below.

First, identification of the ATE is preserved even when the running variable is partially

manipulated. The RDD identification can become invalid if test subjects have deterministic

control over whether they belong to the control or the treatment group. This can change the

composition of treated and untreated observations, a phenomenon called “manipulation”. It

suggests that test subjects know the threshold location and can control the running variable.

We assume crimes are pre-determined in a statistical sense but unanticipated by market

participants. The latter assumption is at odds with the notion of manipulation as usually

described in the RDD literature, that is students know their exam score immediately and

stop as soon as they reach the critical threshold for a prize. But manipulation is simply a

change in the statistical assignment rule which coincides with our interpretation that house

sales are more or less likely after a crime.

A toy model can illustrate this idea. Assume (potential) buyers and sellers are randomly

paired into matches, labeled i. The net surplus of a house purchase is Sb = ub− bWi−Pi for

a potential buyer where Pi is the payment for the house, ub the gains from trade, and b the

disutility because of a crime treatment. Similarly, the net surplus of a seller is Ss = sWi+Pi

where leaving the area now creates utility s if match i is treated. Assume a transaction is

only executed when the joint welfare Si = ub + (s− b)Wi is non-negative, and the payment

Pi =
1
2
(ub − (s− b)Wi) splits the welfare gains evenly. Every untreated match leads to a

transaction with Pi (0) =
1
2

for ub = 1. Treated matches, on the other hand, only trade when

Si ≥ 0 ⇔ ub + s ≥ b, or when the crime aversion of the seller (buyer) is sufficiently large

(small). Compare the left panel of Figure 4. This is the case for about 4
5

of all matches if

both parameters for crime-aversion, b and s, are exponentially distributed with rate λ = 1.

The observed average payment is P obs (1) ≈ −2
5

while the average payment valuation for all

matches is P true (1) = −1
2
. We measure βobs = − 9

10
while the true causal effect of a crime

on the house price is βtrue = −1. Compare the middle panel of Figure 4. Note that the

(unobservable) heterogeneity in the pricing function is necessary to invalidate the inference

71



72

Seller crime

aversion s

u
b

B
u

y
e
r 

c
ri

m
e
 a

v
e
rs

io
n

 b

Trading responses

-1 0 1

Time

P(T)

-1 0 1

Time

f
i
(T)

No trade as

u
b
+s< b

Trade as

u
b
+s  b

P(0)

P
obs

(1)

P
true

(1)

No

response

Market

freeze

Fire sale

Delayed

fire sale

Figure 4: All trades are executed when a sale is not treated. However, as shown in the left
panel, only trades underneath the line b = ub + s are executed when a crime is perpetrated.
The middle panel shows the untreated payment before the crime as well as the observed and
true treated payment after the crime that occurs at t = 0. The right panel displays different
scenarios in the sale-specific density function fi (T ).
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of β. In fact, we can identify the causal effect for each sale as βi = Pi (1) − Pi (0) =
b+s
2

if

we were to observe b and s.

Identification under (partial) manipulation is preserved if there is a positive probability

for every sale i to be either treated or untreated, or 0 < Fi (Ti = 0) < 1 ∀i (condition 2b in

Lee, 2008). However, our toy model suggests that Fi (Ti = 0) = 1 for u+ s < b.

A violation of assumption (11) can be detected by testing for a discontinuity in the

density function.25 Let fi (T ) denote the density of sale i over time. We would like to test

whether θi = 0 directly where

θi = lim
T↑0

log (fi (T ))− lim
T↓0

log (fi (T )) (14)

However, we only observe one realization per sale. Hence, we pool observations and generate

a distribution F with density f to test whether θ = 0 where

θ = lim
T↑0

log (f (T ))− lim
T↓0

log (f (T )) (15)

In other words, we try to detect a non-trivial aggregate manipulation of the running variable

time around crime events. A rejection of the null hypothesis can suggest the identification

of the ATE on prices is invalid because the price averages below and above the threshold are

composed of different kinds of sales.26

The second relaxation in Lee (2008) addresses a possible direct impact of time on the
25Detecting anomalies in distribution has a wide range of applications in economics. For example, bunching

exploits discontinuities in an incentive schedule to elicit economically meaningful parameters. Kleven (2016)
provides a recent survey. Similarly, RDD identification rests on the assignment to a treatment group when
a running variable is either above or below some threshold. But this is where the similarities end. Bunching
relies on the assumption that the outcome variable is subject to choice while RDD requires that the running
variable cannot be completely manipulated.

26There are two caveats to this test. We detect a false positive if, for example, b = s+ c+ ε where c is a
constant and ε is normal noise. Then βobs = βtrue = c yet

Prob (Si ≥ 0) = Prob (u ≥ c+ ε) < 1

We can also detect a false negative where two segments of sales react in opposing directions. We present a
more elaborate model below and showcase this idea.
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outcome (condition 1c in Lee, 2008). We include time as an explanatory variable in equation

(10) in order to reduce the estimation bias of β due to housing market trends (Fan and

Gijbels (1996)). Higher-order polynomials tend to accommodate jumps. Hence, we arrive at

specifications (1) and (3).

Finally, a peculiarity of our analysis is that we use time as the running variable. This

does not necessarily invalidate the RDD approach. In particular, the assumptions in RDD

are concerned with continuity and assignment probabilities. Inference is valid as long as

observations have a positive probability to occur in either the control and the treatment

group. But letting time sort observations into the control group and the treatment group

and using the RDD approach bears similar risks as it does in panel data regressions. In

particular, three issues arise in this context as discussed by Hausman and Rapson (2018).

First, serial dependence in the real estate market and an underlying crime process can create

a bias if the estimation window is too large. For this reason we use relatively small estimation

windows. Second, equi-distanced time series makes it impossible to test for manipulation.

This does not apply to our data so that we can explicitly test for manipulation. Third, the

use of observations far away from the threshold can introduce a long-run bias. We avoid the

latter pitfall by using varying bandwidths that are reasonably small.

The Binning Estimator

In the following we describe the binning estimate for the log-density. Effectively, we do not

observe the density of sales directly. McCrary (2008) suggests binning observations. This

procedure generates regressands by counting the number of observations in each bin.

Let φT describe the uniform bin width for the time dimension, and φD the uniform bin

width for the distance dimension. We create a grid over time,
{
T bin
j

}J

j=1
= {(2j − J − 1)φT , },
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and distance,
{
Dbin

k

}K

k=1
= {(2k − 1)φD, }, where J and K are even.27 Then we calculate

Y bin
jk =

1

I

1

φTφD

∑
i

I
(
T bin
j − φT ≤ Ti < T bin

j + φT ∧Dbin
k − φD ≤ Di < Dbin

k + φD

)

as the density of bin {j, k} with midpoint Xbin
jk =

{
T bin
j , Dbin

k

}
. Denote ybinjk = log

(
ε+ Y bin

jk

)

where ε bounds the density away from zero.

The problem becomes

min
δ

{∑
j,k

w
(
Xbin

jk

) (
ybinjk − v

(
Xbin

jk , δ
))2

}
= min

δ

{∑
j,k

s
(
ybinjk , Xbin

jk , δ
)
}

(16)

Underlying this objective function is the assumption that there is a γ0 so that

E
[
s
(
ybinjk , Xbin

jk , δ0
)]

≤ E
[
s
(
ybinjk , Xbin

jk , δ
)]

(17)

and the inequality becomes strict for δ �= δ0.

McCrary (2008) derives a cookbook recipe for good choices for the binning grid and the

bandwidth but emphasizes to take these parameters as suggestive starting values only. We

employ J = K = 20 throughout.

Equation (16) suggests using simple least-squares formulae. But the associated standard

formulae for the standard deviations are inappropriate as they neglect the noise captured in
{
Y bin
jk

}
jk

. McCrary (2008) also develops a t-statistic-styled test for θ = 0, or whether the

running variable is manipulated around the threshold. He estimates the level density from

both sides of the discontinuity point, and the estimate of θ combines those two separate

regressions.

Our setup suggests to estimate both sides jointly after a logarithmic transformation of

the density. This has the advantage that we avoid negative point estimates for the density.

27For example, for J = 4 and φT = 1 the sequence would be
{
T bin
j

}4

j=1
= {−3,−1, 1, 3}. Similarly, let

K = 4 and φD = 1. Then
{
Dbin

k

}4

k=1
= {1, 3, 5, 7}
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Further, the formulation of the t-statistic-styled test of McCrary (2008) hinges on the choice

of the weighting function, w (T,D), as pointed out by Otsu, Xu and Matsushita (2013).

We avoid these complications by applying a pairwise bootstrap with 1000 draws in a direct

least-squares estimation. This is the BinBtStp estimator.

Further, we derive moment conditions to apply the empirical likelihood method described

below. This is the BinEL estimator. The sample analogue objective function (16) has

moment conditions that are equal to zero at the true parameters. Let

E
[
gbinjk (δ0)

]
= E

[
∂s

(
ybinjk , Xbin

jk , δ0
)

∂δ

]
= 0 (18)

be a l × 1 when δ has l elements.

The Local Likelihood-based Estimator

Let f be globally continuous with one exception at X0. We approximate the density f using

f̂ . The Kullback-Leibler divergence between those two densities is given by

DKL =

∫
f (X) log

(
f (X)

f̂ (X)

)
dX (19)

=

∫
f (X)

(
log (f (X))− log

(
f̂ (X)

))
− 1 + f̂ (X) dX (20)

where the second line applies because the approximation f̂ integrates to one. A modification

that puts more weight on observations close to a value X0 is given by a localized Kullback-

Leibler distance

DLKL =

∫
w (X)

(
f (X)

(
log (f (X))− log

(
f̂ (X)

))
− 1 + f̂ (X)

)
dX (21)

The Kullback-Leibler distance is the dual representation of the likelihood function; while

the first is minimized at the true density, the latter is maximized. Therefore, the asymptotic
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local log-likelihood representation is

LL
(
f̂
)
=

∫
w (X) log

(
f̂ (X)

)
dF (X)−

∫
w (X) f̂ (X) dX (22)

where elements that are not affected by a maximization are dropped. The sample analogue

is given by

LL (XI , δ) =
1

I

∑
i

w (Xi) v (Xi, δ)−
∫

w (X) exp (v (X, δ)) dX (23)

The discontinuity splits the numerical integration in two parts. The sample analogue objec-

tive function (23) provides the following l population moment conditions

E
[
gLLi (δ0)

]
= E

[
∂LL (Xi, δ0)

∂δ

]
= 0 (24)

when δ has l elements. Applying the EL approach yields the ELL estimator. We describe

the EL approach that employs the moment conditions (18) and (24) next.

Empirical Likelihood-based Functions

We proceed by describing the empirical likelihood estimator for a generic moment condition

E [gi (δ0)] = 0 with I observations.28 There are J×K observations for the binning estimator.

We place probability pi on observation i so that
∑I

i pi = 1 and pi ≥ 0 are the only constraint

for a maximum likelihood estimator with I unknowns. With I observations this model is

just-identified. This is equivalent to maximizing

L̃ (p, µ) =
I∑
i

log (pi)− µ

(
I∑
i

pi − 1

)

28See Hansen (2018, chapter 19) for a great exposition.
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The MLE yields pi = 1
I
. The additional moment conditions in (24) or (18) produce a

Lagrangian objective function

L (δ, p, µ, λ) =
I∑
i

log (pi)− µ

(
I∑
i

pi − 1

)
− Iλ′

(
I∑
i

pigi (δ)

)
(25)

which has the following first-order conditions

(pi)
1

pi
= µ+ Iλ′gi (δ)

(µ)
I∑
i

pi = 1

(λ)
I∑
i

pigi (δ) = 0

We find µ = I and

pi =
1

I (1 + λ′gi (δ))

which can be substituted back in (25) to find the sample analogue

L (δ, λ) = −I log (I)−
I∑
i

log (1 + λ′gi (δ)) (26)

where λ are Lagrange-style multipliers for the moment condition (24).29 Then λ minimizes

(26) for a given δ, or

λ̂ (δ) = argmin
λ

{LL (δ, λ)}

The solution is well-defined as LL (δ, λ) is convex in λ, but must be solved numerically. The

estimate for δ is obtained for maximizing

δ̂ = argmax
δ

{
LL

(
δ, λ̂ (δ)

)}

29In other words, the maximum likelihood function defined in equation (23) can be used as a Type 1 and a
a Type 2 ML estimator (Davidson, MacKinnon et al. (2004, page 404)), but we are employing the first-order
conditions in equation (24) to feed the empirical likelihood function in equation (26).
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which also requires a numerical optimization. Hence, the estimation of δ requires a nested

optimization. The interior optimization finds a λ that minimizes (26) while an exterior

optimization finds an δ that maximizes that value function.

Define Gi (δ) = ∂gi(δ)
∂δ′

, G = E [Gi (δ)], and Ω = E
[
gi (δ) gi (δ)

′], then the estimator is

well-behaved and
√
I
(
δ̂ − δ

)
d→ N

(
0,
(
G′Ω−1G

)−1
)

and
√
Iλ̂

d→ N
(
0,Ω−G

(
G′Ω−1G

)−1
G′

)

where
√
I
(
δ̂ − δ

)
and

√
Iλ̂ are asymptotically independent under some regulatory condi-

tions.

Monte Carlo Study

We test the four density estimators (Binning with bootstrapped errors, binning with em-

pirical likelihood, local likelihood with empirical likelihood, and maximum likelihood). The

bi-variate data generating process can be described by two linear density functions which

correspond to the control and treatment window, respectively. In line with our estimation,

the realization t ≤ 0 assigns an observation to the control group while the observation is

treated if t > 0. The second variable d measures the distance from the point of interest. The

density is determined by

f (t, d) =




A+ sd if − 1 ≤ t ≤ 0 and 0 ≤ d ≤ 1

A′ + s′d if 0 ≤ t ≤ 1 and 0 ≤ d ≤ 1

0 otherwise

where ∆ = A′/A is the discontinuity at the point of interest d = 0, k = log (s/A) + 1

determines the increase of the density between d = 0 to d = 1 for the control window, and
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h = log (s′/A+ exp (∆))−k. Note that the estimators assume a uniform density in d so that

k �= 0 provides a mis-specification, albeit one that is uniform along any value of d if h = 0.

Further, k provides a (stronger) measure of mis-specification. If h = 0.2, as in the

simulation study below, then the density jump between the control and the treatment window

increases in d. This motivates our use of a weighting function to focus on the density jumps

at d = 0.

We denote the estimate of ∆ for the simulated sample s by ∆s, and the squared bias

of ∆s by ∆bias2 = 1
S

∑
(∆s −∆)2. The standard error is ∆se = 1

S

∑
(∆s −∆mean)

2 where

∆mean = 1
S

∑
∆s. The mean squared error (MSE) is ∆mse = ∆se +∆2

bias.

Table 11 contains summary statistics. We summarize the results in three main points.

First, the binning estimator performs very bad in small samples throughout. Second, the

maximum likelihood estimator outperforms all other estimators in small and large samples,

regardless of whether the data generating process fits the global density or whether there is a

light or strong mis-specification. Third, the local likelihood specification using the empirical

likelihood inference can be considered a good second choice.
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regardless of whether the data generating process fits the global density or whether there is a

light or strong mis-specification. Third, the local likelihood specification using the empirical

likelihood inference can be considered a good second choice.
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Mis-spefi-

cation

Density ap-

proximation

Error

inference
|I|

No Jump (d = 0) Jump (d = 0.05)

∆bias2 ∆se2 ∆mse ∆bias2 ∆se2 ∆mse

No

(k = 0, h = 0)

Binning

Boot-

strapping

300 15.41 15.41 30.82 15.44 15.37 30.81

1000 0.04 0.04 0.08 0.05 0.05 0.09

Empirical

Likelihood

300 25.29 25.28 50.57 26.15 26.03 52.18

1000 0.06 0.06 0.12 0.11 0.11 0.21

Local
300 0.09 0.09 0.18 0.09 0.09 0.18

1000 0.03 0.03 0.05 0.03 0.03 0.05

Global
Maximum

Likelihood

300 0.03 0.03 0.06 0.03 0.03 0.06

1000 0.01 0.01 0.02 0.01 0.01 0.02

Light

(k = 0.2, h = 0)

Binning

Boot-

strapping

300 18.32 18.33 36.65 17.67 17.65 35.33

1000 0.04 0.04 0.08 0.05 0.05 0.10

Empirical

Likelihood

300 31.69 31.69 63.38 30.53 30.47 61.00

1000 0.06 0.06 0.12 0.08 0.08 0.16

Local
300 0.09 0.09 0.18 0.09 0.09 0.18

1000 0.03 0.03 0.05 0.03 0.03 0.05

Global
Maximum

Likelihood

300 0.03 0.03 0.06 0.03 0.03 0.06

1000 0.01 0.01 0.02 0.01 0.01 0.02

Strong

(k = 0, h = 0.2)

Binning

Boot-

strapping

300 18.93 18.87 37.80 18.60 18.34 36.94

1000 0.05 0.04 0.09 0.04 0.04 0.08

Empirical

Likelihood

300 31.57 31.58 63.14 30.91 30.77 61.68

1000 0.08 0.08 0.15 0.06 0.06 0.11

Local
300 0.09 0.09 0.18 0.10 0.09 0.19

1000 0.03 0.03 0.06 0.03 0.03 0.05

Global
Maximum

Likelihood

300 0.04 0.03 0.06 0.03 0.03 0.06

1000 0.01 0.01 0.02 0.01 0.01 0.02

Table 11: Summary statistics for estimates of ∆ using 1,000 simulations each.
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