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Abstract

The interaction of macroeconomic variables may change as the nominal short-
term interest rates approach zero. In this paper, we propose an empirical model
that captures these changing dynamics with a time-varying parameter vector au-
toregressive process. State-dependent parameters are determined by a latent state
indicator. This state indicator follows a distribution with time-varying probabilities
affected by the lagged interest rate. As the interest rate enters the critical zero
lower bound (ZLB) region, the dynamics between the variables and the effect of
shocks change. We estimate the model with Bayesian methods and explicitly con-
sider that the interest rate may be constrained in the ZLB region. We provide an
estimate of the latent rate, i.e., a lower interest rate than the observed level, which
is state- and model-consistent. The endogenous specification of the state indicator
permits dynamic forecasts of the state and system variables. In the application of
the model to the Swiss data, we evaluate state-dependent impulse responses to a
risk premium shock that is identified with sign restrictions. Additionally, we discuss
scenario-based forecasts and evaluate the probability of the system exiting the ZLB
region that is only based on the inherent dynamics.
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1 Introduction

The monetary policy instrument of leading central banks is the nominal short-term inter-
est rate. Until recently, the use of this instrument was perceived as having one problem:
because moderate amounts of money can be stored at a relatively low cost, the effective
nominal interest rate cannot fall below or not far below zero. Some discussion on the zero
lower bound (ZLB) lower bound took place at the beginning of the century (Woodford
2003, Eggertsson and Woodford 2003; Eggertsson and Woodford 2004, Benhabib et al.
2002 and Auerbach and Obstfeld 2004), and it was recognized that the ZLB may fun-
damentally change the functioning of an economy. Nevertheless, at the time, the ZLB
was not perceived as constituting a major problem (Reifschneider and Williams 2000).
However, since the outbreak of the financial crisis and the subsequent euro area sovereign
debt crisis, the policy rate has remained at the ZLB for a considerably long period of time,
particularly in the US but also in Switzerland. To circumvent the constraint of the ZLB
on the policy rate, the US resorted to unconventional monetary policy measures to accom-
modate the negative effects of the financial crash on the real economy. In Switzerland,
the Swiss National Bank (SNB) responded to sharp appreciation pressures by intervening
in the foreign exchange market in 2009/2010 and introducing a minimum exchange rate
against the euro in September 2011. In December 2014, the SNB lowered the range for
its operational target, i.e., for the three-month Libor, into negative territory to between
-0.75% and 0.25%. In January 2015, it discontinued the euro-Swiss franc exchange rate
floor and moved the target range further into negative territory to between -1.25% and
-0.25%.

Still, even if negative policy rates are now being implemented, they are still constrained.
As long as cash currency is available, there will be a lower bound at which it will pay to
substitute a deposit account by storage. Moreover, if the economic dynamics are changing
near this effective ZLB, it is also an open issue as to whether the shocks or interest
rate changes have the same effect on, e.g., prices, exchange rates and GDP, compared
to when interest rates are out of the ZLB region. One reason for this is that usually
and obviously the ZLB region is reached because of strongly deteriorating economic
and financial conditions. In these periods, uncertainty increases, which may change the
interest rate sensitivity of economic agents. Moreover, adverse shocks may have different
effects if agents expect that the central bank has a limited ability to counteract those
shocks with further interest rate cuts.

In this paper, we analyze the data with a vector autoregression (VAR) with parameters
that are allowed to change when the ZLB becomes binding. A latent state indicator
determines the state-specific parameters and error covariances of the VAR system. The
probability distribution of the state indicator itself depends on a covariate that is per-
ceived to be informative with regard to the prevailing state. A natural candidate is the
interest rate; we work with this variable currently. Furthermore, we take into account
that the interest rate may be constrained. We are able to provide an estimate of the
latent interest rate, i.e., the rate below the observed rate, which would be state- and
model-consistent. The method can be adapted to situations in which several variables are
constrained permanently or temporarily. This becomes important in situations in which
an unconventional monetary policy directly targets prices in specific asset markets, e.g.,
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government bonds, mortgages or currency markets.

Our research relates to the growing empirical literature that studies macroeconomic dy-
namics at the ZLB using structural VARs.1 Studies relying on a constant parameter VAR
include Miyao (2002) and Schenkelberg and Watzka (2013). More similar to our approach
is Iwata and Wu (2006), who examine the Japanese experience with a constant-parameter
structural VAR but take into account that the interest rate is a constrained variable. A
few papers allow for changing parameters at the ZLB. Baumeister and Benati (2013)
explore how a compression in the bond spreads impacts the economy during the Great
Recession using a time-varying parameter VAR that is estimated for the US, the Euro
area, Japan and the UK. Wu and Xia (2016) assess how parameters of a VAR changed
when the interest reached the ZLB in the US by relying on a latent interest rate derived
from a term-structure model. Similarly, Bäurle and Kaufmann (2014) study how the
response of Swiss macroeconomic aggregates to risk premium shocks is affected by the
ZLB. None of these contributions, however, models the endogenous change of parameters
when the interest rates approach the ZLB.

We apply our method to analyze the dynamics of Swiss data: the consumer price index
(CPI), GDP, and the effective exchange rate in relation to the nominal interest rate. Tak-
ing up the idea of Bäurle and Kaufmann (2014), we analyze how risk premium shocks
affect the exchange rate transmission to prices. We find that risk premium shocks have
more persistent effects on prices if the policy rate is constrained but have only temporary
effects otherwise. The endogenous specification of the state indicator allows for the com-
putation of the dynamic state and variable forecasts. We provide scenario-based forecasts
for the third quarter of 2014 to the third quarter of 2020. We find that the system is
unlikely to exit the ZLB region as long as appreciation pressures are present.

The next section presents the econometric model and discusses various aspects of the
endogenous state probability distribution. Section 3 briefly presents the estimation pro-
cedure and describes the computation of the unconditional and scenario-based forecasts.
The results are discussed in section 4, and section 5 concludes.Technical details can be
found in the appendix.

2 Econometric model

2.1 Specification

Let yt be a N×1 vector of observed variables, which follow a vector autoregressive process

1Additionally, there are a number of contributions focusing on the behavior of the yield curve at the
ZLB (Wright (2012), Swanson and Williams (2014a), Swanson and Williams (2014b))
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y∗t = µt + B1tyt−1 + · · ·+ Bptyt−p + εt, εt ∼ N(0,Σt) (1)

y1t = max{y∗1t, b}

y2t = y∗2t

where the variables that are potentially constrained at a certain bound b are gathered
in y1t and the unconstrained variables are collected in y2t. In a standard censored Tobit
model (Chib 1992), a positive probability is attached to the constraint b, P (y1t = b) =
P (y∗1t ≤ b) > 0. While y1t is the nominal interest rate in our application, the model is
written in general terms such that y1t may be a sub-vector of yt and hence b may represent
a vector of bounds to take into account that other variables may be constrained as well.
For example, in the Swiss case, in addition to the interest rate constraint, this could be
the 1.20 floor introduced for the euro-Swiss franc exchange rate.

The following two considerations render the modeling approach different from a standard
Tobit analysis. The Tobit framework usually applies to a regression relationship with
exogenous regressors, in which the dependent variable is censored at a known threshold
b. However, in (1), we encounter an endogenous dynamic relationship, where the current-
period variables yt, including the potentially censored variables y1t, depend on lagged
values, particularly on the lagged values of y1t. Second, censored data usually contain the
information about which observations are censored, i.e., some observations are constrained
to the minimum value b. Our data do not contain this information. For example, the
interest rate is always observed, although at a very low value near zero, or even slightly
negative, in recent periods. Thus, setting the lower bound equal to b = 0 would mean that
no observations have actually been constrained. However, this goes against the view that
central banks were constrained in recent times, forcing them to implement unconventional
policy measures. Thus, the relevant threshold b may be at a value above but close to
zero. However, the data do not tell us the periods in which central banks were constrained
in setting the interest rate.

In light of these two aspects, we may also envisage using a model in which the interest
rate has truncated support with a moving lower truncation threshold given, e.g., by the
lower bound of the Libor target in the SNB’s case. We do not pursue this avenue because
we also want to evaluate the extent to which monetary policy is constrained, conditional
on all available observed values. For periods in which we assume the central bank has
been constrained, the Tobit framework allows us to form a model-based estimate of the
so-called latent interest rate y∗1t, i.e., the interest rate level that is lower than the threshold,
which would be consistent with the model and currently observed data.

To address the first issue, we will interpret model (1) as a regression relationship:

y∗t = Xtβt + εt (2)

y1t = max{y∗1t, b}

where Xt = IN ⊗
[
1, y′t−1, . . . , y′t−p

]
and βt = vec

(
[µt, B1t, . . . , Bpt]

′). This notation
makes explicit that we condition parameter estimation on past observed values, i.e., Xt

contains all lagged observed values of yt and the observed values of very low interest rates.
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To determine the periods in which the interest rate is constrained, we use b = 0.25. This
assumption defines the interest rate since 2010 and two observations at the end of the
1970s as being constrained (see figure 3).2

To model the time-varying process of the parameters, we rely on a mixture approach

βt = β0(1− It) + β1It

Σt = Σ0(1− It) + Σ1It (3)

where β0 and Σ0 represent, respectively, the effects and the error variance structure when
the interest rate is out of what we call the critical ZLB region, and β1 and Σ1 are the
parameters that prevail when the interest rate is within the ZLB critical region. The
same indicator It drives the effects and the error covariance of the system, given that
the volatility of the constrained variables obviously changes, as do the covariances with
other variables when the interest rate enters the critical ZLB region. The indicator It,
which takes a value of 0 or 1, It ∈ {0, 1}, may be specified ad hoc by defining a priori the
periods of very low interest rates. The disadvantage of this procedure is that the relevant
threshold for the interest rate at which dynamics change is unknown to the investigator.

Therefore, we assume the indicator It to be a latent variable that is to be estimated from
the data. A natural indicator of whether It is 0 or 1 is the departure of the interest rate
from the ZLB in the lagged period. We formulate a probabilistic model for It that depends
on the lagged interest rate rt−1. To be consistent with model 1, we base the condition
again on past observed values:

P (It = 1|rt−1, γ, γ
r) =

exp (γrrt−1 + γ)

1 + exp (γrrt−1 + γ)
(4)

Alternative specifications may use the inflation rate and the output gap as Taylor rate
indicators:

r̂t−1 = r̂ + α̂π (πt−1 − π∗) + α̂y ŷt−1

where the hats indicate estimates and r̂, (πt − π∗) and ŷt represent, respectively, the long-
run average interest rate, the deviation of the inflation rate from target and the output
gap. This specification has advantages when the interest rate reaches the zero lower
bound. An increasing inflation rate and an increasingly positive output gap indicate
rising interest rates that are again away from the zero lower bound towards regime It = 0.

2.2 Some considerations on the probability function

To obtain state identification in (4), we restrict γr < 0. This ensures that It = 1 indicates
periods in which the interest rate is in the critical ZLB region.

Moreover, we call the parametrization (4) the implicit threshold parametrization because
an estimate allows for the recovery of the threshold after having estimated the model.
The threshold is defined as the level of rt, at which the state probability equals 0.5.

2Bäurle and Kaufmann (2014) take into account another brief episode with interest rates as low as
0.5% in 2003 and 2004.

5



8

For example, if the interest rate were expressed in percentage terms if γr = −1 and
γ = 0.5 the threshold level would lie at −γ/γr = 0.5%. To estimate the model, we will
use parametrization (4); by additionally implementing a two-layer data augmentation
step, the non-linear model in γr and γ becomes linear. This allows us to draw from
full conditional distributions. However, the drawback of parametrization (4) is a high
correlation between γr and γ, as we will see below.

The usual probability parametrization, which we call the explicit threshold parametriza-

tion, explicitly includes the threshold γ̃ (Teräsvirta and Anderson 1992):

P (It = 1|rt−1, γ, γ
r) =

exp (γr (rt−1 − γ̃))

1 + exp (γr (rt−1 − γ̃))
(5)

Note that from an estimate of (4), in case γr �= 0, we can also retrieve the threshold level
γ̃,

−γrγ̃ = γ

γ̃ = −γ/γr (6)

Relation (6) shows that the threshold γ̃ and γ are mutually highly dependent. Conditional
on γr, the threshold determines γ and vice versa. For a given threshold, γ is increasing
in γr. Figure 1 illustrates this point. The figure plots values for the short-term interest
rate against the state probability obtained for various γr, assuming a threshold level of
0.8%. As −γr increases, the probability function approaches a step function. To keep the
threshold unchanged, γ increases by the same factor as γr.

Figure 1: State probability P (It = 1|rt, γ
r, γ) for various sensitivities γr, where γ is

adjusted to keep the threshold level at 0.8%.
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The relationship between both parameterizations can be used to include information in
the prior distribution for the parameters of the state probabilities. We may have some
idea of an upper and lower bound for γ̃. For example, γ̃ is certainly well below 10%, is
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probably below 1%, and may be between 0.5% and 1.5%. Therefore, let the upper and
lower bound on γ̃ be γ and γ, respectively, such that γ < γ̃ ≤ γ.

This implies 0 ≤ γ ≤ − γ
γr ≤ γ, or

−γrγ ≤ γ ≤ −γrγ (7)

This places an upper and a lower bound on γ since γr < 0. The prior for (γ, γr) is
expressed with these inequalities in place:

π (γ, γr) = N (g0, G0) 1 (γ
r < 0) 1

(
−γrγ ≤ γ ≤ −γrγ

)
(8)

We may also work with parametrization (5). Various priors have been suggested in the
literature; see Lopes and Salazar (2005) for an overview. Using this parametrization,
a truncated normal prior distribution may also incorporate prior information for the
threshold.

3 Estimation and forecasting

3.1 Estimation

To describe the estimation of model (2)-(4) in a concise way, we introduce additional
notation. While the vector yt represents the vector of observed variables (see specification
(2)), the vector y∗t represents the augmented data vector, which contains all uncensored
variables, y∗t = (y′2t, y

∗′
1t)

′. The bold-faced objects gather all observations of a data vector or
a latent variable, e.g., y = {yt|t = 1, . . . , T}, similarly for y∗ and I. We gather all latent
values of the censored variables in y∗

1
= {y∗1t|t ∈ t∗}, t∗ = {τ |y1τ ≤ b, τ = 1, . . . , T}.

The parameters are included in θ = {βk,Σk,γ|k = 0, 1,γ = (γr, γ)}, and the augmented
parameter vector adds the latent variables to θ, ϑ =

{
θ,y∗

1
, I
}
.

We apply Bayesian Markov chain Monte Carlo (MCMC) methods to estimate the model.
By combining the likelihood with the prior distribution, we obtain the conditional poste-
rior

π (ϑ|y) ∝ f (y∗|X, I, θ)π (I|r, θ)π
(
y∗

1

)
π (θ) (9)

To obtain a sample from (9), we draw from the posterior of
(i) I, π (I|y∗,X, r, θ)
(ii) y∗

1
, π

(
y∗

1
|y2,X, I, θ

)
1(y∗

1
≤ b)

(iii) γ, π (γ|r, I) 1 (γr < 0) 1
(
−γrγ ≤ γ ≤ −γrγ

)

(iv) the rest of the parameters, θ−γ , π (θ−γ |X,y∗, I)

All posterior distributions are standard distributions. Given that there is no state persis-
tence, in step (i), we can sample I in one draw from a discrete distribution. Conditional
on observed values y2, I and the model parameters, we draw y∗

1
from a truncated normal

distribution. To derive the posterior of the parameters governing the state distribution,
we condition on two layers of data augmentation (see Frühwirth-Schnatter and Frühwirth
2010 and Kaufmann 2015). In the first layer, we obtain a linear model with non-normal
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error terms, which relates the difference in latent state utilities to the interest rate effect
on the state probability. In the second layer, we approximate the exponential error distri-
bution with a mixture of M normals. Conditional on the differences in latent utilities and
the components of the mixtures, the posterior of γ is normal. We draw from the normal
posterior that is truncated to the region where the parameters restrictions derived in (8)
are fulfilled. The posterior distribution of the remaining parameters in (iv) are normal
and inverse Wishart, respectively, for βk and Σk, k = 0, 1. A detailed derivation of the
likelihood and the prior and posterior distributions can be found in the appendix C.

3.2 Forecasting

The model can be used to obtain forecasts over the forecast horizon H , h = 1, . . . , H . To
obtain draws from the unconditional posterior predictive distribution at each horizon h:

π (yT+h|yT ) ∝

h∏

j=1

π (yT+j|yT+j−1, IT+j)π (IT+j|yT+j−1) (10)

We produce dynamic forecasts and simulate for j = 1, . . . , h

1. I
(l)
T+j from π

(
I
(l)
T+j|r

(l)
T+j−1,γ

(l)
)
, with r

(l)
T = rT .

2. y
(l)
T+j from π

(
y
(l)
T+j|y

(l)
T+j−1, I

(l)
T+j, θ

(l)
)
∼ N

(
m

(l)
T+j ,ΣI

(l)
T+j

)

with m
(l)
T+j = X

(l)
T+jβI

(l)
T+j

, y
(l)
T = yT and X

(l)
T+1 = XT+1.

for each draw (l) out of the posterior π (ϑ|y).

We may also produce so-called conditional forecasts, which would reflect specific scenarios.
In all examples, step 2 above is adjusted appropriately. For example,

2. (i) keeps the mean forecast of the interest rate at or above the last rate, i.e., restricts
the predictive distribution to:

π (yT+h|yT , (m1,T+1, . . . , m1,T+h) = y1T ) or π (yT+h|yT , (m1,T+1, . . . , m1,T+h) ≥ y1T )

The second conditional forecast is implemented as follows. At each step j, j =

1, . . . , h, we set m
(l)
1,T+j = max

{
X

(l)
1,T+jβ1,I

(l)
T+j

, y1T

}
.

2. (ii) implements a (mean) path for a variable i over a certain period of time, for
example, h = 1, . . . , 4, (e.g., lower the interest rate to -1% for one year):

Simulate the first variable i, y
(l)
i,T+h from N

(
mi,T+h,Σi,I

(l)
T+h

)
, where mi,T+h is pre-

specified.
Then, conditional on y

(l)
i,T+h, simulate all other variables, y

(l)
−i,T+h|y

(l)
i,T+h, from

N
(
m−i|i,T+h,Σ−i|i,I

(l)
T+h

)
, the moments of which are given by the moments of the

implied normal conditional predictive distribution.
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2. (iii) a combination of the two. Here we apply 2.(ii), except that y
(l)
i,T+h refers to

sub-vector i of yT+h, which is generated from the joint predictive distribution with
restricted means.

4 Results

4.1 Specification

To illustrate the method, we estimate a level VAR for four Swiss variables: the consumer
price index (CPI), GDP, the 3-month Libor and the trade-weighted effective exchange
rate. We use quarterly data covering the first quarter of 1974 to the third quarter of 2014.
As already mentioned, the state-identifying restriction γr < 0 defines It = 1 as indicating
the periods in which the interest rate enters the ZLB critical region. We additionally
induce the threshold, i.e., the level of the interest rate at which P (It = 1) = 0.5, to lie
in the interval [γ, γ] = [0.5, 1.5]. Hence, the prior mean for the threshold is 1.0. In the
critical ZLB region, we define the interest rate levels at or below 0.25 as being constrained,
i.e., b = 0.25.

The specification of the prior hyperparameters, π(ϑ), completes the Bayesian setup in (9);
see Appendix B.2 for details about the hyperparameters.

1. We assume an independent Minnesota-type prior for the VAR parameters βk, k =
0, 1, π(βk) = N(v, V ) (Doan et al. 1984; Bańbura et al. 2010).

2. For Σk, we assume inverse Wishart prior distributions π(Σk) ∼ IW (s, Sk), where the
scale Sk is proportional to the variance of the residuals of state-specific univariate
autoregressions, Sk,ii ∝ σ2

ki, with pre-defined states I t = 1 if the Libor ≤ 1%.

3. A relatively informative prior on γr is used to obtain the steep shape of the transition
function (see figure 1). This is also necessary due to the relatively low number of
observations near the ZLB.

(
γr

γ

)
∼ N

([
−10
10

]
, diag (0.01, 6.25)

)
1 (γr < 0) 1 (−0.5γr ≤ γ ≤ −1.5γr)

(11)
The left panel of Figure 2 plots the prior distribution of γr and γ. Although the
prior distributions are quite informative, they are considerably updated (shift to the
left and increased variance) conditional on the data. The right panel shows what
this implies for the transition function. The 95% highest posterior interval is also
quite dense for the posterior. We see that, conditional on the data, the parameter
implies a considerable shift to the right.

4. For y∗

1
, we work with a diffuse prior, π

(
y∗

1

)
∝ 1(y∗

1
≤ b).
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Figure 2: Left plot: Prior (left) and posterior (right) distributions of γr and γ. Right plot:
prior (left) and posterior (right) 95% highest density interval for the transition function
conditional on γr and γ; the black line corresponds to the median transition function.
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4.2 Model inference

To estimate the model, we iterate M = 10, 000 times over the sampling steps (i)-(iv) listed
in section 3.1 and retain the last 8, 000 to compute the posterior moments. Figure 3 plots
the interest rate and the inflation rate along with the mean posterior probabilities of state
2 in yellow. The estimate is able to discriminate clearly between the two states. State 2
is also estimated to prevail at the end of the 1970s, a period where the Swiss franc was
also subject to appreciation against the German mark and where, therefore, interest rates
were also decreased to a then all-time low. The horizontal line indicates the threshold
level at 1.5%, which is inferred from the parameter estimates of the transition function.

The shaded area below b = 0.25 indicates the periods in which the interest rate is thought
to be constrained. On the left-hand side in Figure 4, the observed interest rate is plotted
along with the median estimate of the latent observations. Compared with the end of
the 1970s, the ZLB on the interest rate appears to bind more strongly. Up to the end of
the sample, the median of the latent interest rate decreases to nearly -0.6%. The right-
hand histograms in figure 4 addionally show that over 90% of the sampled period-specific
latent interest rates, y∗1t < b, were lower than the all-time minimum observed value for
the interest rate, min

t
{y1t}.

To document that dynamics change when the interest rate enters the critical ZLB region,
we plot impulse responses to a structural shock that is identified as a risk-premium shock.
Monetary policy can counter-act the effects of a risk-premium shock, which effects an
appreciation for a small open economy, by lowering the interest rate. Obviously, this
reaction will be constrained if the interest rate is already very low. As a consequence,
the short-term and long-term pass-through effects on prices will also differ in the two
situations (see also Bäurle and Kaufmann 2014). To obtain structural identification, we
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Figure 3: Annual inflation rate (red) and interest rate (blue). Mean posterior probability
(yellow) of state 1. The periods during which the interest rate is defined to be constrained
are those in which the interest rate lies in the shaded area (b ≤ 0.25). The horizontal line
indicates the inferred threshold level 1.5% at which P (It = 1) = 0.5.
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Table 1: Sign restrictions on the impact and next period responses of the variables.

Reaction in
Shock to GDP CPI Short rate exchange rate
Risk-premium − ↓ ↓ ↑

impose sign restrictions on the impact and next period responses of the variables, as
shown in Table 1 (Arias et al. 2014). A risk-premium shock is expected to appreciate the
currency. In a small open economy, the pass-through should lead to a decrease in prices.
Monetary policy can counteract the effects by lowering the interest rate. The response of
GDP is not restricted. All responses are left unrestricted after the first two periods. This
allows to infer whether the medium-term and the long-term effects differ between the two
states.

The state-specific impulse responses to a risk-premium shock are plotted in Figure 5. The
responses are normalized to correspond to 1% appreciation in the exchange rate. Although
the density intervals are quite large, the tendencies are recognizable. In the short-term,
we observe that there is obviously more leeway for the interest rate to decrease transitorily
in state 1 (It = 0). The response of GDP is not restricted and is broadly insignificant.
Nevertheless, the median shows a positive transitory effect that is likely initiated by the
decrease in the interest rate. The negative pass-through to prices is transitory, and after
two years, a level reversion takes place. In particular, the long-run effects on prices are very
different in state 2 (It = 1). Given that the interest rate cannot react as strongly to the
risk-premium shock in the ZLB region, the initial negative pass-through to prices remains
permanent. In other words, a transitory risk-premium shock translates to a permanent
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Figure 4: Left: Observed interest rate and model-based estimate of y∗

1
< b (red). Mean

posterior probability of state 1 (yellow). Right: histogram of y∗1t < b.
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effect on the price level. Although long-run cross-country relationships are not modelled
explicitly, we know that for a given real exchange rate, the permanent negative effects
on the price level induce further long-run nominal appreciation of the currency. Overall,
these results are consistent with those presented in Bäurle and Kaufmann (2014).

4.3 Forecasts

The model estimate is used to answer the following questions: Where does the system
drift to if the mean interest is observed as falling to -1% in the first quarter of the forecast
horizon and remains at this level for one year but is left unconstrained afterwards? What
is the probability of exiting the critical ZLB region, and under what economic conditions
does this happen in this scenario? These questions may be relevant against the backdrop
of the SNB’s recent decision to introduce negative interest rates. However, it is important
to recognize that our scenario does not implement a policy experiment, i.e., it does not
provide an estimate of the causal impact of a decrease in interest rates to -1%. It merely
describes the economic conditions consistent with an average interest rate at -1% for one
year. Furthermore, to obtain a policy-relevant scenario, we would have to condition on
e.g. foreign monetary policy and/or foreign demand. This is, however, beyond the scope
of this exercise.

The forecast horizon is 6 years, H = 24. The sample from the forecasting density (10) is
obtained by producing dynamic forecasts using all posterior parameter draws. Figure 6
displays the forecasts we obtain if the mean interest rate stays at a level of -1% for one
year from Q4 2014 onwards. This corresponds to the second setting in 2 (ii) in section
3.2. Over the entire forecasting period, the mean interest rate remains quite stable in this
scenario. However, the model is able to produce a relevant chance (12%) for the system
to exit the ZLB region. GDP growth and inflation are low on average but are still positive
(0.7% and 0.2%, respectively). This overall stable development is accompanied by further
appreciation pressures.

Figure 7 plots the forecasts of the 12% paths that finally exit the ZLB region again. On
average, GDP growth and inflation reach 1.4% and 1.1%, respectively, and we observe
that they are accelerating over the forecast period. At the end of the forecast horizon,
annual GDP growth reaches 3% and inflation reaches 2.3%. At the same time, the ap-
preciation trend is broken. On average, depreciation amounts to 0.1%, while towards the
end of the forecast horizon, it increases to 3.1%. Thus, the results indicate that economic
conditions must improve substantially to make an exit from the ZLB regime happening
endogenously. In contrast to the previous results, an exit from the ZLB region would
be accompanied by a depreciation of the Swiss franc. Of course, exiting the ZLB also
depends on (exogenous) foreign conditions, which are not included in this VAR model
for domestic variables. Taking into account a specific view on the evolution of foreign
conditions would influence our results. However, the results illustrate that our proposed
model is able to endogenously produce a transition from one regime to the other, without
the need of exogenous variables causing the shift.
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Figure 6: Left: Forecast distribution that is conditional on a mean interest rate lowered
to -1% for 1 year. The black line is the median forecast, and the areas decreasing in shade
correspond to the 25%, the 50% and the 80% interval of the highest forecast density. The
vertical line denotes the end of the sample, Q3 2014. Right: Mean forecast probability of
IT+h = 1.
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5 Conclusion

In the present paper, we propose to capture the changing dynamics between variables
near the ZLB with the use of a nonlinear model. A latent state indicator determines the
changes in the parameters and error covariances of a VAR model. The logit model for the
state probability itself depends on a covariate, which is perceived to significantly indicate
whether the system is out of or in the so-called critical ZLB region. Currently, we work
with the lagged interest rate level as a covariate in the probability function. It is obvious
that other variables determining the policy stance, such as GDP growth or the inflation
rate, could also be used as covariates. For a small open economy, another alternative
could be to include a monetary condition index, which determines the monetary stance
by a weighted average of the interest rate and the exchange rate. The specification of
the VAR model takes into account that in the ZLB region, the interest rate may be a
constrained variable. The estimation of the model then provides us with an inference on
the latent rate, i.e., the lower-than-observed level of the interest rate, which would be
state- and model-consistent.

We set up a model for four Swiss variables: GDP, CPI, the Libor and a trade-weighted
effective exchange rate. We estimate the model within a Bayesian framework, which allows
for situations with few observations near the ZLB. Additionally, we can input subjective
information into the specification of the prior distributions. For example, a notion for an
upper and lower bound of the interest rate at which we think that dynamics may change,
a prior notion on the threshold value, can be included in the prior of the parameters of the
state probability distribution. The results show that dynamics indeed change when the
interest rate enters the ZLB region. The impulse response analysis shows evidence that
transitory risk-premium shocks, which correspond to a 1% appreciation in the exchange
rate, translate to a permanent negative price level effect when the interest rate is in the
ZLB region. This differs from the normal situation, in which the negative price level effect
is also transitory.

The endogenous specification of the state probability distribution allows for a dynamic
forecast of the state and the VAR system in the future. In particular, we can evaluate the
probability with which the system can exit the ZLB region based on its own dynamics.
We find that the model is able to produce a relevant chance of exiting the ZLB . However,
in our illustrative model with only four domestic variables, this is unlikely to happen as
long as the Swiss franc is under appreciation pressure.

The model used in the present paper can be extended in various ways. The model for a
small open economy would be completed by including a set of foreign, exogenous variables.
Additional scenarios could then be evaluated, such as the reaction to a further increase
or decrease in the foreign policy rate or a protracted recovery abroad. Another avenue
would be to explicitly model long-run common trending behavior among the variables.
An issue that is not addressed in this paper is how to identify a monetary policy shock
in the ZLB region. Further research will address these extensions.
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A Distributional properties of censored and uncen-

sored variables

Given the normality assumption for εt, model (2) defines a joint normal distribution for
the variables y∗t = [y∗′1t, y

′
2t]

′, where y2t gathers the uncensored variables.
[
y∗1t
y2t

]
|Xt, It, θ ∼ N

([
m1It

m2It

]
,

[
Σ11,It Σ12,It

Σ21,It Σ22,It

])
(12)

where θ = {βk,Σk, γ
r, γ|k = 0, 1} represents the model parameters and miIt = Xitβi,It and

Σij,It are obtained by gathering the corresponding rows in (2) and by accordingly partition-
ing the moment matrices. This allows for the expression of the joint observation density
f(y∗t ) as the product of a marginal and a conditional density, f(y∗t |·) = f(y∗1t|y2t, ·)f(y2t|·),
where:

f(y2t|·) = N (m2It ,Σ22,It) = N (X2tβ2It ,Σ22,It) (13)

f(y∗1t|2|·) = f(y∗1t|y2t, ·) = N
(
m1It|2,M1It|2

)
(14)

with

m1It|2 = m1It + Σ12,ItΣ
−1
22,It

(y2t −m2It) (15)

M1It|2 = Σ11,It − Σ12,ItΣ
−1
22,It

Σ21,It (16)
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The factoring of f(y∗t |·) partitions the joint distribution into two parts and allows for
the implementation of a normal regression model for the unconstrained variables and a
conditional censored normal regression model for the constrained variables:

[
y1t|2
y2t

]
|Xt, It, θ ∼ N

([
m1It|2

m2It

]
,

[
M1It|2 0

0 Σ22,It

])
1 (y1t ≥ b) (17)

B Bayesian framework

B.1 Likelihood

Define the number Nj, j = 1, 2, which indicates the number of censored and uncensored
variables, respectively.

Conditional on I and using (17), the data likelihood can be factorized

f (y|X, I, θ) =

T∏

t=p+1

f (yt|Xt, βIt,ΣIt) 1 (y1t ≥ b) (18)

=

T∏

t=p+1

f (y1t|y2t, X1t, β1It,Σ11,It) 1 (y1t ≥ b) f (y2t|X2t, β2It,Σ22,It) (19)

From (13), the period t density contribution is multivariate normal

f (y2t|X2t, β2It ,Σ22,It) = (2π)−N2/2 |Σ22,It|
−1/2×

exp

{
−
1

2
(y2t −X2tβ2It)

′Σ−1
22,It

(y2t −X2tβ2It)

}
(20)

and the period t contribution of censored variables is

f (y1t|y2t, X1t, β1It,Σ11,It) 1 (y1t ≥ b) = Φ
(
M

−1/2
1It|2

(
b−m1It|2

))1(y1t=b)

×

|M1It|2|
−1/2φ

(
M

−1/2
1It|2

(
y1t −m1It|2

))1(y1t>b)

(21)

where Φ(z) for the N1 × 1 vector z,

Φ(z) =

∫ z1

−∞

. . .

∫ zN1

−∞

|M1It|2|
−1/2φ(z)dz1 . . . dzN1 ,

denotes the cdf and φ the pdf (see (20)) of the standard (multivariate) normal distribution.

The likelihood of the complete data factorizes

f (y∗|X, I, θ) =
T∏

t=p+1

f (y∗1t|y2t, X1t, β1It ,Σ11,It) f (y2t|X2t, β2It ,Σ22,It) (22)

where the moments of the conditional and marginal normal observation densities are given
in, respectively, (14)-(16) and (13).
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B.2 Prior distributions

To complete the Bayesian setup, we specify the prior density of the state indicator I:

π (I|r, γ, γr) =
T∏

t=p+1

π (It|rt−1, γ, γ
r) (23)

The prior for the censored variables is assumed to be diffuse, π
(
y∗

1

)
∝ 1(y∗

1
≤ b). We may

also work with a proper prior distribution that is restricted to the latent area, π
(
y∗

1

)
∼

N (0, κI) 1(y∗

1
≤ b) with κ some real number.

Finally, the prior specification for the model parameters completes the Bayesian setup.
We assume independent priors:

π (θ) = π (γ, γr)
1∏

k=0

π (βk)π (Σk) (24)

The prior for (γr, γ) includes a state-identifying restriction and additional information on
the threshold level; see (11).

The priors on βk are independent normal, with a variance structure implied by Minnesota
priors, π (βk) = N (v, V k). The vector v is of dimension N(Np + 1); see (2). Given that
we estimate a VAR in levels, we center the first own autoregressive lag at 1 and all other
coefficients at zero, v = {vl|l = 1, . . . , N(Np + 1)}, with

(vl, V k,ll) =

{
1 l = (j − 1)(Np+ 1) + (j + 1), j = 1, . . . , N
0 otherwise

We specify the corresponding elements in V k, such that

V ar(Bkl,ij) =

{
0.01/l2 i = j
0.25(0.01/l2)(σ2

ki/σ
2
kj) i �= j

, i, j = 1, . . . , N

for k = 0, 1 and l = 1, . . . , p. The state-specific variances in the scale factor (σ2
ki/σ

2
kj) are

equal to the variance of the residuals of univariate state-specific autoregressions, in which
the states are predefined as I t = 1 if the Libor ≤ 1%. For the intercepts, we work with
diffuse priors, V ar(µki) = 5.

For Σk, we assume an inverse Wishart prior distribution IW (s, Sk) with degrees of freedom
s = N + 2 and scale Sk with diagonal elements Sk,ii = σ2

ki; see above.

C Posterior distributions

To obtain draws from the posterior

π (ϑ|y) ∝ f (y∗|X, I, θ)π (I|r, θ)π
(
y∗

1

)
π (θ)

we sample iteratively from the posterior of
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1. the state indicator, π
(
I|y∗

1
,X, r, θ

)
. Given that there is no state dependence in the

state probabilities, we are able to sample the states simultaneously. We update the
period t prior odds P (It = 1) /P (It = 0) = exp (γrrt−1 + γ) to obtain the posterior
odds

P (It = 1|·) /P (It = 0|·) =
f (y∗t |Xt, β1,Σ1) exp (γ

rrt−1 + γ)

f (y∗t |Xt, β0,Σ0)
, t = p+ 1, . . . , T

We sample T − p uniform random variables Ut and set It = 1 if

P (It = 1|·)/ (P (It = 0|·) + P (It = 1|·)) ≥ U

2. the censored variables, π
(
y∗

1
|y2,X, I, θ

)
1(y∗

1
≤ b). Conditional on I and the ob-

served variables, and given a diffuse prior, the moments of the posterior normal
distribution π

(
y∗

1
|·
)
are given by (14)-(16). We sample from this distribution trun-

cated to the region y∗

1
≤ b.

3. the parameters of the state distribution,π (γ|r, I) 1 (γr < 0) 1
(
−γrγ ≤ γ ≤ −γrγ

)
.

First, we introduce two layers of data augmentation, which render the non-linear,
non-normal model into a linear-normal model for the parameters (Frühwirth-Schnatter
and Frühwirth 2010):

• We express the state distribution in relative terms as the difference between
the latent state utilities

̟t = Iu1t − Iu0t
= γrrt−1 + γ + ǫt, ǫt ∼ Logistic

where

Iu1t = γrrt−1 + γ + ν1t, and Iu0t = ν0t

with νkt i.i.d. Type I EV

• We approximate the logistic distribution by a mixture of normals with M com-
ponents, R = (R1, . . . , RT ). Conditional on the latent relative state utilities
̟ and the components, we obtain a normal posterior distribution, N(g,G),
with moments:

G =

(
G−1

0 +
T∑

t=p+1

Z ′
tZt/s

2
mt

)−1

g = G

(
G−1

0 g0 +

T∑

t=p+1

Z ′
t̟t/s

2
mt

)

where Zt = [rt−1, 1]
′ and s2mt

= s2m is the variance of the mixture components
Rt, see Table 2 in Frühwirth-Schnatter and Frühwirth (2010).

To implement the restrictions on γ according to (7), we partition the posterior
appropriately:

π (γr, γ|·) ∼ N

([
g1
g2

]
,

[
G11 G12

G21 G22

])
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We then first sample γr,(mc) from N(g1, G11)1 (γ
r < 0) and then sample γ from the

truncated conditional posterior (Robert 2009 or Botev 2016):

γ|γr = γr,(mc) ∼ N (gc2, G
c
2) 1

(
−γrγ ≤ γ ≤ −γrγ

)

with moments

gc2 = g2 −G21G
−1
11

(
γr,(mc) − g2

)

Gc
2 = G22 −G21G

−1
11 G12

4. the rest of the parameters, π
(
θ−γ |X,y∗

1
, I
)
. Conditional on I and the augmented

data y∗, the model in (2) becomes linear normal. The posterior distribution of the
regression parameters and the error variances are then, respectively, normal and
inverse Wishart, the moments of which can be derived in the usual way.
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