Monetary Policy Credibility and the Macroeconomy

Martin Melecky Diego Rodríguez Palenzuela
De Nederlandsche Bank European Central Bank

Ulf Söderström*
Bocconi University, IGIER, and CEPR

September 2007

Abstract

We quantify the effects of monetary policy transparency and credibility on macroeconomic volatility in an estimated model of the euro area economy. In our model, private agents are unable to distinguish between temporary shocks to the central bank’s monetary policy rule and persistent shifts in the inflation target, and therefore use optimal filtering techniques to construct estimates of the future monetary policy stance. We find that the macroeconomics benefits of credibly announcing the current level of the time-varying inflation target are reasonably small as long as private agents correctly understand the stochastic processes governing the inflation target and the temporary policy shock. If, on the other hand, private agents overestimate the volatility of the inflation target, the overall gains of announcing the target can be large. We also show that the central bank can help private agents in their learning process by responding more aggressively to deviations of inflation from the target.

Keywords: Credibility; Transparency; Private sector learning; Inflation targeting.

JEL Classification: E32, E52, E58.

*Corresponding author: Ulf Söderström, IGIER, Bocconi University, Milan, Italy; ulf.soderstrom@unibocconi.it. We are grateful for comments from Luca Sala, Antonella Trigari, seminar participants at Bocconi University and the Bank of Finland, and to Eric Swanson for sharing his Matlab code. All views, conclusions, and opinions expressed in this paper reflect solely those of the authors and do not represent those of De Nederlandsche Bank or the European Central Bank.
1 Introduction

During the last twenty years many central banks have adopted inflation targeting as a strategy for monetary policy, with an explicit numerical target for some measure of the inflation rate. One important benefit of this strategy is that of increasing monetary policy credibility and anchoring private sector inflation expectations at the numerical target (see, for instance, Leiderman and Svensson, 1995, or Bernanke, Laubach, Mishkin, and Posen, 1999). As economic theory suggests that private decisions are partly determined by agents’ expectations concerning the future, inflation targeting, by anchoring inflation expectations, should be expected to simplify private agents’ decisions, thereby reducing macroeconomic volatility and increasing overall welfare.

Several authors have produced empirical evidence that inflation targeting coupled with central bank independence has had the effect of anchoring inflation expectations. For instance, Levin, Natalucci, and Piger (2004) find that private sector inflation forecasts in the United States (where monetary policy is not guided by an inflation target) are highly correlated with a moving average of lagged inflation, while this correlation is essentially zero in a number of countries with formal inflation targets. Gürkaynak, Levin, and Swanson (2006) and Gürkaynak, Levin, Marder, and Swanson (2007) show that long-term inflation expectations tend to be less responsive to macroeconomic announcements in countries with independent inflation-targeting central banks, such as Canada, Sweden, or the United Kingdom after 1997, than in countries where the central bank is either not independent or does not have an explicit inflation target, for instance the U.S. or the U.K. before formal independence in 1997.

However, there is no strong evidence that this effect on inflation expectations has reduced macroeconomic volatility in general. While many economies, for instance the U.K. and Sweden, have performed well after the introduction of inflation targets, other economies without formal inflation targets, in particular the U.S., have shown similar, or even more impressive, performance.1

This paper aims at better understanding the links between, on the one hand, monetary policy credibility and communication and, on the other, private sector expectations and macroeconomic volatility. We study an empirical dynamic stochastic general equilibrium (DSGE) model of the euro area, estimated by Smets and Wouters (2003). In our specification of the model, private agents observe changes in the monetary policy stance (the central bank’s interest rate instrument), but are unable to distinguish between temporary

1Cecchetti and Ehrmann (1999) and Levin, Natalucci, and Piger (2004) instead suggest that the introduction of a formal inflation target may lead to higher volatility in output, as the central bank shifts its preference toward stabilizing inflation and the economy moves along a fixed inflation/output volatility frontier. However, they do not find strong empirical support for this hypothesis.
deviations from the central bank’s monetary policy rule and permanent shifts in the inflation target. Agents therefore use the Kalman filter to construct optimal estimates of the current inflation objective and the temporary monetary policy shock and to make forecasts of the future path of monetary policy, and they update these estimates and forecasts as more information arrives. This learning behavior affects private agents’ decisions and therefore all endogenous variables in the economy, with consequences for macroeconomic volatility in general.

Within this model, we first quantify the macroeconomic benefits of credibly announcing the (time-varying) level of the central bank’s inflation objective. Such an announcement enables private agents to directly observe movements in the central bank’s inflation objective and temporary deviations from the monetary policy rule. We then study the design of optimized rules for monetary policy within our framework, assuming a standard objective function for the central bank. In particular, we analyze whether rules optimized for the full information specification of the model need to be altered if agents do not observe the central bank’s inflation objective.

Our results suggest that the macroeconomic benefits of credibly announcing the current level of the time-varying inflation target are reasonably small as long as private agents correctly understand the stochastic processes governing the unobservable inflation target and the temporary policy shock. While economic volatility decreases substantially after shocks to monetary policy, these shocks account for a very small fraction of overall volatility in the economy. Therefore, the overall gains from announcing the inflation target are fairly small. However, if private agents overestimate the volatility of the inflation target, the overall gains of announcing the target can be large.

We also find that optimized monetary policy rules tend to respond more aggressively to inflation when private agents have imperfect information and overestimate the volatility of the inflation target. By responding more aggressively to inflation, the central bank helps private agents in their learning process, and substantially reduces the deviation of inflation from the target with small consequences for volatility in remaining macroeconomic variables. Nevertheless, an aggressive monetary policy rule is not a substitute to credibly announcing the inflation target.

Our model setup is closely related to those of Erceg and Levin (2003) and Andolfatto, Hendry, and Moran (2005). Erceg and Levin (2003) study inflation persistence and the cost of disinflation in a model where private agents cannot distinguish between temporary and permanent monetary policy shocks which follow stationary autoregressive processes, as in our setup. Their model is able to generate substantial persistence in inflation and large costs of disinflation as a consequence of the learning behavior of private agents, properties that are present also in our model. Andolfatto, Hendry, and Moran (2005)
study the properties of inflation expectations in a model where the temporary shock follows an autoregressive process but the permanent shock follows a Bernoulli process. They show that common econometric tests tend to reject the rationality of inflation expectations when private agents learn about the properties of monetary policy shocks over time. We present similar evidence that private sector forecast errors are large and persistent when agents learn about the underlying shocks. Relative to these contributions, our purpose is somewhat broader, as we try to understand the overall costs of imperfect information about monetary policy in terms of macroeconomic volatility, and we also study the appropriate design of monetary policy.

Moran (2005) uses a similar model to study the welfare effects of reducing the inflation target when agents learn about the inflation target shift using Bayesian updating. The welfare benefits are significant when comparing steady states, but if also taking the transitional period of learning into account, the benefits are much smaller.

A number of recent contributions study the consequences for monetary policy of private sector learning about the general structure of the economy in the stylized “New Keynesian” model framework developed by Clarida, Galí, and Gertler (1999), Woodford (2003), and others. For instance, Nunes (2005) uses a model where a proportion of private agents learn about the economic structure, and finds that his model explains well the transitional dynamics of the economy after a disinflationary shock. Gaspar, Snets, and Vestin (2005, 2006a, 2006b) show that optimal monetary policy responds more persistently to shocks when private agents learn about the structure of the economy than with rational expectations, in order to reduce the persistence and volatility of inflation. Similarly, Molnár and Santoro (2006) show that optimal monetary policy responds more aggressively and more gradually to shocks under private sector learning than when private agents have rational expectations. We will present similar results in our framework. Orphanides and Williams (2006) study monetary policy in a small estimated model where the central bank learns about the natural rates of unemployment and interest and private agents learn about the structure of the economy. They show that the explicit communication of the central bank’s inflation objective improves macroeconomic performance. Aoki and Kimura (2007) show that the learning processes of the central bank and the private sector implies that higher-order beliefs become relevant, leading to an increase in macroeconomic persistence and volatility. They also show that private sector learning can reduce macroeconomic volatility over time, and announcing the inflation objective can help the central bank to estimate the natural rate of interest.

In contrast to these papers, as well as those cited earlier, we study an estimated medium-sized DSGE model often used for quantitative analysis. In particular, we show that while announcing the inflation target reduces the volatility due to shocks to monetary
policy, this volatility is small relative to that from the remaining shocks in the model.

Finally, similar models have also been used by Beechey (2004) and Gürkaynak, Sack, and Swanson (2005) to study the relationship between monetary policy and the yield curve. Beechey uses a stylized model with optimizing agents to study the effects on the yield curve of central bank private information concerning macroeconomic shocks and the central bank’s preferences, following Ellingsen and Söderström (2001, 2005). In her model, the central bank sets monetary policy optimally given a quadratic loss function, and private agents use a Kalman filter to construct estimates of the unobservable shocks. Gürkaynak, Sack, and Swanson (2005) use a small macroeconometric model (without complete microfoundations) to study the effects of macroeconomic announcements on the yield curve. They rationalize the large response of long-term forward rates found in case studies by a model where the central bank’s inflation target moves with actual inflation, but the target is unobservable to the private sector, and private agents use a signal extraction methodology to estimate the current inflation target from observed movements in the short-term interest rate.\(^2\) We deviate from these authors by studying an estimated medium-scale DSGE model. While our model is also suited to study the behavior of the yield curve, we focus here on macroeconomic volatility in general.

Our paper is organized as follows. We present the structure of the model economy, following Smets and Wouters (2003), and discuss the restrictions on the private sector’s information set and the Kalman filter used to construct estimates of the two monetary policy shocks in Section 2. We then present the results concerning volatility in private expectations and the macroeconomy in Section 3, and we study the design of optimized rules for monetary policy in Section 4. Finally, we summarize our findings and conclude in Section 5.

2 Model

We use the dynamic stochastic general equilibrium model developed and estimated on quarterly euro area data by Smets and Wouters (2003).\(^3\) We here present briefly the log-linearized version of the model, and we refer to Smets and Wouters (2003) for a more extensive discussion.

\(^2\)A similar model is also used by Gürkaynak, Levin, and Swanson (2006).

\(^3\)This model is based on Christiano, Eichenbaum, and Evans (2005). Other versions of the model include Smets and Wouters (2005, 2006), Levin, Onatski, Williams, and Williams (2005), and Del Negro, Schorfheide, Smets, and Wouters (2005), who introduce a unit root technology shock.
2.1 The structural model

Households choose consumption, labor supply, and holdings of a one-period bond to maximize lifetime utility, which depends on consumption relative to an external habit level and leisure. Utility maximization subject to a standard budget constraint gives the log-linearized consumption Euler equation

\[C_t = \frac{h}{1+h} C_{t-1} + \frac{1}{1+h} E_t C_{t+1} - \frac{1-h}{\sigma_c (1+h)} \left[R_t - E_t \pi_{t+1} + E_t \varepsilon^b_{t+1} - \varepsilon^b_t \right], \]

where \(C_t \) is aggregate consumption, \(R_t \) is the nominal one-period interest rate (measured at a quarterly rate), \(\pi_t \) is the one-period rate of inflation, \(h \in [0, 1) \) determines the importance of habits, \(\sigma_c > 0 \) is related to the intertemporal elasticity of substitution, and \(\varepsilon^b_t \) is a general preference shock.

Households act as price-setters in the labor market, but wages are set in a staggered fashion: a fraction \(1 - \xi_w \) of wages are reset in a given period, and the remaining fraction is partially indexed to past inflation. This gives the log-linearized real wage equation

\[W_t = \beta \frac{1}{1+\beta} E_t W_{t+1} + \frac{1}{1+\beta} W_{t-1} + \beta \frac{1}{1+\beta} E_t \pi_{t+1} - \frac{1+\beta\gamma_w}{1+\beta} \pi_t + \frac{\gamma_w}{1+\beta} \pi_{t-1} \]

\[- \frac{(1-\beta\xi_w)(1-\xi_w)\lambda_w}{[\lambda_w + (1+\lambda_w)\sigma_l](1+\beta)\xi_w} \left[W_t - \sigma_l L_t - \frac{\sigma_c}{1-h} (C_t - hC_{t-1}) - \varepsilon_l^t - \eta^w_t \right], \]

where \(W_t \) is the real wage, \(L_t \) is aggregate labor demand, \(\beta \in [0, 1] \) is a discount factor, \(\gamma_w \) is the degree of wage indexation, \(\sigma_l \) measures the elasticity of labor supply, \(\lambda_w \) is the steady-state wage markup, \(\varepsilon_l^t \) is a labor supply shock, and \(\eta^w_t \) is a wage markup shock.

Households also own the capital stock, which is rented to firms producing intermediate goods at the rental rate \(r^k_t \). They can increase the supply of capital by either investing in new capital or by changing the utilization rate of installed capital, and both actions are costly in terms of foregone consumption. The optimal choice of the capital stock, investment and the utilization rate give the log-linearized conditions

\[I_t = \frac{1}{1+\beta} I_{t-1} + \frac{\beta}{1+\beta} E_t I_{t+1} + \frac{1}{1+\beta} \varphi_i(1+\beta) Q_t + \frac{1}{1+\beta} \left[\beta E_t \varepsilon^i_{t+1} - \varepsilon^i_t \right], \]

\[Q_t = - [R_t - E_t \pi_{t+1}] + \beta(1-\tau) E_t Q_{t+1} + [1-\beta(1-\tau)] E_t r^k_{t+1} + \eta^q_t, \]

\[K_t = (1-\tau)K_{t-1} + \tau I_{t-1}, \]

where \(I_t \) is investment, \(Q_t \) is Tobin’s \(Q \), \(K_t \) is the total capital stock, \(\varphi_i \) is the second derivative of the investment adjustment cost function, \(\tau \) is the depreciation rate of capital, \(\varepsilon^i_t \) is a shock to the investment cost function, and \(\eta^q_t \) is a shock that captures variations in the external finance premium.
There is a single final good which is produced under perfect competition using a continuum of intermediate goods. These intermediate goods, in turn, are produced under monopolistic competition using capital and labor inputs with a Cobb-Douglas technology. Prices on intermediate goods are staggered as in Calvo (1983), so a fraction $1 - \xi_p$ of prices are reset in a given period. The remaining prices are partially indexed to past inflation. The optimal price-setting behavior then implies that aggregate inflation is determined by the New Keynesian Phillips curve

$$\pi_t = \frac{\beta}{1 + \beta \gamma_p} E_t \pi_{t+1} + \frac{\gamma_p}{1 + \beta \gamma_p} \pi_{t-1} + \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p(1 + \beta \gamma_p)} \left[\alpha r^k_t + (1 - \alpha) W_t - \varepsilon^a_t + \eta^p_t \right],$$

(6)

where γ_p is the degree of indexation to past inflation, α is the Cobb-Douglas parameter on capital, ε^a_t is a technology shock, and η^p_t is a price markup shock. Profit optimization also gives the labor demand function

$$L_t = -W_t + (1 + \psi) r^k_t + K_{t-1},$$

(7)

where ψ is the inverse of the elasticity of the capital utilization cost function.

Finally, market clearing implies that

$$Y_t = \alpha \varphi_y r^k_t + \varphi_y \varepsilon^a_t + \varphi_y \alpha K_{t-1} + \varphi_y (1 - \alpha) L_t,$$

(8)

where Y_t is the aggregate level of output, and φ_y is equal to 1 plus the share of the fixed cost in production, and the resource constraint gives

$$Y_t = c_y C_t + \tau k_y I_t + (1 - c_y - \tau k_y) \varepsilon^g_t + \frac{[1 - \beta (1 - \tau)] k_y \psi}{\beta} r^k_t,$$

(9)

where c_y and k_y are the steady-state ratios of consumption and capital to output, and ε^g_t is government spending.\footnote{The last term on the right-hand-side of equation (9) is due to the capital utilization costs. This term is not in the original Smets and Wouters (2003) model, but was added by Onatski and Williams (2004).}

There are eight structural shocks in the model. Three of these—the price and wage markup shocks η^p_t and η^w_t, and the equity premium shock η^q_t—are assumed to be white noise with variances $\sigma^2_p, \sigma^2_w, \sigma^2_q$. The remaining five shocks—to preferences, the investment adjustment cost, technology, labor supply, and government spending—are assumed to follow the stationary autoregressive processes

$$\varepsilon^j_t = \rho_j \varepsilon^j_{t-1} + \eta^j_t, \quad j = b, i, a, l, g,$$

(10)

where $\rho_j \in [0, 1)$, and the innovations η^j_t are white noise with variance σ^2_j.
2.2 Monetary policy

For the specification of monetary policy, we depart slightly from Smets and Wouters (2003) by assuming that monetary policy is set according to the interest rate rule

\[R_t = (1 - g_r) \{ \pi_t^* + g_\pi [\pi_{t-1} - \pi_t^*] + g_y [Y_{t-1} - Y_{t-1}^n] \} + g_r R_{t-1} + \varepsilon_t^r. \] (11)

Thus, the nominal one-period interest rate \(R_t \) is a linear combination of the deviation of the previous period’s rate of inflation \(\pi_{t-1} \) from the central bank’s current inflation objective \(\pi_t^* \), the previous period’s output gap (the log deviation of real output \(Y_t \) from its natural, or flexible price/wage, level \(Y_{t-1}^n \)), and the previous period’s interest rate.\(^6\)

There are two exogenous elements in the policy rule: the inflation objective \(\pi_t^* \) and the monetary policy shock \(\varepsilon_t^r \). In general, these are assumed to follow stationary AR(1) processes:

\[\pi_t^* = \rho_\pi \pi_{t-1}^* + \eta_t^\pi, \] (12)

\[\varepsilon_t^r = \rho_r \varepsilon_{t-1}^r + \eta_t^r, \] (13)

where \(\rho_\pi, \rho_r \in [0, 1] \) and \(\eta_t^\pi \) and \(\eta_t^r \) are white noise processes with variances \(\sigma_{\pi}^2 \) and \(\sigma_r^2 \).

However, we will assume that the inflation target is very persistent (close to a random walk) while the monetary policy shock is (almost) white noise.

2.3 Parameterization

For the structural parameters, we use the calibrated or estimated values from Smets and Wouters (2003), summarized in Table 1. These estimates were obtained using quarterly data from the Euro Area from 1980:2 to 1999:4. For the monetary policy parameters, we will in Section 3 use a fairly standard calibration of the policy rule (11), with \(g_\pi = 2.0, g_y = 0.2 \) and \(g_r = 0.9 \), also reported in Table 1, while in Section 4 we will set the policy rule parameters to minimize a standard objective function for the central bank. The

\(^5\)Smets and Wouters (2003) instead use the slightly different specification

\[R_t = (1 - g_r) \{ \pi_t^* + g_\pi [\pi_{t-1} - \pi_t^*] + g_y [Y_{t-1} - Y_{t-1}^n] \} + g_r R_{t-1} + \varepsilon_t^r, \]

and obtain the estimates \(g_\pi = 1.684, g_y = 0.099, g_\Delta \pi = 0.140, g_\Delta y = 0.159, \) and \(g_r = 0.961 \). Also, they estimate the autoregressive coefficient of the inflation target to \(\rho_\pi = 0.924 \). Using this rule instead of our rule (11) gives very similar qualitative results.

\(^6\)The presence of the past inflation rate and output gap in the policy rule implies that monetary policy only responds to predetermined variables. Thus, using the terminology of Svensson and Woodford (2004), the policy rule is an “operational” or “explicit” instrument rule, as opposed to an implicit instrument rule that includes non-predetermined variables.
The inflation objective π^*_t is assumed to be a near-random walk, with $\rho_* = 0.99$, while the temporary monetary policy shock ε^r_t is essentially white noise, with $\rho_r = 0.01$. Thus, changes in the inflation objective are highly persistent (the half-life of a shock is close to 70 quarters), while other deviations from the policy rule are entirely temporary. The standard deviations of the two monetary policy shocks are set to the Smets and Wouters (2003) estimates: $\sigma_* = 0.017$ and $\sigma_r = 0.081$ percentage points, respectively. Thus, innovations to the temporary shock are almost five times as volatile as those to the inflation target.7

2.4 Private sector information

Our key assumption is that private agents are unable to distinguish between the two exogenous shocks to the monetary policy rule, the inflation objective π^*_t and the temporary monetary policy shock ε^r_t. However, they are perfectly informed about all other aspects of the economy. In particular, as they can observe the interest rate R_t, private agents can use the policy rule (11) to back out the combination

$$\bar{\varepsilon}_t = (1 - g_r)(1 - g_\pi)\pi^*_t + \varepsilon^r_t,$$

and then use the Kalman filter to calculate optimal estimates of the inflation target π^*_t and the policy shock ε^r_t.8 The Kalman filter is thus characterized by the state equation

$$\begin{bmatrix} \pi^*_{t+1} \\ \varepsilon^r_{t+1} \end{bmatrix} = \begin{bmatrix} \rho_* & 0 \\ 0 & \rho_r \end{bmatrix} \begin{bmatrix} \pi^*_t \\ \varepsilon^r_t \end{bmatrix} + \begin{bmatrix} \eta^*_t \\ \eta^r_t \end{bmatrix},$$

and the observation equation

$$\bar{\varepsilon}_t = \begin{bmatrix} (1 - g_r)(1 - g_\pi) & 1 \end{bmatrix} \begin{bmatrix} \pi^*_t \\ \varepsilon^r_t \end{bmatrix}$$

$$\equiv H' \begin{bmatrix} \pi^*_t \\ \varepsilon^r_t \end{bmatrix}.$$

7Andolfatto, Hendry, and Moran (2005) instead model the inflation target as a Bernoulli process, so occasional shifts in the inflation target are followed by long periods of a constant target. Our specification implies that the inflation target changes in every period, but with a very low variance. One advantage of this specification is that the Kalman filter produces optimal forecasts of the future temporary shock and inflation target.

8As mentioned earlier, this specification is very similar to those of Erceg and Levin (2003) and Andolfatto, Hendry, and Moran (2005).
Optimal forecasts of the future inflation target and policy shock are then calculated as

\[
\begin{bmatrix}
\hat{E}_t \pi^*_t \\
\hat{E}_t \varepsilon^*_t
\end{bmatrix}
= (F - \kappa H') \begin{bmatrix}
\hat{E}_{t-1} \pi^*_t \\
\hat{E}_{t-1} \varepsilon^*_t
\end{bmatrix} + \kappa H' \begin{bmatrix}
\pi^*_t \\
\varepsilon^*_t
\end{bmatrix},
\]

where \(\kappa\) is the Kalman gain,\(^9\) and the optimal estimates of the current target and policy shock are given by

\[
\begin{bmatrix}
\hat{E}_t \pi^*_t \\
\hat{E}_t \varepsilon^*_t
\end{bmatrix}
= F^{-1} \begin{bmatrix}
\hat{E}_t \pi^*_{t+1} \\
\hat{E}_t \varepsilon^*_{t+1}
\end{bmatrix}.
\]

Although private agents’ estimates of \(\pi^*_t\) and \(\varepsilon^*_t\) do not enter the model explicitly, these estimates will affect private expectations of future monetary policy, and therefore indirectly affect all other endogenous variables through expectations. As agents learn over time, private expectations are in general biased predictors of future outcomes. This bias may lead private agents to make inefficient decisions, and therefore the economy may experience inefficient volatility relative to the case of perfect information. If the central bank instead were to announce the current level of the inflation target, \(\pi^*_t\), private agents would be able to perfectly infer the realization of the shock \(\varepsilon^*_t\), and the perfect-information equilibrium is attainable. We will next study the effects on macroeconomic volatility of announcing the inflation target, that is, moving from the equilibrium with imperfect information to that with perfect information.

3 Macroeconomic dynamics and volatility

We now study the dynamics of our model economy, first in terms of impulse responses and optimal forecasts after the two monetary policy shocks, and then in terms of the volatility of simulated time series.

\(^9\)To determine the Kalman gain \(\kappa\), let \(\Sigma\) be the variance-covariance matrix of \([\eta^*_t, \eta^*_t + \varepsilon^*_t]\) and let \(P_{t+1|t}\) denote the mean-squared error of the forecast of \(\xi_{t+1} \equiv [\pi^*_{t+1}, \varepsilon^*_{t+1}]\), that is,

\[
P_{t+1|t} = E \left[\left(\xi_{t+1} - \hat{E}_t \xi_{t+1} \right) \left(\xi_{t+1} - \hat{E}_t \xi_{t+1} \right)' \right].
\]

Starting from the unconditional mean-squared error, given by

\[
vec(P_{t+1|t}) = (I - F \otimes F)^{-1} vec(\Sigma),
\]

the Kalman gain matrix and the mean-squared error are found by iterating on

\[
\kappa_t = FP_{t+1|t-1} H' (H' P_{t+1|t-1} H)^{-1}, \quad P_{t+1|t} = (F - \kappa_t H') P_{t+1|t-1} (F - \kappa_t H')' + \Sigma.
\]

See Hamilton (1994, Ch. 13) for details.
3.1 The effects of monetary policy shocks

Figures 1–2 show impulse responses and optimal forecasts after one-standard-deviation-sized innovations to the inflation objective and the temporary monetary policy shock, respectively. The solid lines represent the impulse responses (and forecasts) in the benchmark case of full information (when all shocks are observable), the dash-dotted lines represent optimal forecasts with imperfect information, and the dashed lines show the effects of shocks on the economy when there is imperfect information and agents learn over time.\(^{10}\)

Consider first the case of full information, represented by the solid lines in Figures 1–2. Figure 1 shows impulse responses and forecasts after a negative shock to the inflation target \(\pi_t^*\). With full information, private agents immediately notice that the inflation target has decreased, so the perceived target jumps down to its new level and agents adjust their expectations accordingly. As a consequence there is a fall in inflation in the initial period, and the central bank is able to increase the real interest rate with only a slight increase in the nominal interest rate, which is soon reversed. This leads to a decrease in consumption, investment, output, employment, and the real wage, and therefore a fall in inflation. When inflation and the time-varying inflation target are close, they move back together to the initial level, and the nominal interest rate follows them back. The real interest rate is therefore close to its neutral level, and all real variables return toward steady state. There is thus a hump-shaped response of all variables, with the maximum effect on output (around 4.5 basis points) after four to six quarters.

After a positive innovation to the temporary monetary policy shock \(\varepsilon_t^r\) in Figure 2, the interest rate increases by the full amount of the shock (32 basis points), and the real interest rate increases even more as inflation falls. This leads to a reduction in all real variables, which motivates the fall in inflation. Again, all responses are hump-shaped, and the maximum effects on output (−20 basis points) and inflation (−5.5 basis points) occur after three quarters. Inflation and the interest rate return to steady state after 12 to 14 quarters and the output gap after around 20 quarters. (Note that the monetary policy shocks have no effect on the natural level of output, so changes in the level of output are exactly mirrored in changes in the output gap.)

Introducing imperfect information, private agents use the Kalman filter to make optimal estimates of the current and future inflation target and policy shock, and adjust their expectations accordingly. Figure 1 shows that after a negative inflation target shock a persistent increase in the interest rate is necessary to reduce inflation expectations. Pri-

\(^{10}\)In all figures and tables, the inflation and interest rates are measured on an annualized basis. Appendix A outlines how we simulate the model and construct impulse responses and optimal forecasts with imperfect information.
vate agents observe the small increase in the nominal interest rate, and they attribute this partly to a negative inflation target shock and partly to a positive temporary policy shock. As they know that the inflation target is much less volatile than the temporary shock, their optimal estimate of the inflation target initially falls very little (by 0.09 basis points) while the estimate of the temporary shock increases more (by 0.67 basis points).

In future periods, the dash-dotted lines show that agents forecast the inflation target to return slowly to its initial level and the temporary shock to jump back in the next period, leading to a gradual return of the interest rate. These small movements in the interest rate imply that agents expect very small effects on all variables. As agents attribute almost all of the interest rate movement to a small temporary policy shock, they forecast small effects on the economy.

In practice, as time goes by the central bank increases the interest rate further, and when agents update their information set they find it increasingly likely that the inflation target has in fact decreased. Therefore inflation falls further and all real variables continue to fall as the real interest rate increases. As agents learn, the perceived and actual inflation target slowly converge and the perceived temporary monetary policy shock approaches zero. This slow learning process implies that all variables respond more gradually and persistently to the inflation target shock than with full information, and the maximum effects on output and inflation now occur after 12 to 14 quarters. As in Erceg and Levin (2003) and Nunes (2005), the presence of imperfect information substantially increases the real cost of disinflation.

After a temporary policy shock in Figure 2 private agents again observe an increase in the nominal interest rate and attribute almost all of this (32 basis points) to a positive temporary shock and very little (four basis points) to a negative inflation target shock. In the initial period, the main difference compared with the full information case is a larger fall in inflation, as private agents believe that the inflation objective is lower. Thus, the same increase in the interest rate leads to a larger increase in the real interest rate with imperfect information, and therefore a larger effect on real variables.

Private agents then forecast the inflation target to return gradually to its initial level, whereas the temporary shock is expected to disappear in the following period. Thus, agents expect inflation to remain low for a long time.

As agents learn over time, the monetary policy tightening leads to a deeper recession than under full information, and the central bank needs to lower the interest rate below the initial level to stimulate the economy. The real variables then return toward steady state, often with some overshooting, while inflation and the interest rate return very slowly to the initial level together with the perceived inflation target.

As in Andolfatto, Hendry, and Moran (2005) we note that private agents’ forecasts
under imperfect information (represented by the dash-dotted lines) deviate substantially from the true responses (the dashed lines) for all variables. This is because agents’ forecasts are based on information available at the time of the shock, while the actual outcomes are also affected by the private sector’s learning behavior over time.

To summarize, imperfect information about the two policy shocks implies that agents optimally attribute almost all unexpected movements in the nominal interest rate to the more volatile temporary shock, and very little to the persistent inflation target shock, which is less volatile. After shocks to the inflation target, private expectations therefore deviate substantially from the actual path of the economy, while the effects of temporary shocks have are very similar to the full information case. In order to persuade private agents that the inflation target is lower the central bank needs to tighten policy more, resulting in a deeper recession. The learning process implies that all variables respond more gradually to an inflation target shock with imperfect than with full information.

3.2 Imperfect information and macroeconomic volatility

It is clear from the impulse responses and forecasts in Figures 1–2 that imperfect information about the two monetary policy shocks has large effects on the dynamic behavior of the economy and private sector forecasts, in particular after shocks to the inflation target. This impression is confirmed by Panel (a) of Table 2, which shows the variance in some key macroeconomic variables in the model that is due to the two monetary policy shocks.\(^{11}\)

Conditional on the two monetary policy shocks, most variables are considerably more volatile under imperfect information than with full information, with the exception of inflation and the interest rate. The variance of the real variables due to monetary policy shocks is 20–25% larger with imperfect information than with full information, while inflation and the nominal interest rate are considerably less volatile with imperfect information. Going back to Figures 1 and 2 reveals that this effect on volatility is mainly due to the effect of shocks to the inflation target, where the response of all real variables is considerably more gradual with imperfect information, leading to larger volatility. As inflation target shocks have a smaller impact on inflation and the interest rate with imperfect information than with full information, these are also less volatile. Thus, imperfect information about the monetary policy shocks has an important impact on macroeconomic volatility, conditional on the two monetary policy shocks.

However, as the remaining eight shocks are observable to the private sector and there-

\(^{11}\)All reported variances are averages across 1,000 simulated samples of 5,000 observations (after discarding the initial 500 observations). Inflation and the interest rate are in annualized terms, so \(\bar{\pi}_t = 4\pi_t\) and \(\bar{R}_t = 4R_t\).
fore are not affected by the information restrictions, the total effect of imperfect information on macroeconomic volatility depends on the overall contribution of the monetary policy shocks to volatility. The impulse responses to these eight shocks are shown in Figures 3–6. It is clear that some of these structural shocks, in particular to technology and labor supply, have very large effects on the real variables compared with the monetary policy shocks.

Panel (b) of Table 2 reports the effects of imperfect information on aggregate volatility. This panel reveals that imperfect information per se has small effects on the variances in macroeconomic variables once we take into account all structural shocks: the variance of most real variables increases by less than 2%. Consequently, the overall benefits in terms of macroeconomic stability of credibly announcing the central bank’s target for inflation seem modest.

3.3 The role of private sector information about monetary policy shock processes

The above results suggest that there are small effects of imperfect information on macroeconomic volatility, and therefore that the gains of announcing the inflation target are small. However, as the discussion of the learning process of private agents made clear, the response of private expectations to the unobservable shocks depends crucially on the perceived volatility of the shocks. In the benchmark calibration, the temporary shock is considerably more volatile than the inflation target shock. Private agents therefore attribute a small fraction of the unexpected movement in the interest rate to the inflation target and a large fraction to the temporary shock, with a small effect on overall volatility as a result.

However, if the central bank is unwilling to announce its inflation target, it may not be reasonable to assume that private agents know the true variance of the target. In this section, we therefore analyze an alternative scenario where private agents overestimate the variance of the inflation target. In particular, we set the perceived standard deviation of the inflation target five times larger than the actual standard deviation, so the perceived standard deviation is \(\hat{\sigma}_* = 0.085 \), which is of similar magnitude as the standard deviation of the temporary policy shock. In this situation, private agents will attribute a greater part of the unexpected movements in the interest rate to inflation target shocks than when they know the true variance of the inflation target.

Figures 7–8 show impulse responses and optimal forecasts after innovations to the two monetary policy shocks. (The responses under full information are of course the same as in Figures 1–2.) After an inflation target shock in Figure 7, the larger movements in the perceived inflation target implies that inflation falls faster than when private agents
know the variance of the inflation target. The increase in the nominal interest rate then translates into a larger increase in the real interest rate than when private agents know the true variance of the inflation target, with a deeper and less gradual recession as a result. The central bank reduces the nominal interest rate toward the new target level more quickly, and as the perceived inflation target approaches the true target, all real variables and inflation return to their steady-state levels earlier than before. Thus, the negative humps in the impulse responses are deeper but less persistent than before. Private agents’ forecasts also respond more and with larger persistence.

After a temporary policy shock in Figure 8, there are now larger differences compared with the full information case, as the initial interest rate increase is translated into a much larger fall in the perceived inflation target, leading to lower inflation, a higher real interest rate and a deeper initial recession. The central bank then quickly reduces the interest rate, and all variables return toward steady state with some over-shooting. Again, private sector forecasts respond more quickly and all variables are expected to return more slowly to steady state than when private agents know the true variance of the inflation target.

In general, when private agents overestimate the volatility of the inflation target, both shocks have larger but less persistent effects on all variables. As private agents’ estimate of the inflation target is more sensitive to shocks, actual inflation also responds more to these shocks, translating into larger movements in the real interest rate and the other real variables.

Table 3 shows that all variables are now considerably more volatile than with full information, in particular inflation, the output gap, and the interest rate, but also for the other real variables whose variances increase by more than 7% relative to the full information case. Thus, allowing for imperfect information not only regarding the shocks to the monetary policy rule but also to the variance of these shocks, our model generates fairly large effects of imperfect information on macroeconomic volatility. Consequently, in this case the gains in terms of macroeconomic stability from announcing the central bank’s inflation target are reasonably large.

4 Optimized monetary policy rules and imperfect credibility

We now study the properties of optimized rules for monetary policy within our framework. We assume that the central bank aims to stabilize inflation around the inflation target, the output gap, and the interest rate by minimizing the loss function

\[L_t = \text{Var} (\bar{\pi}_t - \bar{\pi}_t^*) + \lambda_y \text{Var} (Y_t - Y_t^n) + \lambda_r \text{Var} (\bar{R}_t), \]

where \(\bar{\pi}_t, \bar{\pi}_t^* \), and \(\bar{R}_t \) measure inflation, the inflation target and the nominal interest rate at an annualized basis, so, for example, \(\bar{\pi}_t \equiv 4\pi_t \). While this objective function does not
represent the welfare of a representative agent in our economy, it is consistent with the mandates of most central banks. We assume that the central bank preference parameters are $\lambda_y = 0.5$ and $\lambda_r = 0.1$, so the central bank attaches a larger weight to inflation stability than to output gap stability, and a small weight to stability in the interest rate.

We first choose the coefficients in the central bank’s policy rule (11) to minimize the central bank loss function when private agents have perfect information about the inflation target and the temporary monetary policy shock. We then evaluate this optimized rule in the case of imperfect information concerning the inflation target. Finally, we discuss what deviations from the optimized benchmark rule are likely to improve on the outcome of monetary policy when private agents do not have full information about the inflation target.

The coefficients that minimize the value of the loss function (19) in the case of full information are given by $g_\pi = 7.915$, $g_y = 1.748$, $g_r = 0.917$, and Panel (a) of Table 4 reports the variances of inflation, the output gap, and the interest rate for the three alternative models, along with the value of the loss function (19). For comparison, Panel (b) reports the corresponding results for the calibrated rule analyzed in Section 3.

Compared with typical parameterizations of monetary policy rules, the optimized rule responds more aggressively to both inflation and the output gap, while the degree of interest rate smoothing is very similar. As a consequence, the optimized rule stabilizes inflation and the output gap considerably more than the calibrated rule, at the cost of larger interest rate variability.

We then implement the rule optimized for the full information model in the models with imperfect information. As in Section 3, Table 4 first shows that there are fairly small effects as long as agents know the true variance of the inflation target: inflation is slightly less volatile, whereas the output gap and the interest rate are slightly more volatile, leading to a modest increase in the value of the loss function. When agents overestimate the volatility of the inflation target, all variables are more volatile than in the full information model, in particular for the inflation gap, and there is a larger increase in the value of the loss function. However, the effects on volatility and loss are smaller than with the calibrated model. Thus, to some extent the central bank can guard itself against imperfect information by optimizing the coefficients in the policy rule.

To analyze the effects of imperfect information on the optimized policy rule, we study the performance of six alternative rules, where we let one policy rule coefficient at a time deviate by 50% from the optimized rule while keeping the remaining coefficients at their

12 The aggressiveness of optimized policy rules is a well-known result, and is often attributed to the fact that many sources of uncertainty are disregarded, see, for instance, Rudebusch (2001).

13 This is true also for the remaining variables in the model.
optimized levels.14 The results are reported in Table 5.

By construction, any deviations from the optimized rule will increase loss in the full information model, but Panel (a) of Table 5 shows that the effects of deviating from the optimized coefficients of inflation or the output gap are fairly small. On the other hand, it is more costly to deviate from the optimized coefficient of the lagged interest rate: reducing the interest rate coefficient by 50\% increases loss by 67\%, and increasing the coefficient to 0.99 almost triples the value of the loss function.

Panel (b) shows the results for the model where private agents have imperfect information, but know the true variance of the inflation target. Now, deviations from the optimized rule do not necessarily increase loss, as the rule is optimized for the full information model. Nevertheless, also with imperfect information all deviations from the optimized rule increase loss, and the results are very similar to the case of full information.

Finally, Panel (c) shows the results when agents have imperfect information about the monetary policy shocks and overestimate the variance of the inflation target. In this case, the central bank is better off responding more aggressively to inflation than under full information, whereas responding more aggressively to the output gap has barely no effects on central bank loss. As before, a large coefficient on the lagged interest rate is detrimental to central bank loss, even more so than in the other two cases. The more aggressive response implies that inflation follows the inflation target more closely, at the cost of higher volatility in the output gap and the interest rate. Under full information, inflation already follows the target very closely, so reducing the inflation gap slightly comes at a relatively large cost in terms of output and interest rate volatility. Under imperfect information when private agents overestimate the volatility of the inflation target, the inflation gap is much more volatile than under full information. The reduction in inflation gap volatility is therefore more pronounced, with a small increase in output and interest rate volatility. By responding more aggressively to the inflation deviation from target, the central bank helps private agents to learn the inflation target more quickly, which tends to reduce overall volatility.15 It is also clear, however, that the aggressive policy rule is not a perfect substitute for announcing the inflation target: moving from imperfect information to full information reduces the value of the loss function considerably more than responding more aggressively to inflation.

Consequently, as in Section 3, imperfect information about the monetary policy shocks does not have important effects on the behavior of optimized policy rules as long as agents know the true volatility of the inflation target. However, if agents overestimate

14The coefficient of the lagged interest rate is not allowed to be larger than 0.99.

15As mentioned in the Introduction, Molnár and Santoro (2006) reach a similar conclusion in a small calibrated model.
the volatility of the inflation target, the central bank is better off by using a policy rule that responds more aggressively to inflation, and perhaps also to the output gap.

5 Concluding remarks

The aim of this paper was to measure the effects of monetary policy transparency and credibility on macroeconomic volatility and welfare. To this aim we use an estimated DSGE model of the euro area economy where private agents are unable to distinguish between persistent movements in the central bank’s inflation target and temporary deviations from the monetary policy rule.

We have shown that the macroeconomic benefits of credibly announcing the current level of the time-varying inflation target are reasonably small as long as private agents correctly understand the stochastic processes governing the inflation target and the temporary policy shock. While economic volatility decreases substantially after shocks to monetary policy, these shocks account for a small fraction of overall volatility in the economy. The overall gains from announcing the inflation target are therefore fairly small. However, if private agents overestimate the volatility of the inflation target, the overall gains of announcing the target can be substantial.

We have also demonstrated that the central bank can help private agents in their learning process by responding more aggressively to inflation. Assuming a standard objective function for monetary policy, our results suggest that the optimal response to inflation is more aggressive when private agents have imperfect information and overestimate the volatility of the inflation target than when private agents have full information. Nevertheless, the gains of a more aggressive monetary policy are smaller than the gains from credibly announcing the inflation target.

As our model is derived from the optimizing behavior of private agents, our framework could also be used to study the welfare effects of imperfect monetary policy credibility and transparency, for instance, using a linear-quadratic approximation of welfare in our model, following Benigno and Woodford (2003) and Altissimo, Cúrdia, and Rodríguez Palenzuela (2005). We plan to pursue this avenue in future work.
A Simulating the model with learning

The reduced-form solution of the model can be written as

$$z_t = A z_{t-1} + B \eta_t,$$

where z_t is a vector of endogenous variables and η_t is a vector of exogenous shocks. Impulse responses are created by shocking one of the elements in η_t in the first period and using the reduced form to calculate the expected effects on the endogenous variables in z_{t+j}. To simulate the model, we draw in each period $t+j$ a realization of the shock vector η_{t+j} and use the reduced form to calculate the effects on the endogenous variables in z_{t+j}.

Under imperfect information we also need to take into account private agents’ learning process. The relevant reduced form is still of the form (A1), but the vector z_t now also contains the terms $\hat{E}_{t-1} \pi^{*}_{t+1}, \hat{E}_{t} \varepsilon^{r}_{t+1}, \hat{E}_{t} \pi^{*}_{t},$ and $\hat{E}_{t} \varepsilon^{r}_{t}$.

For the observable shocks the impulse responses are the same as with private information. The effects of shocks to the inflation target (η^π_t) and the monetary policy rule (η^r_t), on the other hand, are not directly observable, so in each period t private agents observe the interest rate R_t, use the Kalman filter to update their estimate of π^{*}_t and ε^{r}_t, and then adjust their expectations of future monetary policy, inflation and output accordingly.

To calculate the effects on current inflation and output, we need to feed in the change in agents’ estimate of $\pi^{*}_t, \varepsilon^{r}_t$ as new “shocks” in each period. That is, we calculate

$$\begin{pmatrix} \hat{E}_{t} \eta^{\pi}_t \\ \hat{E}_{t} \eta^{r}_t \end{pmatrix} = \begin{pmatrix} \hat{E}_{t} \pi^{*}_t \\ \hat{E}_{t} \varepsilon^{r}_t \end{pmatrix} - \begin{pmatrix} \hat{E}_{t-1} \pi^{*}_t \\ \hat{E}_{t-1} \varepsilon^{r}_t \end{pmatrix} = F^{-1} \begin{pmatrix} \hat{E}_{t} \pi^{*}_{t+1} \\ \hat{E}_{t} \varepsilon^{r}_{t+1} \end{pmatrix} - \begin{pmatrix} \hat{E}_{t-1} \pi^{*}_t \\ \hat{E}_{t-1} \varepsilon^{r}_t \end{pmatrix} = \left[F^{-1} (F - \kappa H') - I \right] \begin{pmatrix} \pi^{*}_t \\ \varepsilon^{r}_t \end{pmatrix} + F^{-1} \kappa H' \begin{pmatrix} \pi^{*}_t \\ \varepsilon^{r}_t \end{pmatrix}. \quad (A2)$$

These shocks are fed into the reduced form in each period, which gives us the path of the endogenous variables.

To calculate impulse responses, we only feed in one true shock in the first period, but as agents learn over time, we still need to feed in new “learning shocks” in future periods. To simulate the model, we feed in a combination of shocks in each period, but also take into account the “learning shocks”.

18
References

Table 1: Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.99</td>
<td>Discount factor</td>
</tr>
<tr>
<td>τ</td>
<td>0.025</td>
<td>Depreciation rate of capital</td>
</tr>
<tr>
<td>α</td>
<td>0.30</td>
<td>Capital share in production</td>
</tr>
<tr>
<td>k</td>
<td>8.8</td>
<td>Capital/output ratio</td>
</tr>
<tr>
<td>c</td>
<td>0.60</td>
<td>Consumption/output ratio</td>
</tr>
<tr>
<td>λ</td>
<td>0.5</td>
<td>Average wage markup</td>
</tr>
<tr>
<td>Estimated structural parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_i</td>
<td>6.771</td>
<td>Investment adjustment cost parameter</td>
</tr>
<tr>
<td>σ_c</td>
<td>1.353</td>
<td>Coefficient of relative risk aversion</td>
</tr>
<tr>
<td>h</td>
<td>0.573</td>
<td>Consumption habit parameter</td>
</tr>
<tr>
<td>σ_1</td>
<td>2.400</td>
<td>Elasticity of labor supply</td>
</tr>
<tr>
<td>φ_y</td>
<td>1.408</td>
<td>Fixed cost in production</td>
</tr>
<tr>
<td>ψ</td>
<td>0.169</td>
<td>Inverse elasticity of capital utilization</td>
</tr>
<tr>
<td>ξ_w</td>
<td>0.737</td>
<td>Calvo wage parameter</td>
</tr>
<tr>
<td>ξ_p</td>
<td>0.908</td>
<td>Calvo price parameter</td>
</tr>
<tr>
<td>γ_w</td>
<td>0.763</td>
<td>Rate of wage indexation</td>
</tr>
<tr>
<td>γ_p</td>
<td>0.469</td>
<td>Rate of price indexation</td>
</tr>
<tr>
<td>Estimated autoregressive parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>0.855</td>
<td>Preference shock</td>
</tr>
<tr>
<td>ρ_i</td>
<td>0.927</td>
<td>Investment cost shock</td>
</tr>
<tr>
<td>ρ_a</td>
<td>0.823</td>
<td>Productivity shock</td>
</tr>
<tr>
<td>ρ_l</td>
<td>0.889</td>
<td>Labor supply shock</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.949</td>
<td>Government spending shock</td>
</tr>
<tr>
<td>Estimated standard deviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_b</td>
<td>0.336</td>
<td>Preference shock</td>
</tr>
<tr>
<td>σ_i</td>
<td>0.085</td>
<td>Investment cost shock</td>
</tr>
<tr>
<td>σ_q</td>
<td>0.604</td>
<td>Equity premium shock</td>
</tr>
<tr>
<td>σ_a</td>
<td>0.598</td>
<td>Productivity shock</td>
</tr>
<tr>
<td>σ_p</td>
<td>0.160</td>
<td>Price markup shock</td>
</tr>
<tr>
<td>σ_w</td>
<td>0.289</td>
<td>Wage markup shock</td>
</tr>
<tr>
<td>σ_1</td>
<td>3.520</td>
<td>Labor supply shock</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.325</td>
<td>Government spending shock</td>
</tr>
<tr>
<td>σ_*</td>
<td>0.017</td>
<td>Inflation objective</td>
</tr>
<tr>
<td>σ_r</td>
<td>0.081</td>
<td>Temporary monetary policy shock</td>
</tr>
<tr>
<td>Calibrated monetary policy parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_π</td>
<td>2.0</td>
<td>Coefficient on inflation</td>
</tr>
<tr>
<td>g_y</td>
<td>0.2</td>
<td>Coefficient on output gap</td>
</tr>
<tr>
<td>g_r</td>
<td>0.9</td>
<td>Coefficient on lagged interest rate</td>
</tr>
<tr>
<td>ρ_*</td>
<td>0.99</td>
<td>Persistence in inflation objective</td>
</tr>
<tr>
<td>ρ_r</td>
<td>0.01</td>
<td>Persistence in temporary monetary policy shock</td>
</tr>
</tbody>
</table>

Table 2: Variances of simulated data under full and imperfect information

<table>
<thead>
<tr>
<th></th>
<th>C_t</th>
<th>Y_t</th>
<th>I_t</th>
<th>L_t</th>
<th>W_t</th>
<th>$\bar{\pi}_t$</th>
<th>$Y_t - Y^n_t$</th>
<th>R_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Monetary policy shocks only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>0.20</td>
<td>0.23</td>
<td>0.89</td>
<td>0.18</td>
<td>0.09</td>
<td>0.15</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>0.25</td>
<td>0.29</td>
<td>1.12</td>
<td>0.22</td>
<td>0.10</td>
<td>0.08</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>(b) All shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>3.67</td>
<td>4.36</td>
<td>22.41</td>
<td>3.05</td>
<td>0.65</td>
<td>0.20</td>
<td>1.29</td>
<td>0.73</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>3.72</td>
<td>4.42</td>
<td>22.63</td>
<td>3.10</td>
<td>0.67</td>
<td>0.14</td>
<td>1.34</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Note: Averages over 1,000 simulated series of 5,000 observations. Inflation and the interest rate are in annualized terms, so $\bar{\pi}_t = 4\pi_t$ and $\bar{R}_t = 4R_t$.

Table 3: Variances of simulated data when private agents overestimate the volatility of the inflation target

<table>
<thead>
<tr>
<th></th>
<th>C_t</th>
<th>Y_t</th>
<th>I_t</th>
<th>L_t</th>
<th>W_t</th>
<th>$\bar{\pi}_t$</th>
<th>$Y_t - Y^n_t$</th>
<th>R_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Monetary policy shocks only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>0.20</td>
<td>0.23</td>
<td>0.89</td>
<td>0.18</td>
<td>0.09</td>
<td>0.15</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>0.46</td>
<td>0.59</td>
<td>2.43</td>
<td>0.51</td>
<td>0.16</td>
<td>0.47</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>(b) All shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>3.67</td>
<td>4.36</td>
<td>22.41</td>
<td>3.05</td>
<td>0.65</td>
<td>0.20</td>
<td>1.29</td>
<td>0.73</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>3.93</td>
<td>4.71</td>
<td>23.94</td>
<td>3.38</td>
<td>0.73</td>
<td>0.52</td>
<td>1.64</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Note: Averages over 1,000 simulated series of 5,000 observations. Private agents are assumed to overestimate the volatility of the inflation target, so $\hat{\sigma}_t = 5\sigma_t$. Inflation and the interest rate are in annualized terms, so $\bar{\pi}_t = 4\pi_t$ and $\bar{R}_t = 4R_t$.

Table 4: Performance of optimized and calibrated monetary policy rules

<table>
<thead>
<tr>
<th></th>
<th>Simulated variances</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{\pi}_t$</td>
<td>$Y_t - Y^n_t$</td>
</tr>
<tr>
<td>(a) Optimized rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>0.17</td>
<td>0.38</td>
</tr>
<tr>
<td>Imperfect information, $\hat{\sigma}_t = \sigma_t$</td>
<td>0.15</td>
<td>0.40</td>
</tr>
<tr>
<td>Imperfect information, $\hat{\sigma}_t = 5\sigma_t$</td>
<td>0.20</td>
<td>0.41</td>
</tr>
<tr>
<td>(b) Calibrated rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full information</td>
<td>0.20</td>
<td>1.29</td>
</tr>
<tr>
<td>Imperfect information, $\hat{\sigma}_t = \sigma_t$</td>
<td>0.13</td>
<td>1.34</td>
</tr>
<tr>
<td>Imperfect information, $\hat{\sigma}_t = 5\sigma_t$</td>
<td>0.52</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Note: Averages over 1,000 simulated series of 5,000 observations. The optimized rule is the parameterization of the policy rule (11) that minimizes the loss function (19) with $\lambda_y = 0.5$ and $\lambda_r = 0.1$ under full information, and is given by $g_\pi = 7.915$, $g_y = 1.748$, $g_r = 0.917$. The calibrated rule is given by $g_\pi = 2.0$, $g_y = 0.2$, $g_r = 0.9$.
Table 5: Performance of alternative monetary policy rules

<table>
<thead>
<tr>
<th></th>
<th>Simulated variances</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>π_t</td>
<td>$Y_t - Y_t^*$</td>
</tr>
<tr>
<td>(a) Full information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimized rule</td>
<td>0.17</td>
<td>0.38</td>
</tr>
<tr>
<td>Large g_x</td>
<td>0.19</td>
<td>0.39</td>
</tr>
<tr>
<td>Small g_x</td>
<td>0.12</td>
<td>0.38</td>
</tr>
<tr>
<td>Large g_y</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>Small g_y</td>
<td>0.20</td>
<td>0.58</td>
</tr>
<tr>
<td>Large g_r</td>
<td>0.27</td>
<td>1.88</td>
</tr>
<tr>
<td>Small g_r</td>
<td>0.18</td>
<td>0.14</td>
</tr>
</tbody>
</table>

(b) Imperfect information, $\hat{\sigma}_x = \sigma_x$

Optimized rule	0.15	0.40	1.83	0.044	0.43
Large g_x	0.17	0.41	1.96	0.035	0.44
Small g_x	0.09	0.39	1.68	0.066	0.43
Large g_y	0.13	0.30	2.31	0.054	0.44
Small g_y	0.18	0.62	1.29	0.034	0.47
Large g_r	0.23	2.04	0.58	0.153	1.23
Small g_r	0.18	0.14	5.80	0.054	0.70

(c) Imperfect information, $\hat{\sigma}_x = 5\sigma_x$

Optimized rule	0.20	0.41	1.83	0.170	0.56
Large g_x	0.21	0.41	1.91	0.112	0.51
Small g_x	0.18	0.41	1.77	0.341	0.72
Large g_y	0.17	0.31	2.33	0.173	0.56
Small g_y	0.25	0.63	1.28	0.174	0.62
Large g_r	0.87	3.02	0.82	1.365	2.96
Small g_r	0.18	0.14	5.79	0.062	0.71

Note: Averages over 1,000 simulated series of 5,000 observations. The optimized rule is the parameterization of the policy rule (11) that minimizes the loss function (19) with $\lambda_x = 0.5, \lambda_r = 0.1$ under full information, and is given by $g_x = 7.915, g_y = 1.748, g_r = 0.917$. “Large” and “small” coefficients are 50% larger or smaller than the optimized coefficients, with the exception of “large g_r,” which is equal to 0.99.
Figure 1: Impulse responses and private sector forecasts after an inflation target shock

This figure shows impulse responses and optimal private sector forecasts after a negative one-standard-deviation-sized innovation to the inflation target π_t^*.
This figure shows impulse responses and optimal private sector forecasts after a one-standard-deviation-sized innovation to the temporary monetary policy shock ε_t.
This figure shows the responses to one-standard-deviation-sized innovations to the preference shock ϵ^b_t and government spending ϵ^g_t.
This figure shows the responses to one-standard-deviation-sized innovations to the investment adjustment cost shock ε_i^t and the equity premium η^q_t.
Figure 5: Impulse responses to technology and labor supply shocks

This figure shows the responses to one-standard-deviation-sized innovations to the technology shock ε^a_t and the labor supply shock ε^l_t.
This figure shows the response to one-standard-deviation-sized innovations to the price markup η^p_t and the wage markup η^w_t.
Figure 7: Impulse responses and private sector forecasts after an inflation target shock when private agents overestimate the volatility of the inflation target.

This figure shows impulse responses and optimal private sector forecasts after a negative one-standard-deviation-sized innovation to the inflation target π_t^* when private agents overestimate the volatility of the inflation target: $\sigma_\pi = 5 \sigma_*$.
Figure 8: Impulse responses and private sector forecasts after a temporary monetary policy shock when private agents overestimate the volatility of the inflation target.

This figure shows impulse responses and optimal private sector forecasts after a one-standard-deviation-sized innovation to the temporary monetary policy shock ε_t when private agents overestimate the volatility of the inflation target: $\hat{\sigma}_* = 5 \sigma_*$.