

# What Drives Long Term Interest Rates? Evidence from the Entire Swiss Franc History (1852-2022)

Niko Hauzenberger *Univ. of Strathclyde* 

Rebecca Stuart
Univ. of Neuchâtel

Daniel Kaufmann *Univ. of Neuchâtel* 

Cédric Tille Graduate Inst., CEPR

SNB Research Conference, Zürich, September 30, 2023

## A long view on fundamental interest rates

- Downtrend in nominal and real interest rates since the 1980's entails challenges (conduct of monetary policy, risks on financial stability).
  - Interest rates aren't low any longer since 2021 (e.g. TIPS)...
  - ...but forces that drove them low remain (e.g. demographics) and could reassert themselves.
- Research tends to focus on large economies in recent decades. How about smaller countries, on a very long sample?
  - Switzerland, as a «safe haven». But was not always so.
- Research on real factors (savings rate, ageing). How about nominal factors (inflation volatility)?
- Taking a long view is challenging.
  - Scarce historical data are for Switzerland, especially before 1900.
  - Measurement errors, especially in inflation.
  - Structural shifts (such as change in FX regime).

#### What we do and find

- Theoretical contribution: do countries with more stable nominal variables (inflation) have lower interest rate?
  - Yes, but under specific conditions (less general than term premium).
- Construct data of short- and long-term interest rates, and exchange rate for Switzerland since 1852, using novel archival data.
  - Long-term rates and exchange rate previously unavailable.
- Extract trend components using time-varying parameters VAR.
  - TVP-VAR-SV flexibly allows for parameters changes, including sudden ones.
- Cross-country perspective on real interest rates.
  - Term premium appears when inflation becomes positive.
  - UIP deviations (low Swiss rates) in the last third of the 20th century.
- Connect term and UIP premia to inflation volatility.
  - Evidence for the link, but heterogenous across time for UIP.

## **Connection to the literature (1)**

- Trend decrease in natural real interest rate (r\*).
  - Reliance on DSGE model (Laubach and Williams 2003, 2016).
  - Sensitivity to expectations (Lopez-Salido, Sanz-Maldonado, Schippits, and Wei 2020)
  - Long perspective (Del Negro et al. 2019, Fiorentini et al. 2018).
  - Application to Switzerland (Bacchetta et al. 2022).
- Historical analysis of Switzerland.
  - Challenges from mismeasurements (Kaufmann 2020).
  - Swiss «low interest rate island» since WW1 (Kugler and Weder di Mauro 2002,4,5, Cunat 2003, Baltensperger and Kugler 2016).

# **Connection to the literature (2)**

- Methodological literature.
  - Earlier studies (Primiceri, 2005, Del Negro et al., 2019) impose gradual changes of parameters and trends.
  - Time-varying VAR, allowing for rapid changes in parameters (Huber et al. 2019).
  - Use of mixture models (Gerlach et al. 2000, Giordani and Kohn 2008).
- Sources of UIP deviations (Bacchetta 2013).
  - Deviations after shocks due to limited participation (Bacchetta and van Wincoop 2010), varying risk aversio (Verdlehan 2010), frictions in financial markets (Itskhoki and Mukhin 2021).
  - «Steady state» deviation, of second order (Bengui and Sander 2023, for real bonds).
  - Relevance of inflation risk (Kalemli-Ozcan 2022).

## **Outline**

- Theory of link between UIP deviation and inflation volatility.
- New historical data.
- Long-run values from TVP-VAR-SV.
  - Swiss variables in international perspective.
- Econometric assessment of the role of inflation volatility (in progress).

## A simple theory

- Inflation volatility affects the term premium between short and long bonds (Bauer and Rudebusch 2020, Bianchi et al. 2022, Tristani and Hördahl 2010, Söderlind 2011).
  - So should we have the same thing in cross-country terms (UIP)?
- Two periods, two countries, investing in risk-free nominal bonds in the two currencies, and complete assets.
- Euler conditions and full risk sharing (CRRA utility):

$$1 = \frac{1+i_{t+1}}{1+\delta} E_t \frac{P_t}{P_{t+1}} \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma}$$

$$1 = \frac{1+i_{t+1}^*}{1+\delta} E_t \frac{S_{t+1}P_t}{S_tP_{t+1}} \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma}$$

$$\frac{S_{t+1}P_{t+1}^*}{P_{t+1}} \left(\frac{C_{t+1}}{C_{t+1}^*}\right)^{-\gamma} = \frac{S_tP_t^*}{P_t} \left(\frac{C_t}{C_t^*}\right)^{-\gamma}$$

## **UIP** deviation

UIP gap (2<sup>nd</sup> order) reflects relative volatility of marginal utility:

$$i_{t+1} - i_{t+1}^* - E_t(s_{t+1} - s_t)$$

$$= -\frac{1}{2} [Var_t(\gamma c_{t+1} + p_{t+1}) - Var_t(\gamma c_{t+1}^* + p_{t+1}^*)]$$

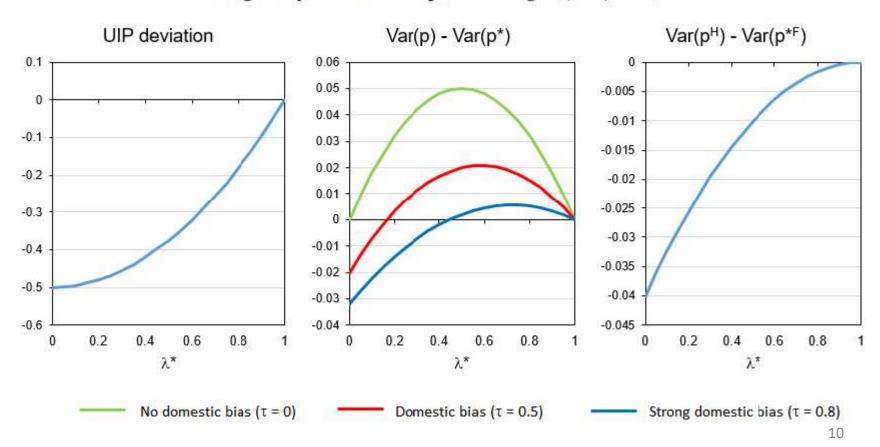
$$= -\frac{1}{2} [Var_t(m_{t+1}) - Var_t(m_{t+1}^*)]$$

using the money demand  $M_{t+1} = P_{t+1}(C_{t+1})^{-\gamma}$ 

- The country with the more volatile money supply has the lower interest rate (lower than UIP), reflecting hedging properties of bonds.
- If monetary policy is random, then high monetary volatility is association with low interest rate and high inflation volatility.

# (In)efficient monetary policy

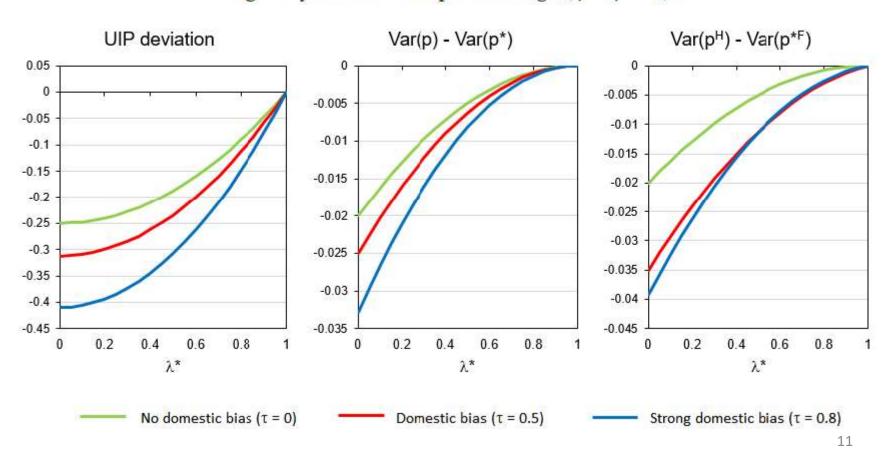
- Linear production function in labor with productivity shocks.
  - Firms' desired price reflects money (flexible wage) net of productivity:  $m_{t+1} a_{t+1}$ .
- Inflation volatility driven by:
  - Volatility of money net of productivity.
  - Volatility of exchange rate (money in both countries), depending on home bias and invoicing.
- Compute the optimal monetary stances (Nash equilibrium) as functions of productivity, depending on invoicing:  $m_{t+1}^{eff}$  and  $m_{t+1}^{*eff}$ .
- Central banks' reactivity may be insufficient:


$$m_{t+1} = \lambda m_{t+1}^{eff}$$
 ,  $m_{t+1}^* = \lambda^* m_{t+1}^{*eff}$   $\lambda, \lambda^* \leq 1$ 

• Good monetary policy is effective reaction to shocks, not absence of policy shocks. Numerical illustration with  $\lambda = 1$  and  $\lambda^* \leq 1$ .

## Full exchange rate pass-through

- Home has a low interest rate and less volatile domestic inflation.
  - Overall inflation also lower if not too exposed to the exchange rate (domestic bias).


Fig. 1: Symmetric full pass-through ( $\eta = \eta^* = 1$ )



# Zero exchange rate pass-through

 Home has a low interest rate and less volatile inflation (both domestic and overall, as import prices are shielded from the exchange rate).

Fig. 2: Symmetric zero pass-through ( $\eta = \eta^* = 0$ )

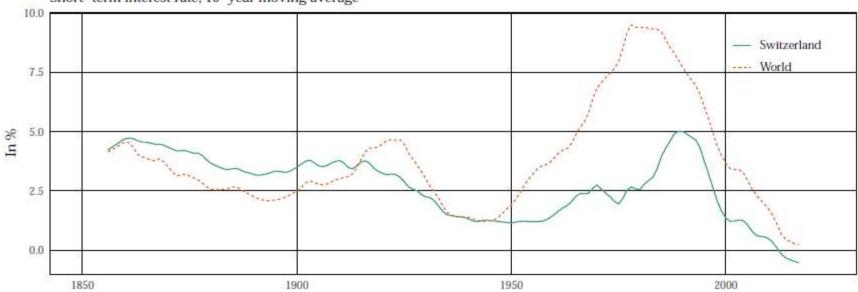


## **Message from theory**

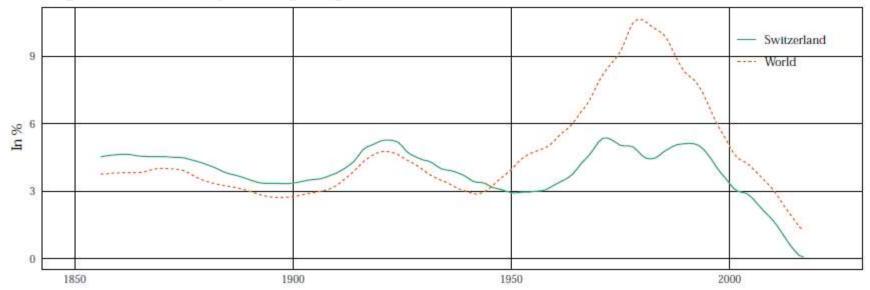
- Asymmetric invoicing (DCP of foreign currency) leads to lower Home interest rate and domestic inflation even when both banks react efficiently.
- Stabilisation of the exchange rate by the Home country reduces the range of parameters where is has a lower interest rate and less volatile inflation.
- Pattern of relative interest rate and relative inflation volatility is subtle.
  - High rate and low volatility if monetary policy is random.
  - Low rate and low volatility for the country with more efficient reaction, especially if limited impact of exchange rate.
  - Low rate and low volatility should be seen in times of flexible exchange rate and different reactivity of central banks.

## **Novel data set**

#### **Data on interest rates**

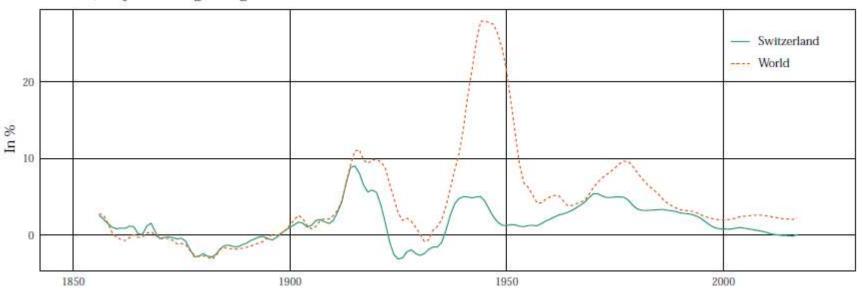

- Collection of high frequency data from archive on short and long interest rates, and exchange rates.
- Short interest rates.
  - Daily private and cantonal banks discount rates (ZH, SG, BS, BE, LS, GE) until 1890.
  - Market rates of emission banks and money market rate in Zurich, 1890-1930, Money market rate in Zurich from SNB statistical bulletin until 1999. SARON since.
- Long interest rates (10 years).
  - Quotation lists of Federal and Cantonal bonds (ZH, SG, BS, GE, VD, BE, FR) until 1899, with sample broadening with time.
  - Confederation, cantonal, and railway bonds 1899-1923.
  - SNB data on Federal and railways bonds 1924-1988, Federal bonds since.

## Data on exchange rates and inflation

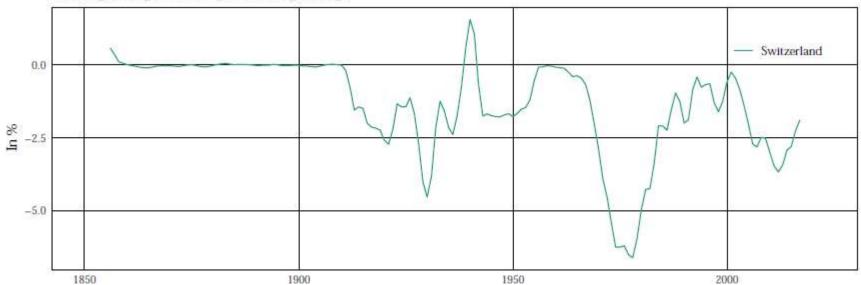

- Exchange rates.
  - Newspapers (ZH until 1890) and quotations sheets (BS until 1914) agains major European financial centers.
  - Official data since 1914.
- Inflation.
  - HSSO data for wholesale prices until 1913, CPI since.
- Usual data available for «rest of the world».
  - United Kingdom and France until 1914.
  - UK, France, and United states from 1914 to 1963.
  - Trade-weighted measures across Switzerland's partners since 1964 (OECD, SNB).

## **Interest rates**

Short-term interest rate, 10-year moving average




Long-term interest rate, 10-year moving average




# Inflation and exchange rate

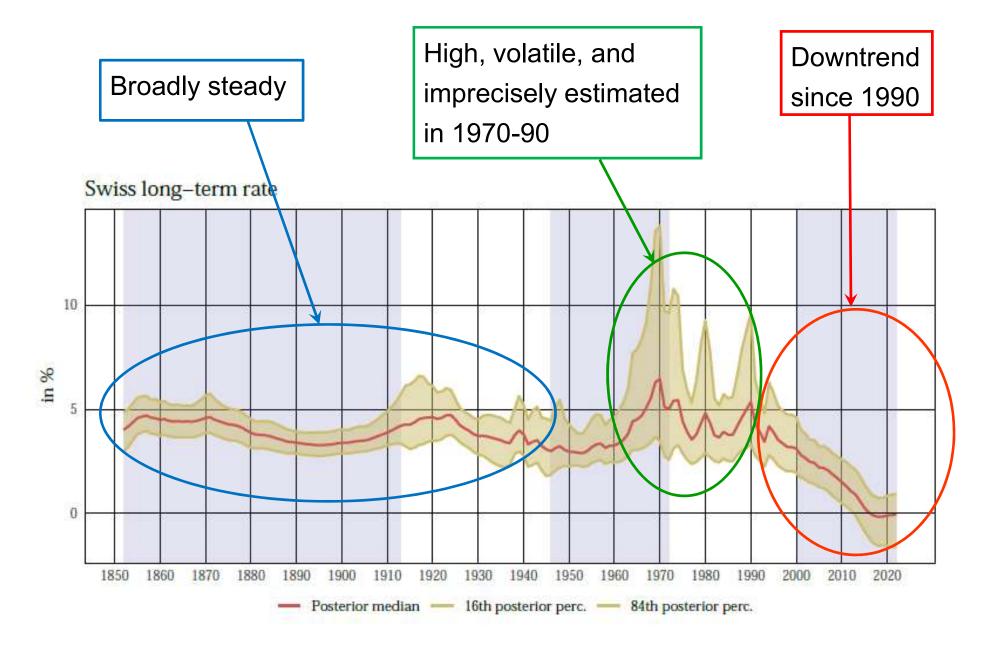
Inflation, 10-year moving average



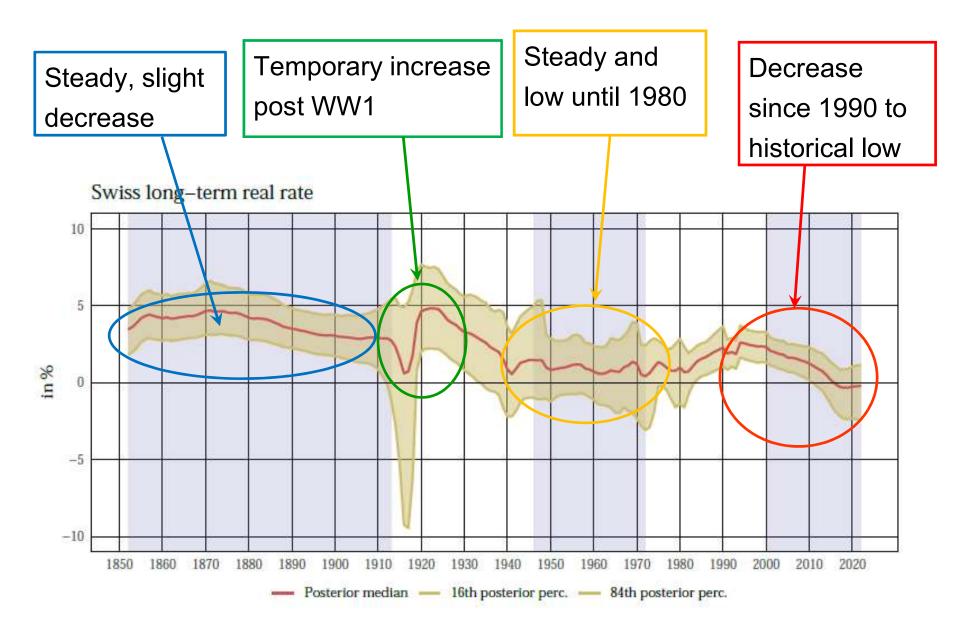
Exchange rate growth, 10-year moving average



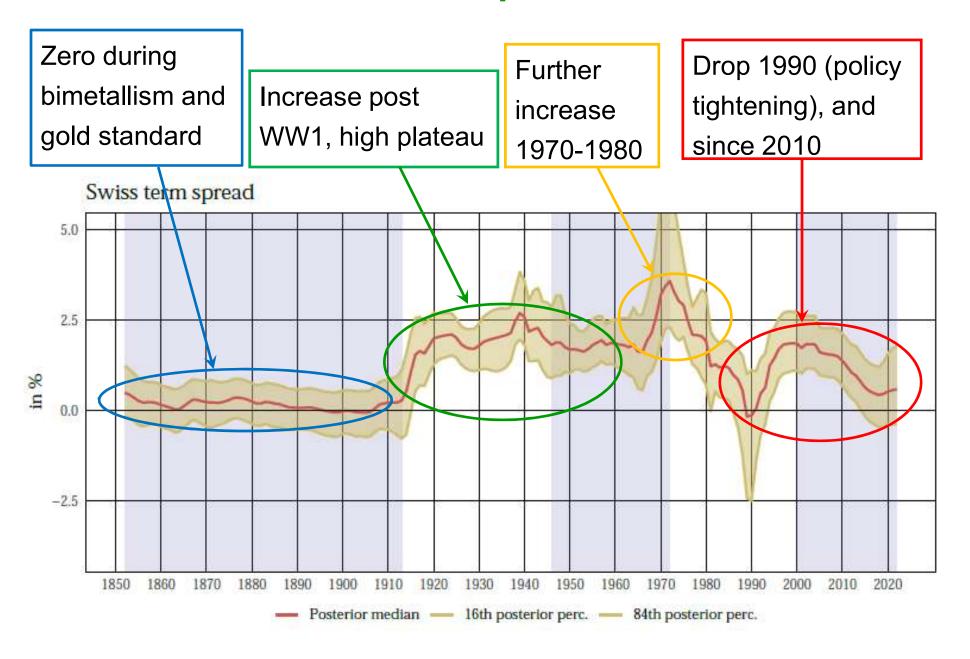
# **Extracting trends**


## Allowing for regime changes

- Usual theory-based approach based on general equilibrium model.
  - Challenging with historical data: several regime changes (Bretton Woods, floating exchange rates).
- Statistically-based approach using reduced form time-varying parameters VAR with stochastic volatility.
  - Multivariate time series model allows to estimate dynamically evolving long-term Beveridge and Nelson (1981)-type trends.
  - Best long-term forecast, long run values from the VAR, once the dynamics given parameter values have played out.
  - Inflation, short and long interest rates, exchange rate (Swiss and RoW series).


## Flexible approach

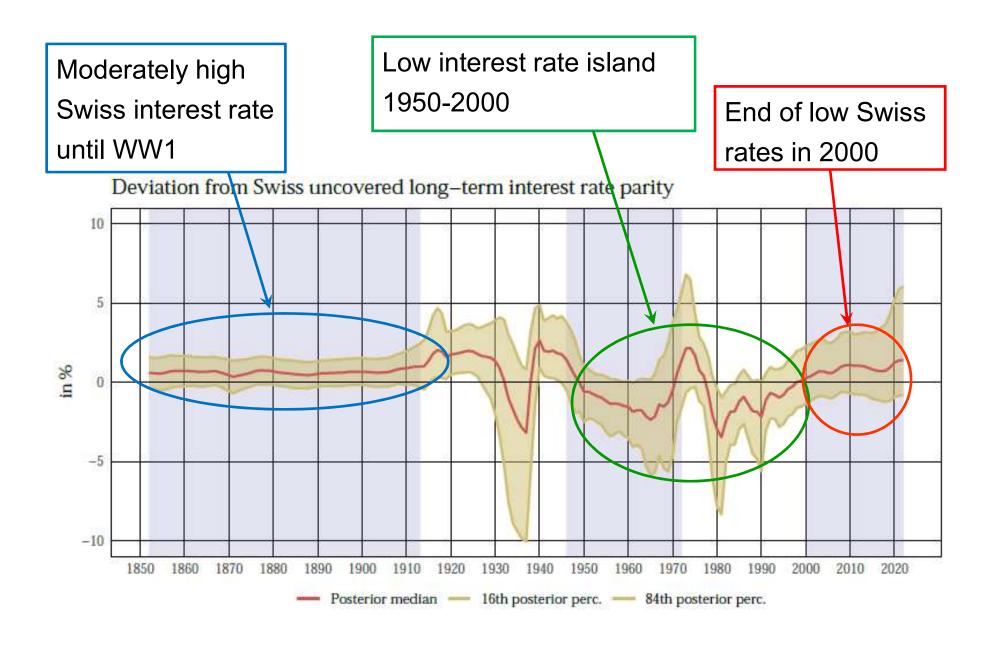
- Existing studies (e.g., Primiceri, 2005, Del Negro et al., 2019) restrict parameters (and the trends) to evolve gradually over time.
  - Problematic in the presence of regime shifts (e.g. collapse of Bretton Woods system, World Wars).
- Flexible TVP-VAR also allows for rapid changes in the underlying parameters (Huber et al. 2019).
  - Allows for gradual changes as well as sudden regime shifts.
  - Additional flexibility achieved through mixture innovations in the state equations of the parameter.


# Nominal long-term rate trend



# Real long-term rate trend




## **Term spread**



# Real long-term rate: CH - RoW



## **UIP** deviation



## **Econometric assessment**

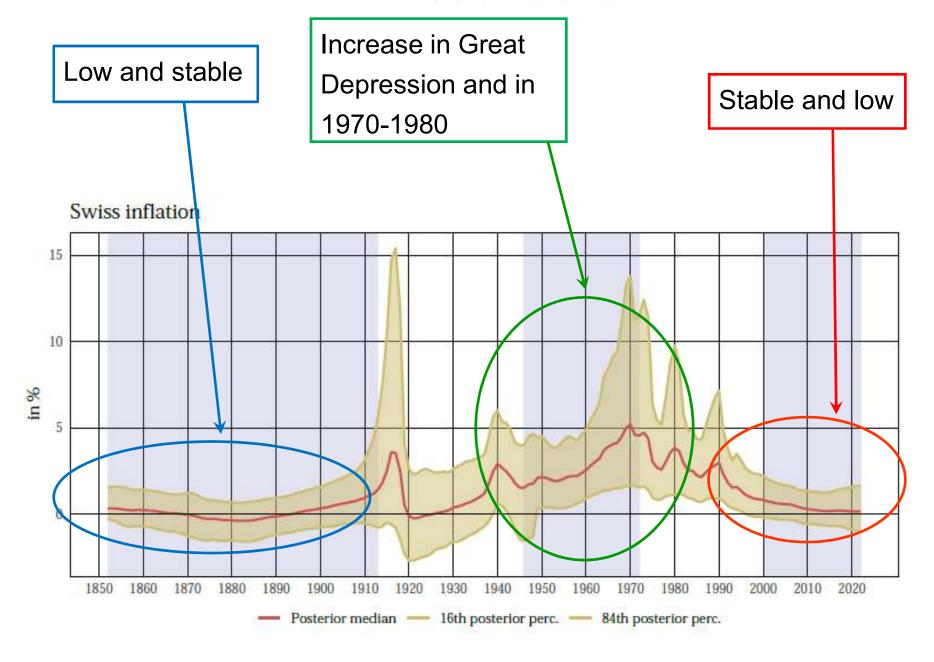
## Inflation volatility and term spread

- Three measures of volatility:
  - Level of inflation (higher is more uncertain).
  - Interquartile range of TVP-VAR posterior distribution.
  - Standard deviation of trend inflation.
- Swiss term spread positively associated with volatility.

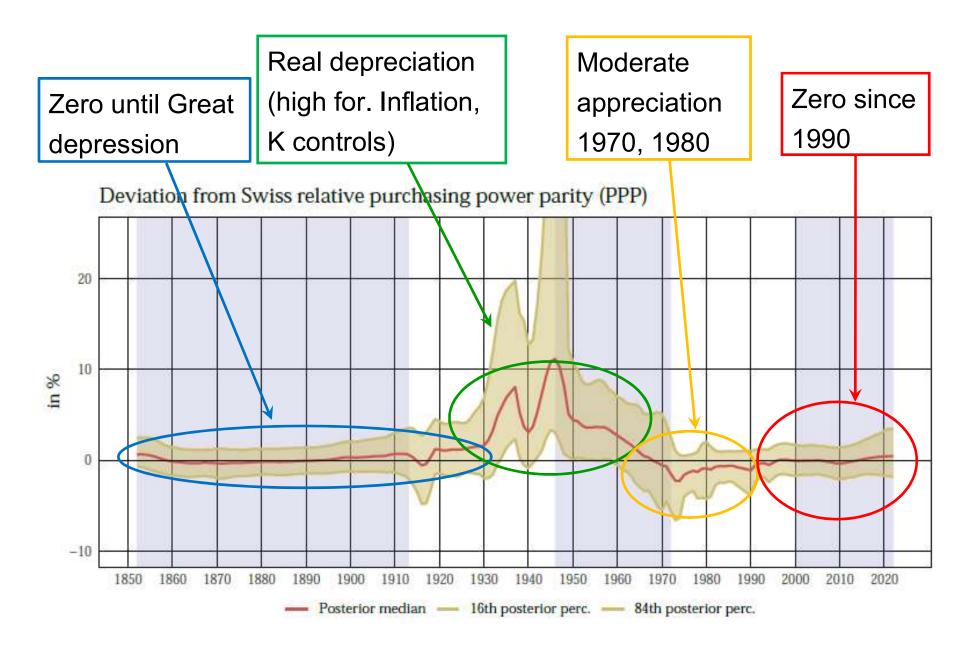
|                         | Term spread Switzerland |         |        |         |        |        |  |  |  |  |
|-------------------------|-------------------------|---------|--------|---------|--------|--------|--|--|--|--|
|                         | (1)                     | (2)     | (3)    | (4)     | (5)    | (6)    |  |  |  |  |
| Trend inflation         | 0.41***                 | 0.43*** |        |         |        |        |  |  |  |  |
|                         | (0.12)                  | (0.12)  |        |         |        |        |  |  |  |  |
| Interq. range           |                         |         | 0.36** | 0.36*** |        |        |  |  |  |  |
|                         |                         |         | (0.15) | (0.13)  |        |        |  |  |  |  |
| Uncond. std.            |                         |         |        |         | 0.12*  | 0.12*  |  |  |  |  |
|                         |                         |         |        |         | (0.07) | (0.07) |  |  |  |  |
| Constant                | 0.64*                   | 0.95*** | 0.23   | 0.31    | 0.34   | 0.42   |  |  |  |  |
|                         | (0.33)                  | (0.37)  | (0.47) | (0.45)  | (0.58) | (0.78) |  |  |  |  |
| Controls                | No                      | Yes     | No     | Yes     | No     | Yes    |  |  |  |  |
| N                       | 171                     | 171     | 171    | 171     | 171    | 171    |  |  |  |  |
| $\mathbb{R}^2$          | 0.38                    | 0.42    | 0.33   | 0.33    | 0.10   | 0.10   |  |  |  |  |
| Adjusted R <sup>2</sup> | 0.38                    | 0.41    | 0.33   | 0.32    | 0.10   | 0.09   |  |  |  |  |

# Inflation volatility and UIP gap

- UIP gap and CG-RoW inflation volatility.
- Relation is heterogenous across monetary regimes.
- Present during Bretton Woods and monetary targeting.
- No longer after broad adoption of inflation targeting.


|                         | Interes    | st rate diffe | erential   | Deviation from UIP |            |            |
|-------------------------|------------|---------------|------------|--------------------|------------|------------|
|                         | INF<br>(4) | IQR<br>(5)    | SDT<br>(6) | INF<br>(7)         | IQR<br>(8) | SDT<br>(9) |
|                         |            |               |            |                    |            |            |
| Unc. x Metallic reg.    | 0.46       | -2.94*        | -0.10      | 1.33               | -2.69*     | 0.08       |
|                         | (1.50)     | (1.59)        | (0.61)     | (1.31)             | (1.54)     | (0.70)     |
| Unc. x World Wars       | -1.10      | 0.56          | 0.12       | -0.06              | 0.44       | 0.02       |
|                         | (0.71)     | (0.85)        | (0.30)     | (0.77)             | (0.68)     | (0.32)     |
| Unc. x Bretton Woods    | 0.57       | 1.44*         | 0.97*      | 0.67               | 1.13***    | 0.86**     |
| 100 801 8               | (0.82)     | (0.76)        | (0.55)     | (0.51)             | (0.38)     | (0.34)     |
| Unc. x Monetary targ.   | 0.93***    | 1.27***       | 0.82***    | 0.71*              | 0.91*      | 0.60*      |
|                         | (0.30)     | (0.49)        | (0.30)     | (0.38)             | (0.52)     | (0.33)     |
| Unc. x Inflation targ.  | -0.19      | -1.39         | -0.23      | -0.13              | -1.28      | -0.20      |
|                         | (0.34)     | (1.39)        | (0.60)     | (0.31)             | (1.33)     | (0.63)     |
| Constant                | 0.15       | -0.07         | 0.20       | 0.23               | -0.04      | 0.22       |
|                         | (0.47)     | (0.48)        | (0.57)     | (0.44)             | (0.50)     | (0.66)     |
| N                       | 169        | 169           | 169        | 169                | 169        | 169        |
| R <sup>2</sup>          | 0.32       | 0.38          | 0.32       | 0.31               | 0.35       | 0.28       |
| Adjusted R <sup>2</sup> | 0.30       | 0.36          | 0.30       | 0.29               | 0.33       | 0.26       |

## Conclusion


- Long perspective using new dataset from archival sources.
- Nominal factors: countries with low inflation volatility can have lower rates if it reflects better targeted policy.
- Extraction of time-varying trends, and decomposition of drivers of interest rates.
  - Gold standard: Switzerland in line with rest of the world.
  - Interwar and 1970-1980's: higher trend inflation, decrease in real interest rate, positive term spreads, low interest rate island (since WW2).
  - Since 2000: normalisation, end of low interest island (other countries become more similar to Switzerland).
  - Evidence (in progress) of role of inflation volatility for UIP deviations during Bretton Woods and monetary targeting.

# **Extra slides**

## Inflation trend



## **Deviation from PPP**

