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Abstract

We develop a dynamic model of DeFi (decentralized �nance) lending incorporating the following key

features: 1) borrowing and lending are decentralized and anonymous where terms are set by smart

contracts; 2) lending is collateralized on the market value of crypto assets; 3) lenders supply assets to

a liquidity pool and indi�erent to collaterals pledged by borrowers conditional on the terms in smart

contracts. The underlying friction is the limited commitment and asymmetric information between

borrowers and lenders, making haircut a key parameter trading-o� risk and e�ciency. We identify

a price-liquidity feedback loop in DeFi lending: the market outcome in any given period depends

on agents' expectations about lending activities in future periods, higher future price expectation

leading to more lending and higher price today, leading to multiple self-ful�lling equilibria. DeFi

lending makes crypto prices more sensitive to fundamental shocks, and asset prices and lending

activities can �uctuate according to non-fundamental market sentiment. Flexible updates of smart

contract terms can improve e�ciency and restore equilibrium uniqueness. We also discuss some

evidence.
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1 Introduction

Decentralized �nance (DeFi) is an umbrella term for a variety of �nancial service protocols and appli-

cations (e.g., decentralized exchanges, lending platforms, asset management) on blockchain. These are

anonymous permissionless �nancial arrangements that aim to replace traditional intermediaries by run-

ning smart contracts � immutable, deterministic computer programs � on a blockchain. This is di�erent

from traditional �nancial arrangements that rely on intermediaries run by third parties. By automating

the execution of contracts, DeFi protocols have potential to avoid incentive problems associated with

human discretion (e.g., fraud, censorship, racial and cultural bias), expand the access to �nancial ser-

vices and complement the traditional �nancial sector. The growth of decentralized �nance has been

substantial since the �DeFi Summer� in 2020. According to data aggregator DeFiLlama, the total value

locked (TVL) of DeFi has reached 230 billion U.S. dollars as of April 2022, up from less than one billion

two years ago. As DeFi grows in scale and scope and becomes more connected to the real economy,

its vulnerabilities might undermine both crypto and formal �nancial sector stability (Aramonte, Huang,

and Schrimpf (2021)). While policy makers and regulators have raised concerns about the �nancial

stability implications of DeFi (FSB 2022; IOSCO 2022)1, formal economic analysis on this issue is still

very limited. In this paper, we examine DeFi lending protocols � an important component of the DeFi

eco-system, and the sources and implications of their instability.2 We develop a dynamic adverse selec-

tion model to capture key features of DeFi lending, explore its inherent fragility and its relationship to

crypto asset price dynamics.

As documented in Section 2, DeFi lending is one of the most popular DeFi services. Figure 1

shows a stylized structure of lending protocols. Anonymous lenders deposit their crypto assets (e.g.,

stablecoins denoted as $) via a lending smart contract to the lending pool of the corresponding crypto

asset. Anonymous borrowers can borrow the crypto asset from its lending pool by pledging any collateral

accepted by the protocol via a borrowing smart contract. DeFi lending is typically short-term since all

lending and borrowing can be terminated at any minute. The rules for setting key parameters (e.g.,

interest rates and haircuts) are pre-programmed in the smart contracts. Collateral assets are valued

based on price feeds provided by an oracle which can be either on-chain or o�-chain. The protocol is

governed by holders of governance tokens in a decentralized fashion.

1URLs of reports: https://g20.org/wp-content/uploads/2022/02/FSB-Report-on-Assessment-of-Risks-to-Financial-

Stability-from-Crypto-assets_.pdf and https://www.iosco.org/library/pubdocs/pdf/IOSCOPD699.pdf
2DeFi lending is much more volatile relative to traditional lending. For example, the coe�cients of variation for the

total values of Aave v2 loans and deposits are respectively 73 and 65 in 2021. The corresponding statistics for the US

demand deposits and C&I loans are respectively 10.4 and 2.7.
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Figure 1: Stylized Structure of a DeFi Lending Protocol
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How is DeFi lending di�erent from that in traditional centralized �nance (CeFi)? First, CeFi bor-

rowers can be identi�ed. Second, standard assets are available as collateral. Third, loan contracts can

be �exible, with loan o�cers modifying terms according to the latest hard and soft information. These

features help improve loan quality and enforce loan repayments in CeFi, but are not applicable to DeFi

lending which is based on a public blockchain. In the DeFi environment, agents are anonymous, credit

checks or other borrower-speci�c evaluation are not feasible. Some intertemporal and/or non-linear fea-

tures of a loan contract cannot be implemented. For instance, reputational schemes become less e�ective

(individuals can always walk away from a contract without future consequences). Also, if loan size is

used to screen borrower types, users may �nd it optimal to submit multiple transactions from di�erent

addresses. In addition, only tokenized assets can be pledged as a collateral. So far, these assets tend

to have a very high price volatility and often are bundled into an opaque asset pool. Furthermore,

a smart contract is used to replace human judgment. Hence all terms (e.g., loan rate formulas, hair-

cuts) need to be pre-programmed and can only be contingent on a small set of quanti�able real-time

information. As a result, DeFi lending typically involves a linear, non-recourse debt contract, featuring

over-collateralization as the only risk control. Contractual terms are pre-programmed and cannot be

contingent on soft information (e.g., news, sentiments). As described above, loans are typically collater-

alized on a pool of crypto assets. While borrowers can choose to pledge any acceptable collateral assets,

lenders cannot control or monitor the composition of the underlying collateral pool, implying that DeFi
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lending is subject to information asymmetry between borrowers and lenders.3 Last but not least, there

are so far no meaningful regulation and oversight of DeFi lending.

Motivated by these empirical observations, we develop a dynamic model of DeFi lending protocol

that has the following ingredients. Borrowing is decentralized, over-collateralized, backed by various

risky crypto assets, and the rule for haircuts is pre-speci�ed. In addition, borrowers in each market are

better informed about the value of the collateral asset. We uncover a price-liquidity feedback e�ect as

the crypto market outcome in any given period depends on agents' expectations about crypto market

conditions in future periods. Interestingly, higher expectation about future crypto asset prices improves

DeFi lending and supports higher crypto prices today, leading to multiple self-ful�lling equilibria which

give rise to the fragility of DeFi lending. There exist �sentiment� equilibria in which sunspots generate

�uctuations in crypto asset prices and DeFi lending volume. Assets of lower average quality are used

more as collaterals during periods of negative sentiments. In addition, rigid smart contracts make crypto

asset prices and DeFi lending sensitive to fundamental shocks. We provide some empirical evidence to

support the implication of the model.

Our work is the �rst economic paper to develop a dynamic, equilibrium model for studying decentral-

ized lending protocols such as Aave and Compound. While there is a young and growing literature on

decentralized �nance, there are very limited work on DeFi lending platforms. Most existing DeFi papers

study decentralized exchanges to understand how automated market makers (e.g., Uniswap) function

di�erently from a traditional exchange (e.g., see Aoyagi and Itoy (2021), Capponi and Jia (2021), Lehar

and Parlour (2021), Park (2021). There are also papers investigating the structure of decentralized

stablecoins such as Dai issued by the MakerDAO (e.g., d'Avernas, Bourany, and Vandeweyer (2021), Li

and Mayer (2021), Kozhan and Viswanath-Natraj (Forthcoming)). Lehar and Parlour (2022) study em-

pirically the impact of collateral liquidations on asset prices. For a general overview of DeFi architecture

and applications, see Harvey et al. (2021) and Schar (2021).

Our model is related to existing theoretical works on collateralized borrowing in a general equilibrium

setting such as Geanakoplos (1997), Geanakoplos and Zame (2002), Geanakoplos (2003), and Fostel and

Geanakoplos (2012). Building on Ozdenoren, Yuan, and Zhang (2021), our model captures some essential

institutional feature of DeFi lending to study the joint determination of lending activities and collateral

asset prices, which help us understand how information frictions and smart contract rigidity contribute

to the vulnerabilities of crypto prices and DeFi lending.

3Borrowers can also have an information advantage relative to the lending protocol when the smart contract relies on

an inaccurate price oracle.
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This paper is organized as follows. In Section 2, we provide a brief description of the Aave lending

protocol as an example. We then describe the model setupin Section 3 and derive the equilibrium

lending market in Section 4. In Section 5, we establish the inherent fragility of DeFi lending and discuss

how �exible contract design can improve stability and e�ciency. Section 6 discusses some evidence and

Section 7 concludes.

2 A Brief Description of Aave Lending Protocol

According to DeFiLlama, there are 1485 DeFi protocols running on di�erent blockchains (e.g., Ethereum,

Terra, BSC, Avalanche, Fantom, Solana) as of April 2022. The TVL of these protocols are 237 billion

USD with lending protocols accounting for about 20%. (Figure 2).4 Table 1 reports some basic statistics

about the three main lending protocols: Compound operating on Ethereum, Venus on the BSC and Aave

on multiple chains. Operating on multiple blockchains, Aave is the largest among the three in terms of

TVL, deposits and borrows, and market capitalization of its governance tokens. Below, we give a brief

overview of some key features of the Aave lending protocol. More details can be found in the appendix.

Table 1: Major decentralized lending Platforms (April 17, 2022)

Aave Compround Venus

Total value locked (USD) 13.35 B 6.35 B 1.51 B

Blockchain Multi Ethereum BSC

Total deposits (USD) 15.37 B 9.51 B 1.51 B

Total borrows (USD) 5.93 B 3.21 B 0.82 B

Governance Token AAVE COMP XVS

Market Cap (USD) 2.38 B 0.99 B 0.13 B

Data Source: De�Llamma; Aavewatch; Compound.�nance; Venus.io; Glassnode.

Aave is an open source and non-custodial liquidity protocol where users can earn interest on deposits

and borrow crypto assets. It is one of the largest DeFi protocols, with the following features:

Key players. The Aave eco-system consists of di�erent players. Depositors can deposit a crypto

asset into the corresponding pool of the Aave protocol and collect interest over time. Borrowers can

4Collateralized debt position (CDP), e.g., MakerDAO, accounts for 8% of the TVL. Both lending and CDP protocols

support collateralized lending. The key di�erence is that a lending protocol lends out assets deposited by lenders while a

CDP lends out assets (e.g., stablecoins) minted by the protocol.
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Figure 2: Composition of TVL of all DeFi Protocols on all Chains (April 2022)
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Data Source: De�Llamma.

borrow these funds from the pool by pledging any acceptable crypto assets as collateral to back the

borrow position. A borrower repays the loan in the same asset borrowed. There is no �xed time period

to pay back the loan. Partial or full repayments can be made anytime. As long as the position is safe, the

loan can continue for an unde�ned period. However, as time passes, the accrued interest of an unrepaid

loan will grow, which might result in the deposited assets becoming more likely to be liquidated. In

the eco-system, there are also AAVE token holders. Like �shareholders�, they act as residual claimants

and vote when necessary to modify the protocol. The daily operations are governed by smart contracts

stored on a blockchain that run when predetermined conditions are met.

Loan rate and liquidation threshold. The loan and the deposit rates are set based on the current

supply and demand in the pool according to formulas speci�ed in the smart contracts. In particular, as

the utilization rate of the deposits in a pool goes up (i.e., a larger fraction of deposits are borrowed),

both rates will rise in a deterministic fashion. The Loan to Value (LTV) ratio de�nes the maximum

amount that can be borrowed with a speci�c collateral. For example, at LTV = .75, for every 1 ETH

worth of collateral, borrowers will be able to borrow 0.75 ETH worth of funds. The protocol also de�nes

a liquidation threshold, called the health factor. When the health factor is below 1, a loan is considered

undercollateralized and can be liquidated by collateral liquidators. The collateral assets are valued based

on price feed provided by Chainlink's decentralized oracles.

Ricky collateral. Aave currently accepts over 20 di�erent crypto assets as collateral including
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WETH, WBTC, USDC and UNI. Most non-stablecoin collateral assets have very volatile market value.

As shown in table 5 in the Appendix, the prices of stablecoins such as USDC and DAI (top panel),

are not so volatile and they are typically loaned out by lenders. Other crypto assets, which are used

as collaterals to back the borrowings, are extremely volatile relative to collateral assets commonly used

in traditional �nance (bottom panel). For example, ETH, which accounts for about 50% of use non-

stablecoin deposits in Aave, has a daily volatility of 5.69%. The maximum daily price drop was over

26% during the sample period. The most volatile one is CRV, the governance token for the decentralized

exchange and automated market maker protocol Curve DAO. For CRV the maximum price change

within a day was over 40%. For risk management purposes, Aave has imposed very high haircuts on

these crypto assets. For example, the haircuts for YFI and SNX are respectively 60% and 85%.5

Collateral pool. Loans are backed by a pool of collateral assets. While the borrower can pledge

any one of the acceptable assets as a collateral, the lenders cannot control or monitor the quality of the

underlying collateral pool. As a result, DeFi lending is subject to asymmetric information: borrowers

can freely modify the underlying collateral mix without notifying the lenders. Naturally, borrowers and

lenders have asymmetric incentives to spend e�ort acquiring information about the collateral pledged

(e.g., monitor new information, conduct data analytics).

Pre-speci�ed loan terms. Aave lending pools follow pre-speci�ed rules to set loan rates and

haircuts. As a smart contract is isolated from the outside world, it cannot be contingent on all available

real-time information. While asset prices are periodically queried from an oracle (Chainlink), the loan

terms do not depend on other soft information (e.g., regulatory changes, projections, statements of future

plans, rumors, market commentary) as they cannot be readily quanti�ed and fed into the contract.

Decentralized governance. Like many other DeFi protocols, Aave has released the governance

to the user community by setting up a decentralized autonomous organization or DAO. Holders of the

AAVE token can vote on matters such as adjustments of interest rate functions, addition or removal of

assets, and modi�cation of risk parameters such as margin requirements. To implement such changes

to the protocol, token holders need to make proposals, discuss with the community, and obtain enough

support in a vote. This process helps protect the system against censorship and collusion. However,

5More recently, Aave has started to accept real world asset (RWA) as collateral, allowing businesses to �-

nance their tokenized real estate bridge loans, trade receivables, cargo & freight forwarding invoices, branded

inventory �nancing, and revenue based �nancing (https://medium.com/centrifuge/rwa-market-the-aave-market-for-

real-world-assets-goes-live-48976b984dde). Aave also plans to accept non-fungible tokens (NFTs) as collateral

(https://twitter.com/StaniKulechov/status/1400638828264710144). Being non-standardized, NFTs are likely to be subject

to even high informational frictions. Popular DeFi lending platforms for NFTs include NFT�, Arcade, and Nexo.

7



decentralized governance by a large group of token holders is both time and resource costly. Hence it is

not possible to update the protocol or the smart contract terms very frequently. As a result, relative to

a centralized organization, a DeFi protocol may be slower to make necessary adjustments to respond to

certain unexpected external changes (e.g., changes in market sentiments) in a timely manner.6

Figures 3-5 show some basic statistics describing the Aave lending protocol. In April 2022, Aave

supports the lending of 31 tokens and the total market size is about 11 billion USD. As shown in Figure

3 (a), the total value locked in Aave has increased substantially from mid 2020 to mid 2021, and has gone

through a few ups and downs since then. The numbers of active lenders and borrowers, reported in panel

(b), have also �uctuated over time. Figure 4 shows the average compositions of deposits and borrows.

Aave does not show explicitly which deposited crypto assets are used as collaterals. These graphs

however suggest that stablecoins such as USDC and USDT are borrowed disproportionately relative to

their deposits. Stablecoins account for over 75% of loans. At the same time, the frequencies of borrowing

assets like ETH and BTC (WETH and WBTC in the �gures) are lower than those of depositing them,

suggesting that they are mostly used as collaterals. It is also observed that the leverage of these loans is

relatively high since the distribution of the health factors is skewed towards the left in Figure 5 (a), with

40% with a health factor below 1.7 Liquidations happen frequently as a result of the volatile collateral

prices and high leverage. Panel (b) shows the time series of collateral liquidations.

3 The Model Setup

The economy is set in discrete time and lasts forever.8 There are many in�nitely-lived borrowers with

identical preferences and access to the same information. We refer to a representative borrower as agent

B. There are many crypto assets. Each borrower can hold at most one unit. There are also potential

lenders who live for a single period and are replaced every period. All agents can consume/produce

linearly a numeraire good at the end of each period.

6A risk assessment report in April 2021 pointed out that �As market conditions change, the optimal parameters and sug-

gestions will need to dynamically shift as well. Our results suggest that monitoring and adjustment of protocol parameters

is crucial for reducing risk to lenders and slashing in the safety module.� (Source: https://gauntlet.network/reports/aave)
7In practice, a position with health factor below one may not be liquidated immediately due to the execution costs

involved.
8In reality, interest payment on the borrowing in the lending protocols is continuously compounded and can be termi-

nated at any time. Therefore, we can interpret that each time period in our model is relatively short.
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Figure 3: Aave v2 TVL and Users Over time
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Figure 4: Asset Compositions in Aave v2
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Gains from Trade Agent B has a need for funding that can be provided by agent Ls. There are

gains from trade as the value per-unit of funding to agent B is z > 1, while the per-unit cost of providing

funding by agent Ls is normalized to one. At the end of the period, agents B can produce the numeraire

good to repay the lenders subject to linear disutlility. The fundamental friction that gives rise to DeFi

lending is that agents are anonymous and cannot commit to future actions. This implies that loans

need to be collateralized on crypto assets. In addition, intermediaries that provide custodial services

also cannot commit to returning the assets. This friction supports the role for DeFi lending which relies

on a smart contract to implement a collateralized loan. Collateral is locked and released if and only if

a repayment is received. With a pre-programmed contract replacing human beings, incentive problems

can be avoided.

In DeFi lending platforms such as Aave, borrowers predominantely borrow stablecoins such as USDT

and USDC using risky collaterals such as ETH, BTC, YFI, YNX. They use stablecoins to fund various

transactions due to their status of medium of exchange and unit of account in DeFi. We can interpret z

as the value accrued to the borrowers when using these stablecoins for purchasing assets or converting

them into �at.9

Crypto Asset's Properties and Information Environment For simplicity, we assume that all

crypto assets are ex-ante identical but each yields a random, idiosyncratic payo� at the end of period

t which we denote as st ∈ [0, 1]. The payo� state, st, captures both pecuniary payo� that the asset

generates (e.g., staking returns to the holder), and other private bene�ts that accrue from holding

the crypto asset (e.g., governance right). We assume that st is distributed according to probability

distribution FQ where Q ∈ {L,H} denotes the quality of the asset. Quality Qt = L with probability

λ ∈ (0, 1) and draw i.i.d. at the beginning of the each period. Therefore, crypto assets with a larger λ

have lower average quality. As there are many crypto assets, each period fraction λ of the assets are of

Q = L.10

We denote the density of FQ by fQ and its survival function, 1−FQ (s) , by F̃Q (s). We assume both

distributions have strictly positive density in their domain [0, 1], and FH stochastically dominates FL

according to the likelihood ratio, i.e., fL (s) /fH (s) is decreasing in s ∈ [0, 1].

At the beginning of each period, the borrower of a crypto asset privately learns the asset's quality in

that period. The asset's quality and the state are both publicly revealed at the end of each period. For

9It is straight-forward to introduce governance token holders who provide insurance to lenders by acting as residual

claimants. Given risk neutrality, the equilibrium outcome remains the same.
10An alternative interpretation of the model is that there is only one crypto asset but the quality Q changes each period.
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simplicity, we assume that the asset quality is i.i.d., past quality does not provide any information about

the future. Allowing persistent shock will not a�ect the main results of the paper. Also, for simplicity, we

have assumed that borrowers receive private information every period. In the Appendix, we consider the

general case where private information arrives only infrequently with probability χ, which can capture

the degree of information imperfection.

Asset Price At the end of each period, agents meet in a centralized market to trade the assets by

transferring the numeraire good. The end-of-period ex-payo� price of a crypto asset in period t is denoted

as φt. Each borrower can hold at most one unit of crypto asset. The dynamic structure is based on

Lagos and Wright (2005).

DeFi Debt At the beginning of the period, the smart contract is updated before he receives infor-

mation about the asset quality. The contract, y(s, φt), promises a payment at the end of each period

backed by payo� and the price of the crypto asset. As discussed, DeFi lending typically uses a debt

contract: y(s, φt) = min(st + φt, D) where D ∈ [s+ φt, s̄+ φt] denotes the debt threshold. The amount

of borrowing, that is, the size of the loan per unit of collateral pledged, qt, is determined by the zero

pro�t condition on the lenders discussed below. The design chooses the largest possible face value of

the debt subject to the constraint that the loan size cannot exceed the value of the pledged crypto asset

discounted by a haircut h:

D = max{D̃ : qt(D̃) ≤
Et

[
s; D̃

]
+ φt

1 + h
} (1)

As shown below, qt and Et[s] depend on the mix of borrowers choosing to borrow from the contract

after observing the asset quality, which in turn depends on the choice of D.

After observing the asset quality, agent B raises funding from a DeFi protocol by executing the smart

contract. We denote by ait,Q the quantity of collateral a borrower pledges when the the crypto asset

that backs the debt is of quality Q. Quantities pledged by each type must be optimal given the price,

i.e., for each Q ∈ {L,H},

at,Q ∈ arg max
a∈[0,1]

a (zqt − EQyt (s, φt)) . (2)

Note that the choice a is quality dependent, meaning that lenders face adverse selection in the DeFi

lending market. The loan size q does not depend on the underlying asset quality because lenders are

not able to distinguish between low and high quality when they compete to o�er the loan. Of course,

in equilibrium, lenders take into account the average quality of the collateral mix backing the loan.

11



Formally, the price of contract y(s, φt) is given by:

qt =
1

1 + r

{
1

at,Lλ+ at,H (1− λ)
[at,LλELyt (s, φt) + at,H (1− λ)EHyt (s, φt)]

}
(3)

where r is the rate of return lenders expect to make on the loan which is determined by lenders' outside

alternatives. For now, we assume r = 0. If the quality Q were known, the lender would expect a return

EQy from the debt contract y. Since Q is not known, the lender's expected return on the RHS is given by

the weighted average derived according to the equilibrium mix of borrowers. Competition then implies

that the equilibrium loan size q o�ered by lenders is equal to the expected return.

Similarly, the expected value of dividend in (1) equals

Et [s] = [at,LλELs+ at,H (1− λ)EHs] / (at,Lλ+ at,H (1− λ)) .

Determination of the Crypto Asset Price The price of a crypto asset at the end of period t, φt,,

is given by:

φt = β

{
λ

[∫ s̄

s

(at+1,L (zqt+1 − yt+1(s, φt+1,)) + (s+ φt+1)) dFL(s)

]
(4)

+ (1− λ)

[∫ s̄

s

(at+1,H (zqt+1 − yt+1(s, φt+1)) + (s+ φt+1)) dFH(s)

]}
,

where β is the discount factor, 0 < β < 1/z. The asset price is determined by the collateral value of

the asset in the future, which in turn depends on the extent of asymmetric information in future DeFi

lending markets. Speci�cally, the continuation value of an asset depends on the information state Q in

the next period. Given Q, the value of the asset is simply the sum of the collateral value EQaQ(zq− y),

the expected dividends EQs, and the resale value φ.

Timing In each period, lenders compete to lend to borrowers via the smart contract subject to the

haircut rule, determining q and D. Agent B receives private information and decides whether to borrow

by pledging collateral to the smart contract. Once borrowing is done, both Q and st are revealed and

the asset price is determined. Finally, agent B repays the lenders or defaults and loses the collateral,

and consumption takes place. At the end of the period, agent B can work to buy at most one unit of

the crypto asset. Figure (6) shows the timeline.

To summarize, given haircut h, an equilibrium consists of asset prices φt,, debt thresholds Dt, loan

size qt and collateral quantities {at,L, at,H} that solves equations (2)-(4).
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Figure 6: Timeline
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4 Equilibrium in Lending Market

We begin the analysis by describing the equilibrium in the DeFi lending market.11 To study the borrow-

ers' decision, we �rst de�ne the degree of information insensitivity as the ratio of the expected value of

the debt under the low versus the high distribution, i.e., ELy(s, φ)/EHy(s, φ). Note that a debt contract

y(s, φ) = min{s + φ,D} has the property that ELy(s, φ) ≤ EHy(s, φ). As this ratio increases, the ex-

pected values of the debt under the low versus high distribution become closer, and the adverse selection

problem becomes less severe.

We assume that lenders are strategic and compete à la Bertrand which ensures that equilibrium in

the DeFi market is generically unique. That is, lenders simultaneously make o�ers in terms of q taking

into account which types of borrower would borrow. Agent B observes these o�ers, and decides how

much of the collateral to be pledged to back the loan.12 Due to Bertrand competition, lenders make zero

surplus in expectation, and the equilibrium q is given by (3). The quantities sold by each type of agent

B, aQ, is optimal for that type and satis�es (2). The next proposition characterizes the equilibrium in

the DeFi lending market.

Proposition 1. If ELy(s, φ)/EHy(s, φ) > ζ ≡ 1− (z−1)/(λz), then q = λELy(s, φ) + (1−λ)EHy(s, φ)

and aL = aH = 1. If ELy(s, φ)/EHy(s, φ) < ζ, then q = ELy(s, φ), aL = 1 and aH = 0.13

Proposition 1 implies that the equilibrium features a pooling (separating) outcome when the debt

contract is su�ciently informationally insensitive (sensitive). In particular, when ELy(s, φ)/EHy(s, φ)

is above the threshold ζ, the adverse selection problem is not too severe and both types borrow. In this

case, the loan size is the pooling quantity q = λELy(s, φ)+(1−λ)EHy(s, φ).When ELy(s, φ)/EHy(s, φ)

is below the threshold, the adverse selection problem is severe and only the low type borrows. In this

case, the loan size is the separating amount q = ELy(s, φ). As the implicit interest rate is given by

11In this section we drop the time subscript t from all the variables to ease the notation.
12In this formulation agent B has all the bargaining power, but this is not crucial for any of our results.
13When ELy/EHy = ζ, there are multiple equilibria. In particular, both pooling and separating (and even semi-

separating) equilibria are possible. To simplify exposition in this knife edge case, we select the pooling equilibrium.
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D/q, a loan traded in a pooling equilibrium requires a lower interest payment for the borrower than

one traded at the separating equilibrium. The above proposition also indicates that in addition to the

parameters that characterize type heterogeneity, the gains from trade parameter, z, is also an important

determinant of adverse selection: a lower z leads to a higher ζ. In particular, even if there is very little

asymmetric information about the quality of the debt contract i.e., when ELy(s, φ)/EHy(s, φ) is slightly

below 1, as z approaches 1 (so that ζ is close 1), the DeFi lending will be in a separating equilibrium.

In other words, when gains from trade is low, even a slight amount of asymmetric information results in

a big adverse selection problem.

5 Multiple Equilibria in Dynamic DeFi Lending

In this section, we demonstrate that this economy is fragile and exhibits dynamic multiplicity in prices.

Speci�cally, we show that there might be multiple equilibria in the DeFi lending market justi�ed by

di�erent crypto asset prices. The multiple asset prices are themselves justi�ed by the di�erent equilibria

in the DeFi lending. We �rst solve the equilibrium for a debt contract collateralized by a generic crypto

asset.

Given the debt contract y(s, φt) = min(st + φt, D) where D = δ + φt. We will see below that the

haircut rule (1) will be binding in equilibrium (i.e., qQt =
EQs+φt,

1+h ). By Proposition 1 and (1), the loan

size is given by qPt = λELs+(1−λ)EHs+φt

1+h if (ELy)/(EHy) ≥ ζ and qSt =
ELs+φt,

1+h otherwise. Using (4), we

obtain the price of the collateral asset in the asset market as

φt =

β
[
(z + h) qPt+1

]
if ELy
EHy

≥ ζ,

β
[
λ (z + h) qSt+1 + (1− λ) (EHs+ φt+1)

]
if ELy
EHy

< ζ.

(5)

Intuititively, in a pooling outcome, all assets are collateralized to obtain DeFi loans. In a separating

outcome, only assets held by the low type are collateralized while those held by the high type remain

idle.

Next, we characterize stationary equilibria where DeFi lending is either always traded in a pooling

equilibrium, or it is always in a separating equilibrium. Since we are focusing on stationary equilibria

we drop the time subscripts.

14



5.1 Pooling Equilibrium

Plugging qP into (5) we observe that a pooling equilibrium, in which both types of agent B borrow in

the lending market, exists if and only if

EL min(δ, s) + φP

EH min(δ, s) + φP
≥ ζ, (6)

where the asset prices in the pooling equilibrium are given by

φP = β (z + h)

(
λ
(
ELs+ φP

)
+ (1− λ)

(
EHs+ φP

)
1 + h

)
.

Solving for the pooling prices we obtain the equilibrium asset price

φP =
β (z + h) (λELs+ (1− λ)EHs)

1 + h− β (z + h)
. (7)

By plugging (7) into (6) we see that a pooling equilibrium exists if and only if the high type borrowers

have incentives to borrow:

ζ

∫ δ

0

F̃H (s) ds−
∫ δ

0

F̃L (s) ds ≤ (1− ζ)
β z+h1+h

1− β z+h1+h

(λELs+ (1− λ)EHs)

where the debt threshold D = φ+ δ is pinned down by the lender's break even condition:

qP = λ

∫ δ

0

F̃L(s)ds+ (1− λ)

∫ δ

0

F̃H(s)ds+ φ =
λELs+ (1− λ)EHs+ φ

1 + h
.

The �rst equality is derived from (2) while the second equality is implied by the haircut rule (1), where

δ is set to make it binding.

5.2 Separating Equilibrium

A separating equilibrium, in which only the low type of agent B borrows in the DeFi lending market,

exists if and only if
EL min(δ, s) + φS

EH min(δ, s) + φS
< ζ, (8)

where the asset prices in the separating equilibrium are given by,

φS = β

(
λ (z + h)

(
ELs+ φS

)
1 + h

+ (1− λ)
(
EHs+ φS

))
,

Solving for the separating price we obtain:

φS =
β z+h1+hλELs+ β(1− λ)EHs

1− β(λ z+h1+h + 1− λ)
(9)
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By plugging (9) into (8) we see that a separating equilibrium exists if and only if the high type borrowers

choose not to borrow:

ζ

∫ δ

0

F̃H (s) ds−
∫ δ

0

F̃L (s) ds > (1− ζ)
β z+h1+hλELs+ β(1− λ)EHs

1− β(λ z+h1+h + 1− λ)

where the debt threshold D = φ+ δ is again pinned down by the lender's break even condition:

qS =

∫ δ

0

F̃L(s)ds+ φ =
EL [s] + φ

1 + h
.

5.3 Properties of Equilibria and Multiplicity

We �rst discuss the e�ects of DeFi lending on asset prices by rewritting them as multiples of the

fundamental price of the asset in autarky, φ = β λELs+(1−λ)EHs
1−β :

φP = ΨP (z, h) · φ

φS = ΨS(z, h) · φ

where the multipliers are given by

ΨP (z, h) =
(z + h) (1− β)

1 + h− β (z + h)
,

ΨS(z, h) =
1 + z−1

1+h
λsL

λsL+(1−λ)sH

1− λ β
1−β

z−1
1+h

,

Since ΨP ≥ ΨS ≥ 1, the introduction of DeFi lending raises the equilibrium asset price above its

fundamental level. In addition, DeFi lending can increase the volatility of asset prices when there are

shocks to fundamentals. First, it magni�es fundamental shocks to φ0 (e.g., ELs, EHs). Second, it

introduces new DeFi speci�c shocks, e.g., asset price goes up with a rise in z and a drop in h. Note that,

the multipling e�ects exist even without adverse selection (i.e., FL = FH).

We now demonstrate that, subject to adverse selection, DeFi lending is inherently fragile in the sense

there are belief-driven multiple equilibria. The following proposition shows that there is always a range

of parameters such that, if the haircut is not high enough, then multiple equilibria exist.

Proposition 2. Let κP = ζ−βz(1−(1−ζ)λ)
1−βz(1−(1−ζ)λ) and κS = ζ−β(1−(1−ζz)λ)

1−β(1−(1−ζz)λ) .

(i) If ELs/EHs ≥ κS , then there is a unique equilibrium with the pooling outcome and the collateral

price given by (7).

(ii) If κS > ELs/EHs > κP and h < h (where h depends on the primitives) then there are multiple

equilibria. One of them is a separating equilibrium with the collateral price given by (9). The other one
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is a pooling equilibrium with the collateral price given by (7). If h ≥ h then there is a unique equilibrium

with the pooling outcome and the collateral price given by (7).

(iii) If κP ≥ ELs/EHs and if h < h (where h depends on the primitives) then there is a unique

equilibrium with the separating outcome with the collateral price given by (9). If h ≥ h then there is a

unique equilibrium with the pooling outcome and the collateral price given by (7).

To understand this proposition, we �rst start with the case where the haircut is zero. In that case, the

equilibrium conditions imply that a pooling equilibrium exists when ELs/EHs ≥ κP , and a separating

equilibrium exists when ELs/EHs ≤ κS . We show in the appendix that κP < κS which, by continuity,

implies multiplicity for ELs/EHs ∈ (κP , κS) when h is su�ciently low. Multiple equilibria in part

(ii) arise due to a dynamic price feedback e�ect. When the collateral asset price is high, the degree

of information insensitivity of the debt contract,
(
ELs+ φP

)
/
(
EHs+ φP

)
, is above the threshold ζ.

Hence, the adverse selection problem is mild and the high-type agent B is willing to pool with the low

type and borrow in the lending market. In turn, if agents anticipate a pooling equilibrium in future

periods, the liquidity value of the asset is large hence the asset price today is high. Conversely, when the

asset price is low, the degree of information insensitivity of the debt contract,
(
ELs+ φS

)
/
(
EHs+ φS

)
,

is below the threshold ζ. Therefore, the adverse selection problem is severe and the high type agent B

retains the asset and chooses not to borrow. In turn, if agents anticipate a separating equilibrium in

future periods, the liquidity value of the asset is limited thus the asset price today is low. As a result,

the asset prices are self-ful�lling in this economy.

In region (ii) where multiple self-ful�lling equilibria coexist, it is also possible to construct a sentiment

equilibrium where agents' expectations depend on non-fundamental sunspot states (Asriyan, Fuchs, and

Green (2017)). In particular, equilibrium asset prices φk, debt thresholds Dk, loan sizes qk will all

�uctuate with the sentiment state indexed by k ∈ {1, ...,K} which evolves over time subject to stochastic

transitions. With a su�ciently low haircut and sentiments su�ciently persistent, one can construct a

sentiment equilibrium in which the economy switches between separating and pooling outcomes according

to non-fundamental sunspot states.

The above proposition suggests that increasing the haircut can ameliorate the above feedback loop,

restoring uniqueness. When the haircut is high, debt threshold is low, making the debt contract less

informationally sensitive. This means that high quality asset owner retains some of the upside from the

collateral asset. As a result, high quality borrowers may be willing to borrow, eliminating the separating

equilibrium. However, imposing a high haircut is costly because borrowers can borrow less from the

lenders, reducing the surplus from DeFi lending. The optimal debt threshold is set to balance this
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trade-o� and is examined in the next section.

5.4 Uniqueness under Flexible Design of Smart Contracts

We have shown that DeFi lending subject to a rigid haircut can lead to multiplicity when the debt

contract is too informationally sensitive. We now show that a �exible contract design can support a

unique equilibrium and generate a higher social surplus from lending. Speci�cally, under �exible design

of the smart contract, the design is no longer subject to the constraint (1). Instead, each period, the

contract designer can design any feasible debt contract, y(s, φt) = min(D, s+ φt) for 0 ≤ D ≤ s̄+ φt to

maximize

Vt = max
0≤D≤s̄+φt

λ

[∫ s̄

s

(max {zqt − y(s, φt), 0}+ (s+ φt)) dFL(s)

]
(10)

+ (1− λ)

[(∫ s̄

s

max {zqt − y(s, φt), 0}+ (s+ φt)

)
dFH(s)

]
,

where

qt = Ety(s, φt)

=

ELy(s, φt), if z [λEL + (1− λ)EH ] y(s, φt) < ELy(s, φt),

[λEL + (1− λ)EH ] y(s, φt), if z [λEL + (1− λ)EH ] y(s, φt) ≥ ELy(s, φt).

(11)

Basically, given the price φt, the contract designer sets the debt threshold D to maximize the expected

value of the contract to the borrower, taking into account how the design a�ects the loan size that the

lenders are willing to o�er under the separating and the pooling cases. Given the optimal design, the

asset price at the end of the previous period equals

φt−1 = βVt. (12)

An equilibrium under �exible design of smart contracts is y(s, φt), qt(y) for all feasible y, Vt, and φt, that

satis�es (10), (11), and (12). The following proposition compares the outcomes under �exible contract

design with those under a DeFi lending contract subject to the rigid haircut rule (1).

Proposition 3. Under �exible design,

(i) there exists a unique stationary equilibrium,

(ii) given any end of period price φt, the asset price in the previous period and the lending volume

are higher than those under the rigid DeFi contract,

(iii) the stationary equilibrium Pareto dominates the one under DeFi.
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The proposition shows that the equilibrium under �exible contract design is unique and generates

more social surplus. For example, when φt is high (which makes the contract informationally less

sensitive), the designer can increase Dt to raise the surplus from lending, inducing a higher lending

volume. In contrast, when φt is low (which makes the contract informationally more sensitive), the

designer may choose to lower Dt to maintain a pooling outcome to induce a higher lending volume.14

This �exibility in adjusting Dt implies that, given any end-of-period price φt, the price of asset in the

previous period and the loan size are weakly greater than those under the rigid DeFi contract. Therefore,

the steady state price and loan size are also weakly greater than those under DeFi. The borrower is

better o� under �exible contract design while lenders are not worse o�. The stationary equilibrium

therefore Pareto dominates the one under DeFi.

The above result suggests that the rigid haircut rule (1) imposed by the DeFi smart contract generates

�nancial instability in the form of multiple equilibria, and potential sentiment driven equilibria (e.g.

Asriyan, Fuchs, and Green (2017)), and lowers welfare. Can a DeFi smart contract be pre-programmed

to replicate the �exible contract design? This can be challenging in practice. First, it is not a simple

linear hair-cut rule that are typically en-coded in DeFi contracts. Second, the optimal debt threshold

depends on information that may not be readily available on-chain (e.g., z, λ). Alternatively, the lending

protocol can also replace the algorithm by a human risk manager who can adjust risk parameters in

real time according to the latest information. Relying fully on a trusted third party, however, can be

controversial for a DeFi protocol. Our results highlight the di�culty to achieve stability and e�ciency

in a decentralized environment subject to informational frictions.

5.5 Numerical Example

We conclude this section by using a numerical example to illustrate the impacts of haircut on lending

volume and the asset price. We also consider a slightly more general model setup. The benchmark

model assumes that the gain from trade parameter z is �xed for all borrowers, generating two stark

outcomes where either all borrowers are active or only the low type borrowers are active. Here, this

example generalizes the model to capture a more realistic case with heterogenous z: borrowers receive

i.i.d. shocks on their gain from trade, zt ∼ G(z), which is privately observed by the borrowers. This

generalization implies a smooth adjustment of the borrower mix as parameter values vary.

In the numerical example, we assume that the �ow payo� of the asset follows a two-point distribution

on 0 and 1, FL(s) = (1 − πL)I(s ≥ 0) + πLI(s ≥ 1), FH(s) = I(s ≥ 1). Parameters in the numerical

14Notice that, depending on parameter values, the designer may also choose to raiseDt to induce a separating equilibrium.
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values are loosely calibrated to match the magnitude of ETH price �uctuations in the data.15 We set

β = 0.95, λ = 0.7, and G(z) = z−1
0.06 for 1 ≤ z ≤ 1.06. The focus of the exercise is to compare equilibrium

lending volume and asset prices with some benchmarks.

First, the equilibrium lending volume is compared with the volume under full information:

vol0 = λELs+ (1− λ)EHs+ φ̂

where φ̂ is the asset price under complete information

φ̂ =
βEz

1− βEz
[λELs+ (1− λ)EHs] .

The equilibrium volume is lower than the volume under complete information as borrowers with low z

and/or high signal may not want to pool with other borrowers. The discount on volume re�ects the

illiquidity due to asymmetric information and haircut. The volume discount is formally de�ned as

volume discount =

[
vol

vol0
− 1

]
× 100.

Second, the equilibrium asset price is compared with the autarky value of the asset

φ =
β

1− β
[λELs+ (1− λ)EHs] .

The equilibrium price is greater than the autarky value because of the additional liquidity value when

the asset is used as collateral in DeFi lending. We follow the literature to measure the liquidity premium

of the asset which is formally de�ned as

liquidity premium =

[
φ

φ
− 1

]
× 100.

Figure 7 illustrates the e�ect of increasing haircut on the volume discount and on the liquidity

premium as asset quality, represented by πL, varies.

The �gure in the right panel suggests that haircut reduces the liquidity value of the collateral asset:

as haircut increases, the liquidity premium decreases at all levels of asset quality. The left panel shows

the responses of the volume discount. When the asset quality takes extreme values (πL closes to 0 or

1), haircut has a monotonic e�ect on the lending volume: increasing the haircut lowers the lending

volume. Interestingly, for an intermediate level of asset quality, a moderate increase in the haircut

actually increases the lending volume. This result is consistent with the general idea that, while setting

the haircut too high can limit the gain from trade, a moderate haircut can help restore �nancial stability

when high type borrowers are not willing to pool with low type borrowers if the haircut is set too low.

15In particular, parameterization targets include the quartiles of the price of ETH and the empirical transition matrix

across di�erent states associated with these quartiles.
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Figure 7: Comparative statics over asset quality measured by πL, when haircut h = 1%, h = 5%, and

h = 10%.
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6 Some Evidence

Here we report some evidence to support the case that our model can be useful for understanding the

relationship between DeFi lending, crypto prices and market sentiment. We also discuss some evidence

where borrowers pledged in�ated collateral assets to obtain loans from lending protocols which later

su�ered big �nancial losses due to the bad debt.

6.1 E�ects of DeFi Lending on ETH Price

Our model predicts that DeFi lending should be positively correlated with crypto prices due to the

price-liquidity feedback loop. Since the Ethereum blockchain is the main platform for DeFi, we use

WETH TVL data from DeFiLlama to test this hypothesis. The sample is from 2018 January to 2022

March. Figure 8 shows that lending accounts for about 23% of DeFi TVL. We run an OLS

log(ETHP ) = α0 + α1log(LTCP ) + α2BURN + α3DEFI + α4LEND,

where ETHP is the price of ETH, LTCP is the price of Litecoin (LTC), BURN is the amount of ETH

burned since the London Fork as a percentage of ETH supply, DEFI is the fraction of WETH locked

into DeFi protocols, and LEND is the fraction of WETH locked into DeFi lending. Since Litecoin has

limited use in DeFi, we use its price to capture non-DeFi factors that can in�uence the price of ETH.

As expected, results in Table 2 suggests that the prices of ETH and LTC are highly correlated. Also,

unsurprisingly, by removing tokens from the circulating supply, BURN has a positive e�ect on the ETH

price. Finally, after controlling for the general e�ects of DeFi on the price of ETH, TVL in DeFi lending

is still positively correlated with the price of ETH, consistent with the prediction of our model.

6.2 E�ects of Collateral Quality and Crypto Prices on USDT Loans

Our model predicts that low-type borrowers have high incentives to borrow while high-type borrowers'

incentives increases with the price of collateral. We examine this prediction using Aave v2 lending data.

We focus on the USDT lending pool because it is the second largest in terms of total loans. Also, USDT

cannot used as collateral and hence the mapping to our model is cleaner. We run an OLS

log(USDT ) = α0 + α1log(Price) + α2Dummy + α3DI + α4DI · log(Price),
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Figure 8: Composition of WETH TVL in DeFi (March 2022)
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Table 2: DeFi Lending and Crypto Prices

Estimate Std. Err. T-Stat p

Intercept 1.0845 0.07905 13.72 1.6765e-40

Log(LTCP) 1.0545 0.017673 59.665 0

BURN 0.42739 0.027956 15.288 3.1158e-49

DEFI 4.9181 0.92868 5.2957 1.3566e-07

LEND 36.438 2.5999 14.015 4.3029e-42

No. obs. : 1546

R2 0.925 Adj. R2 0.925

where USDT is the total USDT loan volume, Price is a price index of crypto assets16, Dummy = 1 for

days after April 26 (the date when Aave provided incentives to users who borrow/lend certain tokens).

Finally, the dummy DI captures the severity of liquidation: DI = 1 when the fraction of USDT loans

liquidated is at least two standard deviations above the mean. As expected, results in Table 3 suggests

that USDT loans increase with both crypto prices and incentives captured by Dummy. Consistent with

our theory, loans increase when the liquidation risk goes up (e.g., lower collateral quality due to higher

λ ) but the e�ect is mitigated when crypto prices are higher (captured by the interaction term).

16It is a weighted sum of crypto assets accepted by Aave with weights given by their Aave deposits.
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Table 3: Collateral Quality and Crypto Prices and DeFi Loans

Estimate Std. Err. T-Stat p

Intercept 17.965 0.04604 390.2 0

Log(Price) 3.0229 0.10183 29.686 1.4336e-112

Dummy 2.4009 0.05249 45.739 3.6679e-181

DI 0.20707 0.045868 4.5144 7.9198e-06

DI · Log(Price) -1.2501 0.20117 -6.2142 1.0849e-09

No. obs. : 507

R2 0.901 Adj. R2 0.901

6.3 Collateral Composition and Market Sentiment

Our model predicts that good market sentiment can help mitigate adverse selection, improving the quality

of the collateral pool. We use the Aave platform data to examine the relationship between collateral

composition and market sentiment. The market sentiment are measured by the �Crypto Fear & Greed

Index� (FGI) for Bitcoin and other large cryptocurrencies.17 The construction of the Index is based

on measures of market volatility, market momentum/volume, social media, surveys, token dominance

and Google Trends data. The Index is supposed to measure the emotions and sentiments from di�erent

sources, with a value of 0 indicating �Extreme Fear� while a value of 100 indicating �Extreme Greed�.

Since Aave does not provide collateral data, we need to use outstanding deposits of collateralizable tokens

as a proxy. Basing on their internal risk assessment, Aave assigns risk ratings to each token ranging

from C+ to A+. We use these risk parameters to measure the quality of these assets. Figure 9 shows

how the composition changes over time. Note that tokens have di�erent USD prices. Hence, changing

prices will a�ect their (nominal) shares in the pool. To remove the e�ects of token price changes on the

composition, we �x their prices at the median level over the sample period (Jan 2021- April 2022). So

the results derived below capture only variations in token quantities and not in their prices.

We study how sentiment is related to the overall quality of the collateral pool proxied by the weighted

average of the ratings of all outstanding collateralizable deposits.18 We run an OLS regressing log(Rating)

on a dummy and log(FGI) as follows

17The Index is developed by the �Alternative.me� website since early 2018 (https://alternative.me/crypto/fear-and-

greed-index/).
18We convert ratings into numerical values as follows: Rating = 6 for �A�, = 5 for �A-�, ..., =1 for �C+�.
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Figure 9: Composition of Collateralizable Asset Mix
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Log(Rating) = α0 + α1Dummy + α2log(FGI)

where Dummy=1 for days after April 26. We report the result in Table 4. Both variables are signi�cant,

suggesting that the average rating of the collateral mix goes up when the sentiment captured by the FGI

is high, as predicted by our model.

Table 4: Sentiment and Collateral Rating

Estimate Std. Err. T-Stat p

Intercept 1.4469 0.010123 142.93 0

Dummy 0.058287 0.0029707 19.62 4.2179e-64

Log(FGI) 0.01467 0.0022778 6.4405 2.7814e-10

No. obs. : 507

R2 0.464 Adj. R2 0.461
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Figure 10: E�ects of FG Index on Average Risk Rating
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Blue (red) markers denote the sample period with (without) incentives

7 Conclusion

In this paper, we study the sources of vulnerability in DeFi lending related to a few fundamental fea-

tures of DeFi lending (collateral with uncertain quality, oracle problem, and rigid contract terms). We

demonstrate the inherent instability of DeFi lending due to a price-liquidity feedback exacerbated by

informational asymmetry, leading to self-ful�lling sentiment driven cycles. Stability requires �exible and

state-contingent smart contracts. To achieve that, the smart contract may take a complex form and

require a reliable oracle to feed real-time hard and soft information from the o�-chain world. Alterna-

tively, DeFi lending may need to re-introduce human intervention to provide real-time risk management

� an arrangement that forces the decentralized protocol to rely on a trusted third party. Our �nding

highlights DeFi protocols' di�culty to achieve e�ciency and stability while maintaining a high degree

of decentralization.
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A Appendix

A.1 Proof of Proposition 1

Let q ≡ λELy + (1− λ)EHy. Note that zq − EHy T 0 i� ELy/EHy T ζ.

Consider the case ELy/EHy > ζ. Suppose that the equilibrium price q is strictly less than q. In this

case a lender can deviate and bid q − ε where ε > 0. For ε small enough, z (q − ε) − EHy > 0. Hence

given this q both types borrow and the deviation generates strictly positive surplus. This means that the

equilibrium q must be at least q. At q or above, both types borrow, hence the only q that is consistent

with the zero pro�t condition is q = q.

Now consider the case ELy/EHy < ζ. In this case high type will borrow only if q is su�ciently

larger than q. However, when q > q, lenders make negative pro�t. Hence equilibrium q must be below

q. If q is below (ELy) /z then neither type borrows. In this case, one of the lenders can deviate and

bid ELy − ε where ε > 0. For ε small enough, z (ELy − ε) − ELy > 0 so the low type borrows and the

deviating lender makes strictly positive surplus. If q is at least (ELy) /z but less than ELy then the low

type borrows from the lender who sets that q. In this case, one of the lenders who bids ELy or less can

deviate and bid slightly above q. This lender then wins and increases her surplus. At q greater than or

equal to ELy (and below q), the low type alone borrows. Hence the only q that is consistent with zero

pro�t condition is q = ELy.

A.2 Proof of Proposition 2

By the discussion in the text we know that a pooling equilibrium exists if and only if ELs/EHs ≥ κP , and

a separating equilibrium exists if and only if ELs/EHs < κS . To complete the proof of the proposition

we need to show κP < κS . To see this note that,

[ζ − βz (1− (1− ζ)λ)]− [ζ − β (1− (1− ζz)λL)] = −βλL (z − 1)

(
1− λ
λ

)
and similarly,

[1− βz (1− (1− ζ)λ)]− [1− β (1− (1− ζz)λH)] = −βλH (z − 1)

(
1− λ
λ

)
.

Using the equalities above and the fact that λL > λH we obtain:

κP =
ζ − βz (1− (1− ζ)λ)

1− βz (1− (1− ζ)λ)
<
ζ − βz (1− (1− ζ)λ) + βλL (z − 1)

(
1−λ
λ

)
1− βz (1− (1− ζ)λ) + βλH (z − 1)

(
1−λ
λ

)
=
ζ − β (1− (1− ζz)λL)

1− β (1− (1− ζz)λH)
= κS .
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A.3 Proof of Uniqueness Under a Flexible Smart Contract

Denote the debt contract y(s, φ) = min(δ, s) + φ, for all s ∈ [s, s̄] where δ = D− φ. Denote δ∗(φt+1) the

maximum δ so that the incentive constraint of the high type borrower is satis�ed

z [λELy(s, φt+1) + (1− λ)EHy(s, φt+1)] ≥ EHy(s, φt+1)

in which case there is a pooling equilibrium. When the information friction is severe enough, δ∗(φt+1) <

s̄.

The designer chooses δ to maximize Vt+1 taking as given qt+1(y) and φt+1. If the designer chooses to

design a contract that leads to a pooling outcome, then δ = δ∗(φt+1). If the designer chooses to design

a contract that leads to a separating outcome, then δ = s̄.

Next we look at the two cases:

Pooling case:

In a pooling equilibrium, denote the pooling debt threshold by δ. High type's incentive constraint is

satis�ed i�:

(z − 1)

(
s+ φ+

∫ δ

s

F̃H(s)ds

)
≥ zλ

(∫ δ

s

F̃H(s)ds−
∫ δ

s

F̃L(s)ds

)
.

In a pooling equilibrium, the designer's value is:

z

(
s+ φ+ λ

∫ δ

s

F̃L(s)ds+ (1− λ)

∫ δ

s

F̃H(s)ds

)
+ λ

∫ s

δ

F̃L(s)ds+ (1− λ)

∫ s

δ

F̃H(s)ds.

Taking φ as given, the asset price in the previous period under pooling equilibrium is

φP (φ) = β

[
z

(
s+ φ+ λ

∫ δ

s

F̃L(s)ds+ (1− λ)

∫ δ

s

F̃H(s)ds

)
+ λ

∫ s

δ

F̃L(s)ds+ (1− λ)

∫ s

δ

F̃H(s)ds

]

where δ is such that

(z − 1)

(
s+ φ+

∫ δ

s

F̃H(s)ds

)
= zλ

(∫ δ

s

F̃H(s)ds−
∫ δ

s

F̃L(s)ds

)
. (A.1)

Separating case:

In this case, the designer would choose δ = s̄ to maximize gain from lending to the low type. The

incentive constraint for the high type not to participate is

(z − 1) (EHs+ φ) ≥ zλ (EHs− ELs) .
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Taking φ as given, the asset price in the previous period under separating equilibrium is

φS(φ) = β [λz(ELs+ φ) + (1− λ)(EHs+ φ)]

Next we look at which type of design is selected by the designer. The answer to this question depends

on the asset price which itself depends on the chosen design. But before solving for the full equilibrium,

we �rst take asset price as exogenous and see how the chosen design depends on the asset price. We

consider the two cases separately.

Separating case:

In this case φS is linear in the next period price φ

∂φS

∂φ
= β(λz + 1− λ) < 1

When φ = 0, φS(0) > 0 as long as ELs > 0. Together with ∂φS

∂φ < 1, we learn that φ = φS(φ) has a

unique solution. Denote the solution φS∗.

Pooling case:

In this case

φP = βz

(
s+ φ+ λ

∫ δ(φ)

s

F̃L(s)ds+ (1− λ)

∫ δ(φ)

s

F̃H(s)ds

)
(A.2)

+ β

(
λ

∫ s

δ(φ)

F̃L(s)ds+ (1− λ)

∫ s

δ(φ)

F̃H(s)ds

)

where δ (φ) is the solution to (A.1).

Note that
∂δ

∂φ
=

(z − 1)

(zλ− z + 1) F̃H(δ)− zλF̃L(δ)

It is clear that increasing φ relaxes the participation constraint if FH and FL satis�es the mono-

tone likelihood ratio. So, ∂δ
∂φ > 0, which means that the threshold δ must be high enough so that

(zλ− z + 1) F̃H(δ)− zλF̃L(δ) > 0.

∂φP

∂φ
= βz + β

(z − 1)
2
(
λF̃L(δ) + (1− λ) F̃H(δ)

)
(zλ− z + 1) F̃H(δ)− zλF̃L(δ)

> βz

φP (φ) has a steeper slope than φS(φ).
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∂2φP

∂φ2
= −βλ (z − 1)

2 fL(δ)F̃H(δ)− fH(δ)F̃L(δ)(
(zλ− z + 1) F̃H(δ)− zλF̃L(δ)

)2 < 0.

φP (φ) is concave.

When φ = 0, φP (0) > 0 as long as ELs > 0. When φ is large enough, δ = s̄, ∂φ
P

∂φ = βz < 1. And

φP (φ) is concave. Together, these properties imply that φ = φP (φ) has a unique solution. Denote the

solution φP∗.

When the designer chooses the design optimally, the asset price taking the next period price φ as

given is

φ′ = max{φS(φ), φP (φ)}

The equilibrium price is such that

φ = max{φS(φ), φP (φ)}.

Finally, we show that there is a unique equilibrium. Note that φP (φ) has a steeper slope than φS(φ).

And when φ is large enough, δ̂(φ) converges to s̄, in which case φP (φ) > φS(φ). Therefore, the two

curves intersect at most once. Let φ̂ to be the intersection point:

φS(φ̂) = φP (φ̂).

The equilibrium can fall into three cases. Case 1, φP∗ < φS∗ < φ̂; case 2, φP∗ = φS∗ = φ̂; case 3,

φ̂ < φS∗ < φP∗.

In the �rst case, φP∗ < φS(φP∗) so pooling is not an equilibrium. In the third case, φS∗ < φP (φS∗)

so separating is not an equilibrium. In all three cases, the equilibrium is unique. If the equilibrium is

separating, the asset price is less than φ̂. If the equilibrium is pooling, the asset price is more than φ̂.

Given any end-of-period price φ, the price in the previous period and the volume of inputs traded

using the smart contract is weakly greater than those under DeFi. Therefore, the steady state price and

volume is weakly greater than those under DeFi. The borrower is better o� under �exible design while

lenders are not worse o�. The stationary equilibrium therefore Pareto dominates the one under DeFi.

A.4 Private Information Parameter χ < 1

We have considered the case where there is private information in each period. We now introduce

a parameter, χ, to control the degree of information imperfection. With probability 1 − χ, there is

no private information (denoted by state 0). Suppose the distribution is given by F0(s) such that

E0(s) = λEL(s) + (1− λ)EH(s).
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Pooling Equilibrium

We have the following conditions:

(i) Asset pricing:

φP = (1− χ){β
[
E0

((
zq0 − y0(s, φP, )

)
+
(
s+ φP

))]
}

+ χ{βλ
[
EL
((
zq − y(s, φP )

)
+
(
s+ φP

))]
+ β (1− λ)

[
EH

((
zq − y(s, φP )

)
+
(
s+ φP

))]
}

where we use q, y to denote contract terms when there is private information, and q0, y0 to denote

contract terms when there is no private information.

(ii) Binding haircut constraint when there is private information:

q(1 + h) = λELs+ (1− λ)EHs+ φP

(iii) Break-even condition when there is private information:

q =
[
λELy

(
s, φP

)
+ (1− λ)EHy

(
s, φP

)]
(iv) Binding haircut constraint when there is no private information:

q0(1 + h) = E0s+ φP

(v) Break-even condition when there is no private information:

q0 = E0y0

(
s, φP

)
We can show that the condition for a pooling equilibrium in (5),

φP = β(z + h)q,

is not a�ected by χ. The reason is that a pooling equilibrium is not informationally sensitive. The asset

price for a pooling equilibrium is not changed:

φP = β(z + h)
λELs+ (1− λ)EHs

1 + h− β(z + h)
.

Separating Equilibrium

We have the following conditions:
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(i) Asset pricing:

φS = (1− χ){β
[
E0

(
zq0 − y0(s, φS) + s+ φS

)]
}

+ χ{βλ
[
EL
(
zq − y(s, φS) + s+ φS

)]
+ β (1− λ)

[
EH

(
s+ φS

)]
}.

(ii) Binding haircut constraint when there is private information:

q(1 + h) = ELs+ φS

(iii) Break-even condition when there is private information:

q = ELy
(
s, φS

)
(iv) Binding haircut constraint when there is no private information:

q0(1 + h) = E0s+ φS

(v) Break-even condition when there is no private information:

q0 = E0y0

(
s, φS

)
Hence the condition for the separating price in (5) becomes

φS = (1− χ){β
[
E0

((
zq0 − y0(s, φS)

)
+
(
s+ φS

))]
}

+ χ{βλ
[
EL
((
zq − y(s, φS)

)
+
(
s+ φS

))]
+ β (1− λ)

[
EH

(
s+ φS

)]
}

= (1− χ)β(z + h)q0 + χβλ(z + h)q + χβ (1− λ)
[
EH

(
s+ φS

)]
due to (iv) and (v). Hence the asset price becomes

φS =β
λ z+h1+hEL(s) + (1− χ) z+h1+h (1− λ)EH(s) + χ (1− λ)EH (s)

1− β[(1− χ(1− λ)) z+h1+h + χ (1− λ)]

Note that, when χ = 0, φS = φP . Obviously, when χ = 1, this is just the one in the benchmark case.

B More Details about Aave Lending Protocol

B.1 Tokens

Aave issues two types of tokens: (i) aTokens, issued to lenders so they can collect interest on deposits,

and (ii) AAVE tokens, which are the native token of Aave.19 aTokens are interest-bearing tokens that

19One may interpret aTokens as bank deposits and AAVE tokens as bank equity shares.
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are minted upon deposit and and burned at withdraw. The aTokens' value is pegged to the value of the

corresponding deposited asset at a 1:1 ratio, and can be safely stored, transferred or traded. Withdrawals

of the deposited assets burns the aTokens. AAVE tokens are used to vote and in�uence the governance

of the protocol. AAVE holders can also lock (known as �staking�) the tokens to provide insurance to the

protocol/depositors and earn staking rewards and fees from the protocol (more details below).

B.2 Deposits and loans

By depositing a certain amount of an asset into the protocol, a depositor mints and receives the same

amount of corresponding aTokens. All interest collected by these aTokens are distributed directly to the

depositor.

Borrowers can borrow these funds with collateral backing the borrow position. A borrower repays

the loan in the same asset borrowed. There is no �xed time period to pay back the loan. Partial or full

repayments can be made anytime. As long as the position is safe, the loan can continue for an unde�ned

period. However, as time passes, the accrued interest of an unrepaid loan will grow, which might result

in the deposited assets becoming more likely to be liquidated.

Every borrowing position can be opened with a stable or variable rate. The loan rate follows the

model:

Rate =

 R0 + U
Uoptimal

Rslope1 , if U ≤ Uoptimal
R0 +Rslope1 +

U−Uoptimal

1−Uoptimal
Rslope2 , if U > Uoptimal

where U = Total Borrows/Total Liquidity is the share of the liquidity borrowed.20

The variable rate is the rate based on the current supply and demand in Aave. Stable rates act

as a �xed rate.21 The current model parameters for stable and variable interest rates are given in Figure

11. Figure 12 shows Dai's rate schedule as an example.

The deposit rate is given by

Deposit Ratet = Ut(SBt × St + V Bt × Vt)(1−Rt)

where SBt is the share of stable borrows, St is average stable rate, V Bt is the share of variable borrows,

Vt is average variable rate, Rt is the reserve factor (a fraction of interests allocated to mitigate shortfall

20Total �liquidity� refers to the total deposits of a loanable asset.
21The stable rate for new loans varies over time. However, once the stable loan is taken, borrowers will not experience

interest rate volatility. There is one caveat though: if the protocol is in dire need of liquidity, then some stable rate loans

might undergo a procedure called rebalancing. In particular, it will happen if the average borrow rate is lower than 25%

APY and the utilization rate is over 95%.
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Figure 11: Current Rate Parameters

Stable Rate 

Variable Rate Rebalance if U > 95% + 

Average APY < 25% 

Average 

Uoptlmal Base Slope 1 Slope 2 Market Slope ll Slope 2 

Rate 

BUSD 80% °" 4% 100% 

DAI 80% °" 4% 75" 4% 2% 75" 

sUSD 80% °" 4% 100% 

TUSD 80% 0% 4% 7S" 4% 2% 75" 

USDC 90% °" 4% 60% 4% 2% 60% 

USDT 90% °" 4% 60% 4% 2% 60% 

AAVE 

BAT 45% 0% 7% 300% 3% 10% 300% 

ENJ 45% 0% 7% 300% 

ETH 65% 0% 8% 100% 3% 10% 100% 

KNC 65% 0% 8% 300% 3% 10% 300% 

LINK 45% 0% 7% 300% 3% 10% 300% 

MANA 4S% 0% 8% 300% 3% 10% 300% 

MKR 45% 0% 7% 300% 3% 10% 300% 

REN 45% 0% 7% 300% 

SNX 80% 3% 12% 100% 

UNI 45% °" 7" 300% 

WBTC 65% 0% 8% 100% 3% 10% 100% 

YFI 45% 0% 7% 300% 

ZRX 45% I 0% 7% 300% 3% 10% 300% 

Table Source: Aave.com

events discussed below). The Loan to Value (LTV ) ratio de�nes the maximum amount that can be

borrowed with a speci�c collateral. It's expressed in percentage: at LTV = 75%, for every 1 ETH worth

of collateral, borrowers will be able to borrow 0.75 ETH worth of the corresponding currency of the loan.

The current risk parameters are given in Figure 13.

B.3 Collateral and Liquidation

The liquidation threshold (LQ) is the percentage at which a loan is de�ned as undercollateralized.

For example, a LQ of 80% means that if the value rises above 80% of the collateral, the loan is under-

collateralised and could be liquidated. The LQ of a borrower's position is the weighted average of those
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Figure 12: Stable vs Variable Rates for Dai

Figure Source: Aave.com

of the collateral assets:

LQ =

∑
i Collateral i in ETH ∗ LQi
Total Borrows in ETH

The di�erence between the LTV and the LQ is a safety cushion for borrowers. The values of assets

are based on price feed provided by Chainlink's decentralized oracles. The LQ is also called the health

factor (Hf). When Hf < 1, a loan is considered undercollateralized and can be liquidated. When the

health factor of a position is below 1, liquidators repay part or all of the outstanding borrowed amount

on behalf of the borrower, while receiving an equivalent amount of collateral in return plus a liquidation

�bonus� (see Figure 13).22 When the liquidation is completed successfully, the health factor of the

position is increased, bringing the health factor above 1.

B.4 Shortfall Event

The primary mechanism for securing the Aave Protocol is the incentivization of AAVE holders (stakers)

to lock tokens into a Smart Contract-based component called the Safety Module (SM). The locked

AAVE will be used as a mitigation tool in case of a Shortfall Event (i.e., when there is a de�cit). In the

22Example: Bob deposits 5 ETH and 4 ETH worth of YFI, and borrows 5 ETH worth of DAI. If Bob's Health Factor

drops below 1 his loan will be eligible for liquidation. A liquidator can repay up to 50% of a single borrowed amount = 2.5

ETH worth of DAI. In return, the liquidator can claim a single collateral, as the liquidation bonus is higher for YFI (15%)

than ETH (5%) the liquidator chooses to claim YFI. The liquidator claims 2.5 + 0.375 ETH worth of YFI for repaying

2.5 ETH worth of DAI.
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Figure 13: Current Risk Parameters

Table Source: Aave.com

instance of a Shortfall Event, part of the locked AAVE are auctioned on the market to be sold against

the assets needed to mitigate the occurred de�cit. To contribute to the safety of the protocol and receive

incentives, AAVE holders will deposit their tokens into the SM. In return, they receive rewards (periodic

issuance of AAVE known as Safety Incentives (SI)) and fees generated from the protocol (see reserve

factor above).

B.5 Recovery Issuance

In case the SM is not able to cover all of the de�cit incurred, an ad-hoc Recovery Issuance event is

triggered where new AAVE is issued and sold in an open auction.
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C Volatility of Collateral Value

Table 5: The Volatility of Collateral Value (January 2021 - April 2022)

Daily Volatility Largest daily increase Largest daily decrease

Stable Coins

DAI 0.32% 1.26% -1.33%

TUSD 0.39% 2.97% -2.01%

USDC 0.34% 1.94% -1.57%

Other Coins

AAVE 7.15% 31.33% -33.47%

BAT 7.48% 47.60% -31.05%

BAL 6.62% 22.65% -31.03%

CRV 8.89% 51.18% -43.16%

ENJ 8.96% 56.46% -35.61%

ETH 5.19% 24.53% -26.30%

KNC 7.19% 30.57% -31.98%

LINK 6.66% 30.38% -35.65%

MANA 10.92% 151.66% -29.79%

MKR 7.10% 51.31% -24.24%

REN 8.05% 44.84% -35.82%

SNX 7.36% 25.22% -36.24%

UNI 7.14% 45.32% -32.94%

WBTC 4.01% 19.04% -13.75%

WETH 5.21% 25.96% -26.12%

XSUSHI 7.65% 33.19% -29.54%

YFI 6.82% 46.00% -36.35%

ZRX 7.57% 56.02% -36.31%

Other Benchmarks

Stock Market (SPY ETF) 1.00% 2.68% -3.70%

Treasury (BATS ETF) 0.35% 1.25% -1.72%

AAA Bond (QLTA ETF) 0.41% 1.11% -1.33%

Gold (GLD ETF) 0.89% 2.74% -3.42%

Source: CoinGecko.
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