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1 Introduction

A long tradition in monetary economics emphasizes the role of the revaluation of real and financial

assets in shaping the economy’s response to changes in monetary policy. Its importance can be

traced back to both classical and Keynesian economists.1 Keynes himself described the effects of

interest rate changes as follows:

There are not many people who will alter their way of living because the rate of interest has fallen from 5

to 4 per cent, if their aggregate income is the same as before. [...] Perhaps the most important influence,

operating through changes in the rate of interest, on the readiness to spend out of a given income, depends

on the effect of these changes on the appreciation or depreciation in the price of securities and other assets.

- John Maynard Keynes, The General Theory of Employment, Interest, and Money (emphasis added).

These revaluation effects caused by monetary policy have been documented by an extensive em-

pirical literature. Bernanke and Kuttner (2005) study the effects of monetary shocks on stock

prices. Gertler and Karadi (2015) and Hanson and Stein (2015) consider the effects on bonds. A

robust finding of this literature is that changes in asset prices are explained mainly by fluctuations

in future excess returns, related to changes in the risk premia, rather than changes in the risk-free

rate.2

The extent to which changes in asset prices play a relevant role in the transmission of mone-

tary policy to the real economy, however, has been controversial. One view highlights the impor-

tance of wealth effects. For instance, Cieslak and Vissing-Jorgensen (2020) show that policymakers

track the behavior of stock markets because of their impact on households’ consumption, while

Chodorow-Reich, Nenov and Simsek (2021) study the importance of this channel empirically. An

alternative view defends that changes in asset valuations have no real implications. Cochrane

(2020) and Krugman (2021) argue that movements in discount rates lead to changes in "paper

wealth," without an impact on consumption.

In this paper, we study how monetary policy affects the real economy through changes in

asset prices. We provide a new framework that generates rich asset-pricing dynamics and hetero-

geneous portfolios while preserving the simplicity of the textbook New Keynesian model. In par-

ticular, we propose a new solution technique that enable us to obtain time-varying risk premium

and precautionary savings motive without having to resort to higher-order approximations.3 We
1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler (1951)

considered stocks and money. Tobin (1969) focused on the revaluation of real assets.
2For a recent review of this work, see Bauer and Swanson (2023).
3As shown in e.g. ?, a standard perturbation around the non-stochastic steady state can only generate time-varying

risk premia with at least a third-order approximation.
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derive necessary conditions for changes in risk premia to affect the real economy. Under very

special conditions, we obtain a risk-neutrality result, where changes in risk premia caused by mon-

etary shocks affect asset prices, but it has no effect on output and inflation. These conditions are,

however, very stringent. We then assess quantitatively the importance of this channel and find

that changes in risk premia account for a large fraction of the response of output and inflation to

changes in monetary policy.

We consider an economy populated by workers and savers with two main ingredients: i) rare

disasters, and ii) heterogeneous beliefs. Rare disasters enable us to capture both a precautionary

savings motive and realistic risk premia. Barro (2009) and Gabaix (2012) argue that the risk of

a rare disaster can successfully explain major asset-pricing facts.4 Savers invest in stocks, gov-

ernment bonds, and household debt, and have heterogeneous beliefs, as in Caballero and Simsek

(2020). As a consequence, they hold heterogeneous portfolios in equilibrium. This allows us to

capture time-variation in risk premia in response to monetary shocks. Workers are constrained

in equilibrium, so borrowers and savers have heterogeneous MPCs. Despite being stylized, the

model captures quantitatively central aspects of the monetary transmission mechanism, includ-

ing the term premium, the equity premium, and corporate spreads, as well as the differential

responses of borrowers and savers to monetary shocks observed in the data.

Our first contribution is methodological and consists of an aggregation result. Given investor

heterogeneity, we must characterize not only the dynamics of aggregate output and inflation, but

also the behavior of portfolios, asset prices, net worth, and individual consumption. This increases

the dimensionality of the problem and typically makes deriving analytical results infeasible. We

show that our economy satisfies an as if result: the economy with heterogeneous savers behaves

as an economy with a representative saver, but the probability of disaster, as implied by market

prices, is time-varying and responds to monetary policy. This market-implied disaster probability is a

key determinant of asset prices, and it is the main channel through which investor heterogeneity

affects the real economy.

Our second contribution identifies conditions under which time-varying risk premia plays a

role in the transmission of monetary policy to the real economy. Consistent with the empirical

evidence, a contractionary monetary shock leads to an increase in risk premia and a reduction in

the price of risky assets. One could then conclude that this reduction in households’ wealth leads

4Rare disasters have been widely used to explain a range of asset-pricing “puzzles”; see Tsai and Wachter (2015)
for a review.
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to a reduction in consumption. However, as the discount rate increases, the present discounted

value of consumption decreases as well. The net effect of changes in risk premium is ambiguous

and depends on whether households are net buyers or net sellers of risky assets. As recently ar-

ticulated by Cochrane (2020) and Krugman (2021), a household who just consumes the dividends

from their financial assets can still afford the same level of consumption after a change in discount

rates. The wealth effect should then be zero in this case.

Formally, we show that the aggregate wealth corresponds to the sum of all households’ wealth

net of the change in the cost of the original consumption bundle. Naturally, the aggregate wealth

effect does not depend on private debt. While private debt matters for individual households’

consumption, the gross positions cancel out when we aggregate at the household sector level.

More interestingly, the aggregate wealth effect does not depend on the equity premium either.

It turns out that the difference between the revaluation of the households’ assets and liabilities

(including consumption) is given by the government’s liabilities. The intuition is simple: in a

closed economy, only the government is a counterpart to the household sector taken as a whole.5

Thus, whether risk affects the aggregate wealth effect depends on the characteristics of government

debt. We show that, in the absence of a precautionary motive, there are three cases in which risk

has no impact on aggregate wealth: i) when government debt is zero, ii) when government debt

is short term, and iii) when government debt is a consol. In these cases, either the households’ net

revaluation effect is zero or it is independent of risk premia.

The presence of risk also affects the households’ precautionary motives. This effect arises from

the redistribution among savers after a monetary shock. Because optimists hold a larger fraction

of their wealth in risky assets (long-term bonds and equity), an increase in the interest rate dispro-

portionately reduces their wealth. Holding the aggregate wealth effect constant, this redistribution

of wealth is then reflected in the market-implied probability of disaster, which increases after the

monetary shock as pessimist savers increase their holdings of risky assets. This is the “as-if” result

in action: redistribution between optimists and pessimists is akin to an increase in the “objective”

probability of disaster risk in a model with a representative agent. Note that the precautionary

savings channel changes the timing of consumption but not the households’ aggregate wealth.

Putting together all these results, we obtain a complete characterization of the consumption

channel of monetary policy in this model. We show that the transmission of monetary policy to

aggregate consumption has two components, one that affects its present value and one that affects

5In an open economy, the foreign sector would be an additional counterpart.
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its timing. The present value of consumption is given by the aggregate wealth effect. The timing

of consumption depends in a prominent way on private debt and aggregate risk. For private debt,

the intuition is that monetary policy redistributes between borrowers and savers. Because bor-

rowers and savers have different MPCs with respect to transitory income shocks, a contractionary

monetary policy reduces aggregate consumption on impact. However, because all households in

the economy have an MPC of one for permanent changes in their income, savers eventually in-

crease their consumption so that the present value of the changes cancel out. For aggregate risk,

while precautionary savings increase on impact, they gradually decrease as the market-implied

risk in the economy transitions back to its steady-state level. The present value of this effect is also

zero.

In the absence of an aggregate wealth effect, monetary policy has then only a limited effect on

the economy. A reduction in interest rates stimulates the economy in the present at the expense

of a more depressed economy in the future. We also show that the central bank is unable to

affect inflation when the wealth effect is zero. Moreover, future inflation rates respond positively

to changes in nominal interest rates in this case. Therefore, the central bank’s ability to stimulate

the economy and control inflation is tightly connected to its ability to generate aggregate wealth

effects.

Finally, our solution method allows us to obtain time-varying risk premia in a linearized set-

ting and provide a complete analytical characterization of the channels involved. The method

consists on perturbing the economy around a stationary equilibrium with positive aggregate risk

instead of adopting the more common approach of approximating around a non-stochastic steady

state. By perturbing around the stochastic stationary equilibrium, we are able to obtain time vari-

ation in precautionary motives and risk premia using a first-order approximation, while the stan-

dard approach would require a third-order approximation (see e.g. Andreasen 2012).6 This hybrid

approach can prove useful in other settings where capturing risk premia is important. It is well

known that business cycle fluctuations in TFP cannot generate large risk premia without assuming

implausible large risk aversion (see Mehra and Prescott, 1985). Disaster risk has been successful on

this front, and our method shows how to incorporate it into rich macroeconomic models without

sacrificing tractability.

Our calibration departs from the standard practice in three important ways. First, we set the

6Moreover, by linearizing around an economy with zero monetary risk, we are able to solve for the stochastic sta-
tionary equilibrium in closed form, avoiding the need to compute the risky steady state numerically, as in Coeurdacier,
Rey and Winant (2011).
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households’ intertemporal elasticity of substitution to 0.25 (which implies a risk aversion coeffi-

cient of 4 given our CRRA specification). This choice is lower than the usual value of 1 or 0.5.

However, our choice is closer to recent studies using microdata, such as Best, Cloyne, Ilzetzki

and Kleven (2020) who find a value of 0.1. Second, we need to calibrate the parameters associ-

ated with the disaster risk. For the parameters governing the steady-state levels, we follow Barro

(2009). This implies an annual probability of a disaster of 1.7%. For the time-varying compo-

nent of the risk premium, we calibrate the elasticity of the disaster shock to monetary policy to

match the initial response of the term premium in Gertler and Karadi (2015). We show that this

calibration generates a conditional equity premium and corporate spread that is consistent with

the literature. Finally, for the fiscal response to a monetary shock, we augment the procedure in

Christiano, Eichenbaum and Evans (1999) to incorporate fiscal variables. We use the yield on the

5-year government bond to compute the government’s intertemporal budget constraint.

To quantify the importance of the channels present in the model, we start with the standard

RANK model and add risk and household debt one at a time. We find that the forces in RANK

explain less than 20% of the consumption response on impact to a monetary shock, risk explain

around 50%, household slightly more than 20%, and the interaction of the two slightly less than

10% Thus, risk and household debt are crucial components of the monetary transmission mecha-

nism.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou (1943) re-

lied on a wealth effect to argue that full employment could be reached even in a liquidity trap.

Kalecki (1944) argued that these effects apply only to government liabilities, as inside assets can-

cel out in the aggregate, while Tobin highlighted the role of private assets and high-MPC borrow-

ers.7 Recently, wealth effects have regained relevance. In an influential paper, Kaplan, Moll and

Violante (2018) build a quantitative HANK model and find only a minor role for the standard

intertemporal-substitution channel, leading the way to a more important role for wealth effects.

Much of the literature has focused on the role of heterogeneous marginal propensities to consume

(MPCs) in settings with idiosyncratic income risk. Instead, our focus is on aggregate risk and

private debt.

Our work is closely related to two strands of literature. First, it relates to the analytical HANK
7Tobin (1982) describes the role of inside assets: “The gross amount of these ’inside’ assets was and is orders of

magnitude larger than the net amount of the base. Aggregation would not matter if we could be sure that the marginal
propensities to spend from wealth were the same for creditors and debtors. But if the spending propensity were
systematically greater for debtors, even by a small amount, the Pigou effect would be swamped by this Fisher effect.”
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literature, such as Werning (2015), Debortoli and Galí (2017), and Bilbiie (2018). While this liter-

ature focuses primarily on how the cyclicality of income interacts with differences in MPCs, we

focus instead on how heterogeneous asset positions interact with differences in MPCs. We see

these two channels as mostly complementary: even though Cloyne, Ferreira and Surico (2020)

does not find significant differences in income sensitivity across borrowers and savers, Patterson

(2019) finds a positive covariance between MPCs and the sensitivity of earnings to GDP across

different demographic groups, suggesting that the income-sensitivity channel is operative for a

different cut of the data. We share with Eggertsson and Krugman (2012) and Benigno, Eggertsson

and Romei (2020) the emphasis on private debt, but they abstract from a precautionary motive

and focus instead on the implications of deleveraging. Iacoviello (2005) also considers a monetary

economy with private debt but focuses instead on the role of housing as collateral. Our work is

also related to Auclert (2019), which studies the redistribution channel of monetary policy arising

from portfolio heterogeneity. Our paper emphasizes the redistribution channel in the context of a

general equilibrium setting with aggregate risk.

The paper is also closely related to work on how monetary policy affects the economy through

changes in asset prices, including models with sticky prices, such as Caballero and Simsek (2020),

and models with financial frictions, such as Brunnermeier and Sannikov (2016) and Drechsler,

Savov and Schnabl (2018). In recent contributions, Kekre and Lenel (2020) consider the role of

the marginal propensity to take risk in determining the risk premium and shaping the response

of the economy to monetary policy, and Campbell, Pflueger and Viceira (2020) use a habit model

to study the role of monetary policy in determining bond and equity premia. Our model high-

lights instead the role of heterogeneous MPCs, positive private liquidity, and disaster risk in an

analytical framework that preserves the tractability of standard New Keynesian models.

Finally, a recent literature studies rare disasters and business cycles. Gabaix (2011) and Gourio

(2012) consider a real business cycle model with rare disasters, while Andreasen (2012) and Isoré

and Szczerbowicz (2017) allow for sticky prices. They focus on the effect of changes in disaster

probability while we study monetary shocks in an analytical HANK model with rare disasters.

2 D-HANK: A Rare Disasters Analytical HANK Model

In this section, we consider an analytical HANK model with two main ingredients: i) the possibil-

ity of rare disasters, and ii) heterogeneous beliefs.
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2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated by house-

holds, firms, and a government. There is a continuum of households that can be of three types:

workers, optimistic savers, and pessimistic savers (denoted by w, o and p, respectively), who differ

in their discount rates and beliefs about the probability of the economy being hit by an aggregate

shock. We let µj ≥ 0 denote the mass of households of type j ∈ {w, o, p}, where µb + µo + µp = 1.

Households can borrow or lend at a riskless rate subject to a borrowing constraint, and they can

save on long-term nominal government bonds and corporate equity. In this section, we assume

that the borrowing limit is zero. We study the case of a positive borrowing limit and defaultable

long-term household debt in Section 5. Workers are the only ones who supply labor, and they are

relatively impatient, so their borrowing constraint is binding in equilibrium.

Firms can produce final or intermediate goods. Final-goods producers operate competitively

and combine intermediate goods using a CES aggregator with elasticity  > 1. Intermediate-goods

producers use labor as their only input and face quadratic (Rotemberg, 1982) pricing adjustment

costs. Intermediate-goods producers are subject to an aggregate productivity shock: with Poisson

intensity λ ≥ 0, their productivity is permanently reduced. This shock captures the possibility

of rare disasters: low-probability, large drops in productivity and output, as in the work of Barro

(2006, 2009). We say that periods that predate the realization of the shock are in the no-disaster

state, and periods that follow the shock are in the disaster state. The disaster state is absorbing, and

there are no further shocks after the disaster is realized.8

The government sets fiscal policy, comprising of transfers to workers and savers, and monetary

policy, specified by an interest rate rule subject to monetary shocks.

Savers’ problem. Savers face a portfolio problem where they choose how much to invest in

short-term bonds, long-term bonds, and corporate equity.

A long-term bond issued in period t trades at a nominal market price QL,t in the no-disaster

state and promises to pay coupons e−ψL(s−t) at all dates s ≥ t. Because of the structure of the

coupon payments, the prices of the bonds issued at previous dates are proportional to new issues,

i.e. a bond issued in t− z trades at QL,te−ψLz in period t. The rate of decay ψL is inversely related to

the bond’s duration, where a perpetuity corresponds to ψL = 0 and the limit ψL → ∞ corresponds

8Assuming an absorbing disaster state simplifies the presentation, but it is not essential for our results. Allowing
for partial recovery, as in e.g. Barro, Nakamura, Steinsson and Ursúa (2013), introduces dynamics in the disaster state,
but it does not change the implications for the no-disaster state, which is our focus.
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to the case of short-term bonds. We denote by Q∗
L,t the price of the bond in the disaster state, where

the star superscript is used throughout the paper to denote variables in the disaster state. Then,

the nominal return on the long-term bond is given by

dRL,t =


1

QL,t
+

Q̇L,t

QL,t
− ψL


dt +

Q∗
L,t − QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate λ (under the objective measure).

The price of a claim on real aggregate corporate profits is denoted by QE,t and the real return

on equities evolves according to

dRE,t =


Πt

QE,t
+

Q̇E,t

QE,t


dt +

Q∗
E,t − QE,t

QE,t
dNt,

where Πt denotes real profits and Q∗
E,t is the equity price in the disaster state.

Savers have heterogeneous beliefs regarding the probability of a disaster. Subjective beliefs

about the arrival rate of the aggregate productivity shock are given by λj, for j ∈ {o, p}, where

λo ≤ λp. We follow Chen, Joslin and Tran (2012) and assume that savers are dogmatic in their

beliefs about disaster risk, so we abstract from any learning process.

Savers’ subjective discount rate is a function of their consumption share, ρj,t = ρj


Cj,t
Cs,t


, where

Cs,t = µo
µo+µp

Co,t +
µp

µo+µp
Cp,t denotes savers’ aggregate consumption. Following Schmitt-Grohé

and Uribe (2003), we assume that ρj (·) depends on the average consumption of type-j savers, so

it is taken as given by any individual saver. This formulation, a form of Uzawa (1968) preferences,

implies that there is a unique stationary wealth distribution, but it is otherwise not central to our

results.

Let Bj,t = BS
j,t + BL

j,t + BE
j,t denote the net worth of a type-j saver, the sum of short-term bonds

BS
j,t, long-term bonds BL

j,t, and equity holdings BE
j,t. A type-j saver chooses consumption Cj,t, long-

term bonds BL
j,t, and equity holdings BE

j,t, given an initial net worth Bj,t > 0, to solve the following

problem:

Vj,t(Bj,t) = max
[Cj,z,BL

j,z,BE
j,z]z≥t

Ej,t


ˆ t∗

t
e−
´ z

t ρj,udu
C1−σ

j,z

1 − σ
dz + e−

´ t∗
t ρj,uduV∗

j,t∗(B∗
j,t∗)


,

subject to the flow budget constraint

dBj,t =

(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t


dt +


B∗

j,t − Bj,t


dNt,
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and borrowing constraint Bj,t ≥ 0, given Bj,0 > 0, where B∗
j,t = Bj,t + BL

j,t
Q∗

L,t−QL,t
QL,t

+ BE
j,t

Q∗
E,t−QE,t

QE,t
is

the net worth after the disaster is realized, it is the nominal interest rate, πt is the inflation rate,

rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

− ψL − it is the excess return on long-term bonds conditional on no disasters,

rE,t ≡ Πt
QE,t

+
Q̇E,t
QE,t

− (it − πt) is the excess return on equities conditional on no disasters, and Tj,t

denotes government transfers. The random arrival time t∗ represents the period in which the

aggregate shock hits the economy. V∗
j,t∗ denotes the value function in the disaster state. The savers’

problem in the disaster state corresponds to a deterministic version of the problem above. The

non-negativity constraint on Bj,t captures the assumption that households cannot borrow.

The savers’ Euler equation for short-term bonds is given by

Ċj,t

Cj,t
= σ−1(it − πt − ρj,t) +

λj

σ


Cj,t

C∗
j,t

σ

− 1


, (1)

where C∗
j,t is the consumption of a type-j saver in the disaster state. The first term captures the

usual intertemporal-substitution force present in RANK models. The second term captures the

precautionary savings motive generated by the disaster risk, and it is analogous to the precautionary

motive that emerges in HANK models with idiosyncratic risk.

The Euler equation for long-term bonds is given by

rL,t = λj


Cj,t

C∗
j,t

σ

  
price of

disaster risk

QL,t − Q∗
L,t

QL,t
  

quantity of
risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down long-term interest

rates in equilibrium. The premium on long-term bonds is given by the product of the price of

disaster risk, the compensation for a unit exposure to the risk factor, and the quantity of risk, the loss

the asset suffers conditional on switching to the disaster state.

Similarly, the Euler equation for equities is given by

rE,t = λj


Cj,t

C∗
j,t

σ
QE,t − Q∗

E,t

QE,t
. (3)

The expression above pins down the (conditional) equity premium. Note that differences in the

quantity of risk drive the differences in expected returns between stocks and bonds.
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Workers’ problem. Workers supply labor and have GHH preferences (Greenwood, Hercowitz

and Huffman, 1988) over consumption and labor. Their problem is given by

Vw,t(Bw,t) = max
[Cw,z,Nw,z]z≥t

Ew,t




ˆ t∗

t

e−ρw(z−t)

1 − σ


Cw,z −

N1+φ
w,z

1 + φ

1−σ

dz + e−ρw(t∗−t)V∗
w,t∗(Bw,t∗)



 ,

subject to the flow budget constraint

dBw,t =


(it − πt)Bw,t +

Wt

Pt
Nw,t + Tw,t − Cw,t


dt,

and the borrowing constraint Bw,t ≥ 0, where Wt is the nominal wage, Pt is the price level, and

Tw,t denotes fiscal transfers to workers.

We focus on the case where the initial condition is Bw,0 = 0 and ρb is sufficiently large, so

workers are constrained at all periods. As workers are constrained, their beliefs about the disaster

probability play no role in the determination of equilibrium. The labor supply is determined by

the condition Wt
Pt

= Nφ
w,t. GHH preferences imply that there is no income effect on labor supply,

roughly in line with the evidence (see e.g. Auclert, Bardóczy and Rognlie, 2021), and simplifies

the model aggregation.9

Market-implied probabilities and the SDF. From equations (2) and (3), we can see that, even

though savers disagree on the probability of a disaster, they agree on the value of a unit of con-

sumption in that state.10 We can then price any cash flow using the beliefs and marginal utility of

either optimistic or pessimistic savers. Instead of using the beliefs of a specific saver, it is conve-

nient to define the economy’s stochastic discount factor (SDF) using the aggregate consumption

of savers, and the corresponding disaster probability implied by asset prices, as shown in Propo-

sition 1.

Proposition 1 (Market-implied disaster probability). Define the market-implied disaster probability λt

as follows:

λt ≡


µoCo,t

µoCo,t + µpCp,t
λ

1
σ
o +

µpCp,t

µoCo,t + µpCp,t
λ

1
σ
p

σ

, (4)

and let Et[·] denote the expectation operator associated with the arrival rate λt for the disaster shock. Then,

9GHH preferences avoid the counterfactual implications caused by income effects on labor supply in sticky-price
heterogeneous-agent models emphasized by Broer, Harbo Hansen, Krusell and Öberg (2020).

10The value of a consumption unit in the disaster state for saver j is λj(C∗
j,t/Cj,t)

−σ, the continuous-time version of
the standard expression for state prices, which is equalized for all savers from Equations (2)-(3).
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ηt = e−
´ t

0 ρs,zdzC−σ
s,t is a valid stochastic discount factor, i.e., ηt correctly prices all tradeable assets given the

disaster probability λt and the process ρs,t.

Proof. To ensure that ηt correctly prices long-term bonds and equities, consistent with equations (2)

and (3), the market-implied disaster probability must satisfy the condition λt


Cs,t
C∗

s,t

σ
= λj


Cj,t
C∗

j,t

σ

⇒

C∗
j,t =


λj
λt

 1
σ C∗

s,t
Cs,t

Cj,t. Plugging C∗
j,t into the definition of savers’ average consumption in the dis-

aster state, C∗
s,t ≡ µo

µo+µp
C∗

o,t +
µp

µo+µp
C∗

p,t, and rearranging gives equation (4). By setting ρs,t ≡

∑j∈{o,p}
µjCj,t

µoCo,t+µpCp,t
(ρj,t +λj)−λt, we ensure that ηt correctly prices risk-free bonds, i.e., Et[dηt]/ηt =

−(it − πt)dt.

The market-implied probability λt is a CES aggregator of individual probabilities, weighted

by the corresponding consumption share. Expression (4) is reminiscent of the complete-markets

formula with heterogeneous beliefs in Varian (1985). In our setting, consumption shares can po-

tentially move over time, which leads to endogenous time-variation in the perceived probability

of a disaster. We can then price assets as-if the economy has a representative saver with (endoge-

nous) time-varying beliefs.

Firms’ problem. Intermediate-goods producers are indexed by i ∈ [0, 1] and operate in monop-

olistically competitive markets. Final good producers are price takers and combine intermediate

goods to produce the final good. Their demand for variety i is given by Yi,t =


Pi,t
Pt

−
Yt, and the

equilibrium price level is given by Pt =

´ 1

0 P1−
i,t di

 1
1−

.

Intermediate-goods producers operate the linear technology Yi,t = AtNi,t. Productivity in the

no-disaster state is given by At = A, and productivity in the disaster state is given by At = A∗,

where 0 < A∗ < A. Intermediate-goods producers choose the rate-of-change of prices πi,t =

Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the expected discounted value of real profits sub-

ject to Rotemberg quadratic adjustment costs:

Qi,t(Pi,t) = max
[πi,z]z≥t

Et


ˆ t∗

t

ηz

ηt


Pi,z

Pz
Yi,z −

Wz

Pz

Yi,z

A
− ϕ

2
π2

i,t


dz +

ηt∗

ηt
Q∗

i,t∗(Pi,t∗)


, (5)

the demand Yi,t =


Pi,t
Pt

−
Yt, and Ṗi,t = πi,tPi,t, where Q∗

i,t(Pi) denotes the firms’ value function

in the disaster state. The price Pi,t is a state variable and πi,t is a control variable. The parameter ϕ

controls the magnitude of the pricing adjustment costs. These costs are rebated back to sharehold-

ers, so they do not represent real resource costs. Profits are discounted using the economy’s SDF,
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and expectations are computed using the market-implied probability λt, consistent with savers’

valuation of the firm.

Combining the first-order condition and the envelope condition for problem (5), we obtain the

non-linear New Keynesian Phillips curve (NKPC):

π̇t =


it − πt + λt

η∗
t

ηt


πt −



ϕA


Wt

Pt
− (1 − −1)A


Yt, (6)

assuming a symmetric initial condition Pi,0 = P0, for all i ∈ [0, 1], and π∗
i,t = 0.

Government. The government is subject to a flow budget constraint

ḊG,t = (it − πt + rL,t)DG,t + ∑
j∈{w,o,p}

µjTj,t,

and a No-Ponzi condition limt→∞ E0[ηtDG,t] ≤ 0, where DG,t denotes the real value of government

debt, DG,0 = DG is given, and analogous conditions hold in the disaster state. Transfers to workers

are given by the policy rule Tw,t = Tw(Yt). We assume To,t = Tp,t, and the government adjusts

transfers to savers such that the No-Ponzi condition is satisfied.

In the no-disaster state, monetary policy is determined by the policy rule

it = rn + φππt + ut, (7)

where φπ > 1, ut is a monetary shock, and rn denotes the real rate when πt = ut = 0 at all periods.

We assume that in the disaster state there are no monetary shocks, that is, i∗t = r∗n + φππ∗
t . By

abstracting from the policy response after a disaster, we isolate the impact of changes in monetary

policy during “normal times.”

Market clearing. The market-clearing conditions are given by

∑
j∈{w,o,p}

µjCj,t = Yt, ∑
j∈{w,o,p}

µjBS
j,t = 0, ∑

j∈{w,o,p}
µjBL

j,t = DG,t, ∑
j∈{w,o,p}

µjBE
j,t = QE,t,

and µwNw,t = Nt, where Yt =

´ 1

0 Y


−1
i,t di

 −1


and Nt =
´ 1

0 Ni,tdi.
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2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which all vari-

ables are constant in each aggregate state. The economy will be in a stationary equilibrium in the

absence of monetary shocks, that is, ut = 0 for all t ≥ 0. Since variables are constant in each state,

we drop time subscripts and write, for instance, Cj,t = Cj and C∗
j,t = C∗

j . For ease of exposition,

we follow Bilbiie (2018) and assume that Tw implements Cw = Y and C∗
w = Y∗, and a symmetric

allocation in the disaster state: C∗
o = C∗

p. We discuss a more general case in Appendix A.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = ρs − λ


Cs

C∗
s

σ

− 1


,

where ρs and λ are the values of ρs,t and λt in the stationary equilibrium, and 0 < C∗
s < Cs. We

assume that the natural rate is positive, rn > 0. The precautionary motive depresses the natural

interest rate relative to the one that would prevail in a non-stochastic economy.

For both types of savers to be unconstrained in the stationary equilibrium, we must have ρo +

λo = ρp + λp. As ρj depends on the consumption share, this condition pins down the stationary-

equilibrium consumption and wealth distributions. For simplicity, we assume that this equality

holds when both types have the same net worth, i.e, Bo = Bp.

From equation (2), we can pin down the term spread, the difference between the yield on the

long-term bond and the short-term rate, in this economy:

rL = λ


Cs

C∗
s

σ QL − Q∗
L

QL
,

and Q∗
L < QL. It can be shown that rL = iL − rn, where iL is the yield on the long-term bond

in the stationary equilibrium. Thus, our model generates an upward-sloping yield curve, where

long-term yields exceed the short rate, consistent with the data.11

Similarly, the equity premium (conditional on no-disaster) is given by

rE = λ


Cs

C∗
s

σ QE − Q∗
E

QE
,

and Q∗
E < QE.12 Therefore, the equity premium is positive in the stationary equilibrium.

11The upward-sloping yield curve is caused by the lack of precautionary savings in the disaster state. We would
obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).

12The unconditional equity premium equals rE minus the expected loss on a disaster. Using λ to compute the
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Households have heterogeneous portfolios in equilibrium. Workers are against the borrowing

constraint and hold no equities or long-term bonds. Optimistic savers are more exposed to disaster

risk than pessimist investors. The exact composition of their portfolio is indeterminate, as we have

one redundant asset. For concreteness, we focus on the case BE
o = BE

p , so optimists hold more long-

term bonds, i.e. BL
o > BL

p . This leads to a simpler presentation in the analysis that follows.

Log-linear dynamics. We focus on a log-linear approximation of the equilibrium conditions.

However, instead of linearizing around the non-stochastic steady state, we linearize the equilib-

rium conditions around the (stochastic) stationary equilibrium described above. Formally, we

perturb the allocation around the economy where ut = 0 and λ > 0, while the standard approach

would perturb around the economy where ut = λt = 0. This enables us to capture the effects of

(time-varying) precautionary savings and risk premia in a linear setting, as shown below.13

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g., yt ≡

log Yt/Y and cw,t ≡ log Cw,t/Cw. Workers’ consumption is given by

cw,t =
WNw

PY
(wt − pt + nw,t) + T′

w(Y)yt ⇒ cw,t = χyyt, (8)

using wt − pt = φyt and nw,t = yt, where χy ≡ WNw
PY (1+ φ)+ T′

w(Y). The coefficient χy controls the

cyclicality of income inequality among workers and savers. We focus on the case 0 < χy < µ−1
w ,

such that the consumption of savers, which is given by cs,t =
1−µwχy

1−µw
yt from the market clearing

condition for goods, is also increasing in yt.

Linearizing equation (1) and aggregating across savers, we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ

pd,t, (9)

where

pd,t ≡ σ(cs,t − c∗s,t) + λ̂t (10)

denotes the price of (disaster) risk, λ̂t ≡ log λt
λ , and we used the linearized discount-rate function:

ρj,t = ρj + σξ(cj,t − cs,t).14 The expression for the price of risk has two terms. The first term

expected loss, the (unconditional) equity premium would be given by λ

(Cs/C∗

s )
σ − 1


(QE − Q∗

E)/QE.
13This method differs from the procedure considered by Coeurdacier et al. (2011) or Fernández-Villaverde and Lev-

intal (2018), as we linearize around a stochastic steady state of an economy with no monetary shocks, instead of the
stochastic steady state of the economy with both shocks.

14 Uzawa preferences correspond to the case ξ > 0 and constant discount rates correspond to ξ = 0. To simplify the
model’s aggregation, we assume that the slope coefficient σξ is the same for both types.
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captures the change in the savers’ marginal utility of consumption if the disaster shock is realized.

The second term represents the change in the market-implied disaster probability after a monetary

shock.

Combining condition (8) for borrowers’ consumption, equation (9) for savers’ Euler equation,

and the market-clearing condition for goods, we obtain the evolution of aggregate output. Propo-

sition 2 characterizes the dynamics of aggregate output and inflation, given the paths of it and pd,t.

Proofs omitted in the text are provided in the appendix.

Proposition 2 (Aggregate dynamics). Given [it, pd,t]t≥0, the dynamics of output and inflation is de-

scribed by the conditions:

i. Aggregate Euler equation:

ẏt = σ̃−1(it − πt − rn) + χpd pd,t, (11)

where σ̃−1 ≡ 1−µw
1−µwχy

σ−1 and χpd ≡ λ
σ̃


Cs
C∗

s

σ
.

ii. New Keynesian Phillips curve:

π̇t = ρπt − κyt, (12)

where ρ ≡ ρs + λ and κ ≡ ϕ−1( − 1)φY.

Condition (11) represents the aggregate Euler equation. This equation has two terms, capturing

the effects of heterogeneous MPCs, aggregate risk, and heterogeneous beliefs. The first term is the

product of the aggregate elasticity of intertemporal substitution (EIS), σ̃−1, and the real interest

rate. The aggregate EIS depends on the cyclicality of inequality among workers and savers, as

captured by χy. As in the work of Werning (2015) and Bilbiie (2019), heterogeneous MPCs amplify

the effect of changes in interest rates if workers’ consumption share is procyclical (i.e., χy > 1), as

it implies that σ̃−1 > σ−1.

The second term, χpd pd,t, captures the effect of aggregate risk. To understand the economic

forces behind this expression, it is useful to rewrite equation (10) as

pd,t = σ̃yt + λ̂t, (13)
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where we used that y∗t = 0. Then, the aggregate Euler equation can written as

ẏt = σ̃−1(it − πt − rn) + δyt + χpd λ̂t,

where δ ≡ λ


Cs
C∗

s

σ
. In the absence of belief heterogeneity, so λ̂t = 0, we can write output as

yt = −σ̃−1 ´ ∞
t e−δ(s−t)(is −πs − rn)ds. Hence, a positive δ dampens the effect of future real interest

rates, as in the discounted Euler equation of McKay, Nakamura and Steinsson (2017). In our

setting, this is the result of a precautionary motive in response to aggregate disaster risk instead

of idiosyncratic income risk. The last term, χpd λ̂t, captures the effect of heterogeneous beliefs. An

increase in the market-implied disaster probability implies that pessimistic investors have a higher

consumption share, as shown in Proposition 1. This increase in pessimism triggers a stronger

precautionary motive in the aggregate.

Finally, Proposition 2 derives the NKPC. As in a textbook New Keynesian model, inflation is

given by the present discounted value of future output gaps, πt = κ
´ ∞

t e−ρ(s−t)ysds.

Fiscal backing. The log-linearized government’s flow budget constraint is given by

ḋG,t = iLdG,t + (it − πt + rL,t − iL)−
1

dG
(χτyt + τt) ,

where dG ≡ DG
Y , and χτyt + τt denotes the primary surplus. The coefficient χτ ≡ −µwT′

w(Y)

captures the elasticity of tax revenues to output and τt ≡ −∑j∈{o,p} µj
Tj,t−Tj

Y represents taxes on

savers. As the government adjusts τt to ensure the No-Ponzi condition is satisfied, we refer to τt

as the fiscal backing to the monetary shock.

2.3 Monetary policy and risk premia

Asset prices. The response of asset prices to monetary policy depends crucially on the behavior

of the price of disaster risk, as shown in equations (2) and (3). Given the (linearized) price of risk

in equation (13), we can price any financial asset in this economy. For example, the price of the

long-term bond in period zero is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt

  
path of nominal interest rates

−
ˆ ∞

0
e−(ρ+ψL)trL pd,tdt

  
term premium

. (14)
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The yield on the long-term bond, expressed as deviations from the stationary equilibrium, is given

by −Q−1
L qL,0, which can be decomposed into two terms: the path of nominal interest rates, as in

the expectations hypothesis, and a term premium, capturing variations in the compensation for

holding long-term bonds. The term premium depends on the price of risk, pd,t, and the asset-

specific loading rL. Because the term premium responds to monetary shocks, the expectation

hypothesis does not hold in this economy.

The pricing condition for equities is analogous to the one for long-term bonds:

qE,0 =
Y

QE

ˆ ∞

0
e−ρtΠ̂tdt

  
dividends

−
ˆ ∞

0
e−ρt [it − πt − rn + rE pd,t] dt

  
discount rate

, (15)

where Π̂t = yt − WN
PY (wt − pt + nt). Equity prices respond to changes in monetary policy through

two channels: a dividend channel, capturing changes in firms’ profits, and a discount rate channel,

capturing changes in real interest rates and risk premia. Risk premia depends on the price of risk,

pd,t, and the asset-specific loading rE.

Market-implied disaster probability. Recall that the price of risk depends on yt and λ̂t. We now

characterize λ̂t. Log-linearizing equation (4), we obtain

1
σ

λ
1
σ λ̂t = µc,oµc,p


λ

1
σ
p − λ

1
σ
o

 
cp,t − co,t


,

where µc,j ≡
µjCj

µoCo+µpCp
, for j ∈ {o, p}. The market-implied disaster probability increases when the

monetary shock redistributes wealth towards pessimistic savers. As shown in Appendix A.3, the

relative consumption of the two types of savers evolves according to

ċp,t − ċo,t = −ξ(cp,t − co,t),

and the law of motion of relative net worth bp,t − bo,t is given by

ḃp,t − ḃo,t = ρ(bp,t − bo,t)− χb,c(cp,t − co,t) + χb,cs cs,t,

where the coefficients χb,c and χb,cs are a function of portfolios and returns in the stationary equi-

librium. Given that the evolution of relative net worth depends on cs,t, and cs,t depends on yt,

we must simultaneously solve for [cp,t − co,t, bp,t − bo,t]∞0 and [it, yt, πt]∞0 . In this case, obtaining
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analytical results would likely be infeasible. We show next that this system satisfies an approximate

block recursivity property, where we can solve for cp,t − co,t and bp,t − bo,t independently of (yt, πt),

provided the effect of cs,t on risk premia is small.

Proposition 3 (Approximate block recursivity). Suppose rkσcs,t is small for k ∈ {L, E}, i.e. rkσcs,t =

O(||it − rn||2). Then, the market-implied probability of disaster λ̂t and relative net worth bp,t − bo,t can be

solved independently of (yt, πt), and they are given by

λ̂t = e−ψλtλ̂0, (16)

bp,t − bo,t = e−ψλt(bp,0 − bo,0), and ψλ = ξ. If it − rn = e−ψmt(i0 − rn), then λ̂0 is given by

λ̂0 = λ(i0 − rn), (17)

where λ ≥ 0 and the inequality is strict if and only if λp > λo.

Proposition 3 shows that we can solve for λ̂t and bp,t − bo,t independently of output and infla-

tion if rkσcs,t is small. If rkσcs,t is second-order on the size of the monetary shock, its first-order

impact on risk premia is negligible. In this case, we can solve for λ̂t and bp,t − bo,t independently of

(yt, πt). As the dynamics of (yt, πt) depends on λ̂t, but λ̂t does not depend on (yt, πt), we say the

system is (approximately) block recursive. We show in the appendix that the solution ignoring the

terms rkσcs,t tracks very closely the numerical solution where these terms are taken into account.

Uzawa preferences ensure that the effects of the monetary shock on the price of risk are tran-

sitory. If ξ = 0, so subjective discount rates are constant, then ψλ = 0 and a temporary monetary

shock has a permanent effect on λ̂t. The reason is that a monetary policy surprise leads to perma-

nent changes in relative net worth and relative consumption in this case. With Uzawa preferences,

savers’ net worth eventually converge to their stationary-equilibrium level, so the effect on λ̂t is

transitory.

An important implication of equation (17) is that the price of risk increases after a contrac-

tionary monetary shock. A monetary tightening redistributes wealth away from optimistic in-

vestors, as they are more exposed to risky assets. The economy becomes on average more pes-

simistic, which raises the required compensation for holding risky assets. The increase in risk pre-

mia in response to contractionary monetary shocks is consistent with the evidence in, e.g., Gertler

and Karadi (2015) and Hanson and Stein (2015). Notice that investor heterogeneity is necessary
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for this result, as λ̂t = 0 when λo = λp.

The four-equation system. Proposition 3 allows us to write the price of risk as follows:

pd,t = σ̃yt + e−ψλtλ̂0,

where λ̂0 is a function of the path of nominal interest rates. Combining the expression above for

the price of risk with the interest rate rule (7), the aggregate Euler equation (11), and the NKPC

(12), we obtain a four-equation system describing the economy’s aggregate dynamics. The system

is similar to the textbook three-equation model (see, e.g., Galí, 2015). The interest rate rule and the

NKPC are isomorphic to the ones in the simple model. Equation (11) is analogous to the standard

Euler equation but features an additional term that depends on the price of risk, pd,t. It is this term

that connects aggregate risk, asset prices, and macroeconomic variables. Finally, equation (18)

characterizes how the price of risk depends on aggregate output and changes in monetary policy.

The approximate block-recursivity is crucial to allow us to write the system in terms of ag-

gregate variables, without having to simultaneously solve for the dynamics of individual balance

sheets. The portfolio dynamics is summarized by two coefficients: λ, which captures the pass-

through of nominal rates to the initial price of risk, and λ, which controls the persistence of the

price of risk. Both coefficients depend on investors’ beliefs and their portfolio holdings in the

stationary equilibrium.

3 Monetary Policy and Wealth Effects

We considered so far how monetary policy affects risk premia and asset prices through their im-

pact on the price of risk, pd,t, and the market-implied disaster probability, λ̂t. We study next how

the revaluation of real and financial assets affects the real economy.

3.1 Wealth effects and asset revaluations

Asset revaluations caused by monetary policy have received significant attention recently. For

instance, Cieslak and Vissing-Jorgensen (2020) show that policymakers pay attention to the stock

market due to its potential (consumption) wealth effect. In contrast, Cochrane (2020) and Krug-

man (2021) argue that wealth gains on “paper” are not relevant for households who simply con-

sume their dividends. To understand how changes in wealth ultimately affect the real economy,
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we proceed by first providing a formal definition of wealth effects and then showing how wealth

effects shape households’ consumption behavior.

Wealth effects. Define the wealth effect of household j ∈ {w, o, p} as (minus) the total compensa-

tion required for the household’s initial consumption bundle to be just affordable. Thus, a mon-

etary policy shock generates a negative wealth effect if a positive compensation is required for

a household to afford her pre-shock consumption level. Formally, we define the wealth effect,

normalized by the initial consumption level, as follows:

Ωj,0 ≡ − 1
Cj


E0


ˆ ∞

0

ηt

η0
Cj,tdt


− E0


ˆ ∞

0

ηt

η0
Cj,tdt


. (18)

where Cj,t denotes consumption in the stationary equilibrium, i.e. Cj,t = Cj in the no-disaster state

and Cj,t = C∗
j in the disaster state. The first term inside parenthesis corresponds to the present

value of the consumption bundle in the stationary equilibrium discounted by the after-shock SDF,

and the second term corresponds to the present discounted value of the consumption bundle in the

economy with a monetary shock. The difference between the two equals the additional amount

of wealth required for the household to afford the stationary-equilibrium consumption bundle

under the new prices. This definition corresponds to (minus) the Slutsky wealth compensation,

as defined in Mas-Colell, Whinston and Green (1995), which justifies referring to Ωj,0 as a wealth

effect.15

Linearizing equation (18), we obtain

Ωj,0 =

ˆ ∞

0
e−ρt


cj,t + χc∗j c∗j,t


dt,

where χc∗j ≡
λ
ρs


Cs
C∗

s

σ C∗
j

Cj
. The wealth effect determines the present discounted value of consump-

tion across the two states. Therefore, a monetary shock must generate a positive wealth effect to

stimulate consumption in all dates and states. In the absence of a wealth effect, monetary policy

can only shift demand over time or across states.

Asset revaluation. In equilibrium, the wealth effect depends on the revaluation of real and fi-

nancial assets. To show this connection, consider the intertemporal budget constraint (IBC) for

15Mas-Colell et al. (1995) also proposed an alternative wealth compensation, the so-called Hicksian wealth compen-
sation. We show in Appendix B.5 that the two definitions are equivalent up to first order. Moreover, the wealth effect
corresponds to the compensating variation (CV) and equivalent variation (EV) of the policy change.
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saver j ∈ {o, p}. From the flow budget constraint and transversality condition, we obtain:

E0


ˆ ∞

0

ηt

η0
Cj,tdt


= Bj,0 + E0


ˆ ∞

0

ηt

η0
Tj,tdt


.

The left-hand side corresponds to the value of a claim on consumption, which we denote by

QCj,t ≡ Et


´ ∞

t
ηz
ηt

Cj,zdz

. The right-hand side corresponds to saver’s net worth Bj,0, the value

of stocks and bonds, and a claim on fiscal transfers, denoted by QTj,t ≡ Et


´ ∞

t
ηz
ηt

Tj,tdz

. The

linearized intertemporal budget constraint can be written as follows:

QCj qCj,0 = BL
j qL,0 + BE

j qE,0 + QTj qTj,0,

where qCj,0 ≡ log QCj,0/QCj and qTj = log QTj,0/QTj .

We can price the consumption and transfer claims in the same way as we priced stocks and

bonds (see equations 14 and 15). For instance, the price of the consumption claim is

qCj,0 =
Cj

QCj

ˆ ∞

0
e−ρt(cj,t + χc∗j c∗j,t)dt −

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt, (19)

where rCj ≡ λ


Cs
C∗

s

σ QCj−Q∗
Cj

QCj
.

Combining the pricing condition for consumption and the linearized IBC, we obtain

Ωj,0
wealth effect

=
1
Cj


BL

j qL,0 + BE
j qE,0 + QTj qTj,0



  
asset-revaluation effect

+
QCj

Cj

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt

  
consumption’s discount-rate effect

.

The wealth effect caused by changes in monetary policy has two components. The first com-

ponent corresponds to the asset-revaluation effect, i.e., the change in the value of stocks, bonds, and

fiscal transfers. Intuitively, an increase in interest rates would reduce the value of long-term as-

sets, such as stocks and bonds, making the household poorer. The second component corresponds

to the consumption’s discount-rate effect, i.e., the change in the value of the consumption claim due

to changes in discount rates. An increase in interest rates reduces the value of the consump-

tion claim, everything else constant, so less wealth is required to finance the same consumption

bundle. Therefore, the consumption’s discount-rate effect goes in the opposite direction of the

asset-revaluation effect. The net effect depends on the sensitivity of households’ assets to changes

in discount rates relative to the sensitivity of the consumption claim.
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Cash flows vs. discount rates. Using the pricing condition for bonds, equities, and the transfers

claim, we can write the wealth effect as follows:

Ωj,0 = −
BL

j

Cj

ˆ ∞

0
e−(ρ+ψL)tπtdt +

Y
Cj

ˆ ∞

0
e−ρt


BE

j Π̂t + QTj T̂j,t


dt

+

ˆ ∞

0
e−ρt

∆BS
j

Cj
(it − πt − rn)dt +

ˆ ∞

0
e−ρt

∆BL
j,t

Cj
(it − πt − rn + rL pd,t) dt, (20)

using QCj = BS
j + BE

j + BL
j + QTj and QCj rCj = BE

j rE + BL
j rL + QTj rTj , where T̂j,t ≡

Tj,t−Tj
Y , ∆BL

j,t =

(1 − e−ψLt)BL
j denotes the net purchases of long-term bonds in period t of the no-disaster state,

and ∆BS
j = BS

j denotes the net purchases of short-term bonds.

The first line in the expression above captures the (real) cash-flow effect for long-term bonds,

stocks, and fiscal transfers. Naturally, everything else constant, a household is better off if inflation

is lower or if profits and transfers are higher. The second-line captures the net discount-rate effect,

that is, the difference in the discount-rate effect for bonds, stocks, and transfers and the discount-

rate effect for the consumption claim.

An important implication of equation (20) is that the net discount-rate effect depends on the

net purchases of financial assets. In the stationary equilibrium, savers buy-and-hold stocks. Ex-

pression (20) then shows that, in the absence changes in dividends, movements in stock prices do

not generate a wealth effect.

The case where the investor holds no bonds, so BL
j = BS

j = 0, and there is no change in

cash flows, Π̂t = T̂j,t = 0, is particularly illustrative. In this case, the wealth effect is equal to zero,

despite a potentially large revaluation effect caused by the drop in equity prices. How is it possible

that households’ financial wealth suffers a large drop, while the wealth effect is zero? As savers

buy-and-hold stocks in the stationary equilibrium, they can still afford their initial consumption

bundle as long as they do not sell the stocks, given our assumption of no changes in dividends.

Therefore, the wealth effect is zero in this case.

A similar point emerges in the discussion of capital-gains taxation. Discussing the impact of

a drop in interest rates for an investor (Bob) whose consumption equals dividends every period,

Cochrane (2020) says

"When the interest rate goes down, it takes more wealth to finance the same consump-

tion stream. The present value of liabilities – consumption – rises just as much as the

present value of assets, so on a net basis Bob is not at all better."
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In our terms, the increase in financial wealth does not translate into a positive wealth effect, as

the increase in the price of stocks exactly cancels out the increase in the value of the consumption

claim after a drop in interest rates when consumption equals dividends.

3.2 Aggregate wealth effect and risk-premium neutrality

We consider next the aggregate implications of wealth effects. From workers’ flow budget con-

straints, the IBC for savers, and the market clearing conditions, we obtain

E0


ˆ ∞

0

ηt

η0
Ctdt


= DG,0 + QE,0 + E0


ˆ ∞

0

ηt

η0


Wt

Pt
Nt + Tt


dt


,

where Ct ≡ ∑j∈{w,o,p} µjCj,t and Tt ≡ ∑j∈{w,o,p} µjTj,t, so the value of the aggregate consumption

claim equals the value of stocks and bonds as well as human wealth, the present discounted value

of labor income after transfers.

Define the aggregate wealth effect as Ω0 ≡ ∑j∈{w,o,p}
µjCj

Y Ωj,0. The aggregate wealth effect

determines the average level of aggregate consumption in the no-disaster state, Ω0 =
´ ∞

0 e−ρtctdt,

as c∗t = 0. Hence, Ω0 plays an important role in how monetary shocks affect the real economy.

The next lemma provides a characterization of Ω0.

Lemma 1. The aggregate wealth effect Ω0 is given by

Ω0 =

ˆ ∞

0
e−ρt


Π̂t +

WN
PY

(wt − pt + nt) + T̂t − e−ψLtdGπt


dt

  
cash-flow effect

+

ˆ ∞

0
e−ρt∆BL

t (it − πt − rn + rL pd,t) dt
  

net discount-rate effect

,

(21)

where T̂t ≡ Tt−T
Y and ∆BL

t = (1 − e−ψLt)dG.

The aggregate wealth effect has two components. First, the cash-flow effect, capturing changes

in dividends, after-transfers labor income, and real coupons on government bonds. Second, the

net discount-rate effect, capturing the difference between the discount-rate effect for households’

assets and for the aggregate consumption claim. An increase in interest rates reduce the value

of long-term assets (i.e., stocks, bonds, and human wealth), but also reduces the value of the con-

sumption claim. The net effect again depends on the relative sensitivity of assets and consumption

to changes in discount rates. In contrast to the individual wealth effect (see equation 20), the net

discount-rate effect depends only on the amount of long-term bonds. As short-term bonds are in

zero net supply, any gains for a given saver are offset by a corresponding loss to another saver.
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Moreover, as the household sector as whole behaves as a buy-and-hold investor on equities, then

changes in discount rates on equities generate no wealth effects.

Risk-premium neutrality. We are ready to state the main result of this section. Proposition 4

shows that, under certain conditions, two economies can have different asset prices, driven by

differences in risk premia, but exactly the same path of output and inflation.

Proposition 4 (Risk-premium neutrality). Suppose the government uses a consumption tax to neutralize

the precautionary motive induced by λ̂t, that is, consider τc
t satisfying ˙̂τc

t = λ


Cs
C∗

s


λ̂t, where τ̂c

t ≡

log(1 + τc
t ), τc

t = τc,∗
t , and the revenue is rebated back to households. Then, [yt, πt]∞0 is independent of

λ̂t. Moreover, the fiscal backing τt is independent of λ̂t if one of the following conditions are satisfied: i)

dG = 0; ii) dG > 0 and ψL = ∞; iii) dG > 0 and ψL = 0.

Proof. Savers’ Euler equation for the riskless bond is now given by ċs,t = σ−1(it − πt − rn − ˙̂τc
t ) +

λ
σ


Cs
C∗

s

σ 
λ̂t + σcs,t


, which is independent of λ̂t if ˙̂τc

t = λ


Cs
C∗

s

σ
λ̂t. As τc

t = τc,∗
t , Euler equations

for risky assets are not affected. The aggregate Euler equation then takes the same form as in

equation (11), but with χpd = 0. As the revenue is rebated back to households, workers are not

affected. If dG = 0, the last two terms in Ω0 are equal to zero. If dG > 0 and ψL = 0, λ̂t in the

last two terms in Ω0 exactly cancel out. If ψL = ∞, government bonds are safe and rL = 0. Ω0 is

independent of λ̂t in all three cases.

Proposition 4 provides conditions under which the price of risk does not impact the monetary

transmission mechanism. Under such conditions, heterogeneity in portfolios among savers may

help improve the model’s asset-pricing implications, but they have no bearing on how monetary

shocks ultimately affect the real economy. In particular, the solution is independent of λp − λo.

Due to the increase in the risk premium, an economy with heterogeneous beliefs would have a

larger drop in asset prices after a monetary contraction than an economy where λp = λo. Despite

the larger decline in the value of stocks and bonds, the response of output and inflation would be

the same as in the economy without belief heterogeneity.

But why do households in the economy that suffered a larger drop in asset prices consume the

same as households in the economy where asset prices did not drop as much? Take for instance

the case dG = 0, so savers only hold stocks in equilibrium. One could expect that, as stock prices

fall more sharply in the economy with λ̂t > 0, households would feel poorer and cut consumption

relative to the economy with λ̂t = 0. However, this intuition does not take into account the fact
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that households can afford the same level of consumption with less wealth now. As households

do not need more resources to afford their initial consumption bundle since the return on their

savings has increased, this decline in asset prices does not create a negative wealth effect. The fact

that changes in financial wealth may translate into no wealth effect provides a precise sense in

which these changes may reflect “paper wealth.”16

We have focused so far on the impact of the price of risk on Ω0. However, pd,t also enters the

aggregate Euler equation (11), as the redistribution between optimistic and pessimistic investors

affects the average precautionary motive in the economy. For changes in pd,t to be neutral, in the

sense of not affecting output and inflation, the government would have to offset the movements

in the precautionary motive. Proposition 4 states the required change in taxes to exactly offset this

precautionary motive.

What would happen in the absence of such tax changes? The next result shows that a weaker

version of Proposition 4 still holds even in the absence of any tax changes.

Corollary 1 (Neutrality without consumption taxes). Consider two economies with potentially differ-

ent degrees of belief disagreement, λo − λp, but the same path of nominal interest rates it and fiscal backing

τt. If one of the three conditions in Proposition 4 holds, then the present discounted value of aggregate

consumption is the same in the two economies.

Corollary 1 shows that, as long as monetary and fiscal policy are kept the same across the

two economies, the average response of output to a monetary shock is also the same under one of

the three neutrality conditions lined up in Proposition 4. In the absence of the consumption tax,

the exact timing of consumption will differ across the two economies though. Therefore, the role

of the consumption tax is to ensure that not only output is the same on average across the two

economies, but they also coincide period-by-period. Of course, if monetary and fiscal policy are

not the same across the two economies, in the sense of having the same path of nominal rates and

same fiscal backing, then the average level of output can be different even under the conditions of

Proposition 4.

One implication of Proposition 4 is that, even though the logic of Cochrane (2020) and Krug-

man (2021) is present in our setting, it requires very stringent conditions to hold. While changes

in asset prices may not have aggregate effects, they can still generate substantial redistribution

16For instance, Fagereng, Gomez, Gouin-Bonenfant, Holm, Moll and Natvik (2022) says “For such an individual
[who only consumes dividends], rising asset prices are merely “paper gains,” with no corresponding welfare implica-
tions.”
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among agents, as emphasized by Fagereng et al. (2022). Moreover, changes in pd,t may lead to

movements in the precautionary motive. Therefore, in general, changes in the price of risk will

affect the real economy.

3.3 Intertemporal substitution, risk, and wealth effect

Dynamic system. Consider the system of differential equations in Proposition 2:



 ẏt

π̇t



 =



 δ −σ̃−1

−κ ρ







 yt

πt



+



 νt

0



 ,

where we have substituted pd,t with the expression in equation (13), and νt ≡ σ̃−1(it − rn) + χpd λ̂t

depends only on the path of nominal interest rates. The eigenvalues of the system are given by

ω =
ρ + δ +


(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
, ω =

ρ + δ −

(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
.

The following assumption, which we assume holds for all subsequent analysis, guarantees that

the eigenvalues are real-valued and have opposite signs, i.e., ω > 0 and ω < 0.

Assumption 1. The following condition holds: σ̃−1κ > ρδ.

Assumption 1 implies that the equilibrium is indeterminate under an interest rate peg. As

shown in Section 3.4, local determinacy requires φπ ≥ 1 − ρδ
σ̃−1κ

≡ φπ, and φπ > 0 under Assump-

tion 1.

Output response to monetary shock. We are ready to characterize the output response to a mon-

etary shock. In the spirit of Kaplan et al. (2018), we decompose the effects of the shock into two

distinctive forces. First, there is the effect of a monetary shock on aggregate demand keeping the

wealth effect at zero. Second, there is the wealth effect, which captures the general equilibrium

effect of the change in aggregate demand on incomes and asset valuations. The next proposition

characterizes this decomposition analytically. For ease of exposition, we focus on the case in which

the monetary shock induces an exponentially decaying path for the nominal interest rates; that is,

we assume it − rn = e−ψmt(i0 − rn), where ψm determines the persistence of the path of interest

rates. We discuss the properties of the monetary shock in Section 3.4.
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Proposition 5 (Aggregate output in D-HANK). Suppose that it − rn = e−ψmt(i0 − rn) and ψk ∕= −ω,

for k ∈ {m, λ}. The path of aggregate output is then given by

yt = σ̃−1ŷm,t

  
ISE

+ χλŷλ,t

  
time-varying

precautionary motive

+ (ρ − ω)eωtΩ0

  
GE factor×

aggregate wealth effect

, (22)

where χλ ≡ χpd λ, ŷk,t is given by

ŷk,t =
(ρ − ω) eωt − (ρ + ψk) e−ψkt

(ω + ψk) (ω + ψk)
(i0 − rn), (23)

and satisfies
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

< 0, for k ∈ {m, λ}.

Proposition 5 shows that output can be decomposed into three terms: an intertemporal-substitution

effect (ISE), a time-varying precautionary motive, and the aggregate wealth effect. The first two

terms correspond to the effects of monetary policy that are not mediated by a change in the aggre-

gate wealth effect. The third term reflects the general equilibrium effects of the wealth effect.

The first term captures the standard intertemporal substitution channel present in RANK mod-

els. It depends on the aggregate EIS, σ̃−1 = 1−µw
1−µwχy

σ−1, and ŷm,t given in (23). Notice that, even

though only a fraction 1 − µw of agents substitute consumption intertemporally, the ISE does not

necessarily get weaker as we reduce the mass of savers in the economy. As we reduce 1 − µw,

less agents are capable of intertemporal substitution, but the amplification from hand-to-mouth

agents gets stronger. The two effects exactly cancel out when χy = 1. Another important property

of the ISE is that it is equal to zero on average, i.e.
´ ∞

0 e−ρtŷm,tdt = 0. An increase in interest rates

shifts demand from the present to the future, but by itself it does not change the overall level of

aggregate demand.

The second term captures the effect of the time-varying precautionary motive. It is equal to

zero in the absence of belief heterogeneity, i.e. λo = λp, and the model behaves as a TANK

model with zero liquidity, as in Bilbiie (2019) and Broer et al. (2020). Positive disaster probability

λp = λo > 0 introduces a precautionary motive, analogous to HANK models (Kaplan et al. 2018),

but no time-varying component. Heterogeneous beliefs, λp > λo > 0, enable us to capture the

effect of time-varying risk premia, as in Caballero and Simsek (2020) and Kekre and Lenel (2020).

As with the EIS, the precautionary motive shifts demand from the present to the future without

changing its overall level, that is,
´ ∞

0 e−ρtŷλ,tdt = 0. In contrast to the EIS, the persistence of the
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precautionary effects is controlled by ψλ instead of ψm, as it depends on the rate at which the

balance sheet of optimistic investors recover after a contractionary shock.

The third term in expression (22) plays an important role, as the aggregate wealth effect deter-

mines the average response of output to the monetary shock. The GE factor shifts the impact of

the wealth effect over time, as we have that (ρ − ω)
´ ∞

0 e−(ρ−ω)tdt. Everything else constant, an

increase in Ω0 would tend to raise output in all periods by ρΩ0, creating a parallel shift in output

over time. In general equilibrium, a positive aggregate wealth effect leads to inflation on impact,

which reduces the real rate and shifts consumption to the present. The GE factor shows that the

effect of Ω0 on y0 exceeds the effect on average consumption, ρΩ0, by the factor ρ−ω
ρ > 1.

Inflation. The next proposition characterizes the behavior of inflation.

Proposition 6 (Inflation in D-HANK). Suppose it − rn = e−ψmt(i0 − rn) and ψk ∕= −ω for k ∈ {m, λ}.

The path of inflation is given by

πt = σ̃−1π̂m,t + χλπ̂λ,t + κeωtΩ0, (24)

where π̂k,t =
κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn), π̂k,0 = 0 and ∂π̂k,t

∂i0
≥ 0, for k ∈ {m, λ}.

Inflation can be analogously decomposed into three terms. The first two terms capture the

impact of the ISE and time-varying precautionary motive, while the last term captures the impact

of the aggregate wealth effect. Because π̂k,0 = 0, the first two terms are initially zero. This im-

plies that initial inflation is determined entirely by the aggregate wealth effect, as emphasized by

Caramp and Silva (forthcoming).

3.4 Local determinacy and the monetary shock

In the description of the model in Section 2, we assumed that the coefficient associated with the

inflation rate in the monetary rule (7), φπ, was strictly greater than one. This condition is typically

sufficient for local determinacy in this class of models. The next proposition shows that φπ > 1 is

a sufficient condition of local determinacy in our D-HANK model.

Proposition 7 (Determinacy). Consider a given monetary shock [ut]t≥0. If φπ ≥ φπ ≡ 1 − ρδ
σ̃−1κ

, then

there exists a unique bounded solution to the system comprised of the Taylor rule (7), the aggregate Euler

equation (11), the New Keynesian Phillips curve (12), the market-implied disaster probability (16), and the

law of motion of relative consumption (16) and relative net worth (16).
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Finally, we assume that the monetary shock follows a standard AR(1) process:

u̇t = −ψue−ψu ut + t.

Note, however, that in our model this process will not generate an AR(1) process for the path of

the nominal interest rate, as assumed in some of our previous analytical results. In Appendix ??,

we show that a simple extension of the shock process can generate a path of the nominal interest

rate that is exponentially decaying. Our quantitative results are not very sensitive to this choice.

4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of wealth effects in the transmission of mone-

tary shocks. We calibrate the model to match key unconditional and conditional moments, includ-

ing asset-pricing dynamics and the fiscal response to a monetary shock. We find that household

heterogeneity and time-varying risk are the predominant channels of transmission of monetary

policy.

4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to match a

natural interest rate of rn = 1%. We assume a Frisch elasticity of one, φ = 1, and set the elasticity

of substitution between intermediate goods to  = 6, common values adopted in the literature.

The fraction of workers is set to µw = 30%. The parameter dG is chosen to match a public debt-to-

GDP ratio of 66%, and we assume a duration of five years, consistent with the historical average

for the United States. The tax rate is set to τ = 0.27 and the parameter T′
b(Y) is chosen such that

χy = 1, which requires countercyclical transfers to balance the procyclical wage income. A value

of χy = 1 is consistent with the evidence in Cloyne et al. (2020) that the net income of mortgagors

and non-mortgagors reacts similarly to monetary shocks. The pricing cost parameter ϕ is chosen

such that κ coincides with its corresponding value under Calvo pricing and an average period

between price adjustments of three quarters. The half-life of the monetary shock is set to three

and a half months to roughly match what we estimate in the data, and we set φπ = 1.5.

We calibrate the disaster risk parameters in two steps. For the stationary equilibrium, we

choose a calibration mostly based on the parameters adopted by Barro (2009). We set λ (the steady-
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state disaster intensity) to match an annual disaster probability of 1.7%, and A∗ to match a drop

in output of 1 − Y
Y∗ = 0.39.17 The risk-aversion coefficient is set to σ = 4, a value within the range

of reasonable values according to Mehra and Prescott (1985), but substantially larger than σ = 1,

a value often adopted in macroeconomic models. Our calibration implies an equity premium in

the stationary equilibrium of 6.1%, in line with the observed equity premium of 6.5%. Moreover,

by setting σ = 4 we obtain a micro EIS of σ−1 = 0.25, in the ballpark of an EIS of 0.1 as recently

estimated by Best et al. (2020). We discuss the calibration of λ̂0, which determines the elasticity of

asset prices to monetary shocks, in the next subsection.

4.2 Asset-pricing implications of time-varying risk

Recall that the price of the long-term government bond is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn + rL pd,t)dt,

where pd,t = σ̃yt + λ̂0 is the price of the disaster risk. We use this expression and calibrate λ̂0 to

match the initial response of the 5-year yield on government bonds. Consistent with Gertler and

Karadi (2015) and our own estimates reported in Appendix C, we find that a 100 bps increase in

the nominal interest rate leads to an increase in the 5-year yield of roughly 20 bps. This procedure

leads to a calibration of λ of 2.25, which implies an annual increase in the probability of disaster

of roughly 95 bps after a 100 bps increase in the nominal interest rate. Figure 1 shows the response

of the yield on the long bond and the contributions of the path of future interest rates and the term

premium. We find that the bulk of the reaction of the 5-year yield reflects movements in the term

premium, a finding that is consistent with the evidence.

The model is also able to capture the responses of asset prices that were not directly targeted in

the calibration. Consider first the response of the corporate spread, the difference between the yield

on a corporate bond and the yield on a government bond (without risk of default) with the same

promised cash flow. This corresponds to how the GZ spread is computed in the data by Gilchrist

and Zakrajšek (2012). Let e−ψFt denote the coupon paid by the corporate bond. We assume that

the monetary shock is too small to trigger a corporate default, but the corporate bond defaults if a

disaster occurs, where lenders recover the amount 1 − ζF in case of default. We calibrated ψF and

17As discussed in Barro (2006), it is not appropriate to calibrate A∗/A to the average magnitude of a disaster, given
that empirically the size of a disaster is stochastic. We instead calibrate A∗/A to match E[(Cs/C∗

s )
σ] using the empirical

distribution of disasters reported in Barro (2009).
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Government bond yield Corporate spread Stocks

Figure 1: Asset-pricing response to monetary shocks with time-varying risk.

ζF to match a duration of 6.5 years and a credit spread of 200 bps in the stationary equilibrium,

which is consistent with the estimates reported by Gilchrist and Zakrajšek (2012). Note that the

calibration targets the unconditional level of the credit spread. We evaluate the model on its ability

to generate an empirically plausible conditional response to monetary shocks.

The price of the corporate bond can be computed analogously to the computation of the long-

term government bond:

qF,0 = −
ˆ ∞

0
e−(ρ+ψF)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψF)t


λ


Cs

C∗
s

σ QF − Q∗
F

QF
pd,t


dt,

where QF and Q∗
F denote the price of the corporate bond in the stationary equilibrium in the no-

disaster and disaster states, respectively. Given the price of the corporate bond, we can compute

the corporate spread. Figure 1 shows that the corporate spread responds to monetary shocks by

8.9 bps. We introduce the excess bond premium (EBP) in our VAR and find an increase in the

EBP of 6.5 bps and an upper bound of the confidence interval of 10.9 bps, consistent with the

model’s prediction. Thus, even though this was not a targeted moment, time-varying risk is able

to produce quantitatively plausible movements in the corporate spread.

Another moment that is not targeted by the calibration is the response of stocks to monetary

shocks. We find a substantial response of stocks to changes in interest rates, which is explained

mostly by movements in the risk premium. In contrast to the empirical evidence, we find a positive

response of dividends to a contractionary monetary shock. This is the result of the well-known

feature of sticky-prices models that profits are strongly countercyclical. This counterfactual pre-

diction could be easily solved by introducing some form of wage stickiness. Despite the positive

response of dividends, the model generates a decline in stocks of 2.15% in response to a 100 bps

increase in interest rates, which is smaller than the point estimate of Bernanke and Kuttner (2005)
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Decomposition in TVR-HANK Output in RANK and HANK

Figure 2: Output in RANK and HANK.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1.

but is still within their confidence interval.18 Fixing the degree of countercyclicality of profits

would likely bring the response of stocks closer to their point estimate.

4.3 Wealth effects in the monetary transmission mechanism

Figure 2 (left) presents the response of output and its components to a monetary shock in the New

Keynesian model with heterogeneous agents and time-varying risk. We find that output reacts by

−1.05% to a 100 bp increase in the nominal interest rate, which is consistent with the empirical

estimates of e.g. Miranda-Agrippino and Ricco (2021). In terms of its components, time-varying

risk (TVR) and the outside wealth effect are the two main components determining the output

dynamics, representing 39% and 47% of the output response, respectively. In contrast, the ISE

accounts for only 6.5% of the output response, indicating that intertemporal substitution plays

only a minor role in the monetary transmission mechanism.

These findings stand in sharp contrast to the dynamics in the absence of heterogeneity and

time-varying risk. Figure 2 (right) plots the response of output for different combinations of het-

erogeneity (µb > 0 and µb = 0) and time-varying risk (λ > 0 and λ = 0). By shutting down the

two channels, denoted by “RANK” in the figure, the initial response of output would be −0.14%,

a more than a sevenfold reduction in the impact of monetary policy. There are two reasons for this

result. First, our calibration of σ = 4 implies an EIS that is one fourth of the standard calibration.

This significantly reduces the quantitative importance of the ISE, even if the intertemporal substi-

tution channel represents a large fraction of the output response in the RANK model. Second, our

18We follow standard practice in the asset-pricing literature and report the response of a levered claim on firms’
profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).
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estimate of the fiscal response is substantially lower than the one implied by a standard Taylor

equilibrium that imposes an AR(1) process for the monetary shock. We discuss the role of fiscal

backing and the implications for the New Keynesian model in Section 4.5 below.

Figure 2 (right) also plots the response of output when there is household heterogeneity but not

time-varying risk (“HANK” in the figure), and the response of output when there is time-varying

risk but not household heterogeneity (“TVR-RANK” in the figure). We find that heterogeneity

increases the response of output by 22 bps while time-varying risk increases it by 54 bps. Notably,

by combining both features, we get an increase in the response of output of 86 bps, which is

10 bps larger than the sum of the individual effects. Thus, heterogeneity and time-varying risk

reinforce each other. In terms of the fraction of the response of output that can be attributed to each

channel, we find that 20.5% can be attributed to household heterogeneity, 51.5% corresponds to

time-varying risk, and 9.7% is the amplification effect of heterogeneity together with time-varying

risk (which is around 50% larger than the contribution of the ISE), while the remainder represents

the channels in the RANK model.

Figure ?? shows graphically the neutrality result in Proposition 4.

4.4 The limitations of the constant disaster risk model

Consider the response of asset prices to a monetary shock in an economy that features constant

disaster risk (i.e. λ > 0 but λ = 0). Figure 3 (left) shows that the yield on the long bond increases

by 6.5 bps, which implies a decline of the value of the bond of 32 bps (given a 5-year duration),

less than half of the response estimated by the VAR in Section 4.1. Moreover, movements in the

long bond yield are almost entirely explained by the path of nominal interest rates, while the term

premium is indistinguishable from zero. This stands in sharp contrast to the evidence reported in

Gertler and Karadi (2015) and Hanson and Stein (2015). Similarly, it can be shown that most of

the response of stocks in the model is explained by movements in interest rates instead of changes

in risk premia, a finding that is inconsistent with the evidence documented in e.g. Bernanke and

Kuttner (2005).

Figure 3 (right) shows how the presence of constant disaster risk affects the response of output

to monetary shocks for the HANK and RANK economies. We find that risk has only a minor

impact on the response of output. Aggregate risk increases the value of the discounting parameter

δ, which reduces the GE multiplier and dampens the initial impact of the monetary shock. Given

that the term premium barely moves, disaster risk plays only a small role in determining the
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Bond yield decomposition Output dynamics

Figure 3: Long-term bond yields and output for economies with and without risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1. D-HANK and D-RANK correspond to heterogeneous-agent and
representative agent economies with constant disaster risk (i.e. λ > 0 and λ = 0). HANK and RANK correspond to economies with
no disaster risk (i.e. λ = 0).

outside wealth effect. In contrast, the important role of heterogeneity can be seen by comparing

the response of the D-HANK and D-RANK economies.

Therefore, while introducing a constant disaster probability allows the model to capture im-

portant unconditional asset-pricing moments, such as the (average) risk premium or the upward-

sloping yield curve, the model is unable to match key conditional moments, in particular, the re-

sponse of asset prices to monetary policy. The limitations of the model with constant disaster

probability in matching conditional asset-pricing moments were recognized early on in the litera-

ture, leading to an assessment of the implications of time-varying disaster risk, as in Gabaix (2012)

and Gourio (2012). This justifies our focus on time-varying disaster risk and how it affects the

asset-pricing response to monetary shocks and, ultimately, its impact on real economic variables.

4.5 The role of the EIS

We have found that time-varying risk and heterogeneity substantially amplify the impact of mon-

etary policy on the economy. However, the response of the textbook economy is only slightly

smaller than that of our D-HANK economy despite the lack of time-varying risk or heterogeneous

agents. An important reason for this is the difference in the value of the calibrated EIS. In the

RANK economy, the ISE accounts for roughly 40% of the output response, while in our D-RANK

the ISE accounts for less than 7% of that response.

Figure 4 illustrates this point. In the three panels, we show the impact of a monetary shock that

leads to an increase in nominal interest rates on impact of 100 bps. In the left panel, we consider a

RANK economy (µb = λ = 0) with the standard value for the EIS (σ−1 = 1), corresponding to the
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RANK (Standard) RANK (Fiscal Data) D-HANK

Figure 4: Output in RANK vs D-HANK with time-varying risk.

Note: The first two panels show output in RANK (µb = λ = 0) with unit EIS (σ−1 = 1). In the left panel, fiscal backing is determined
by a Taylor rule, while in the middle panel fiscal backing corresponds to the value estimated in the data. The right panel corresponds
to the D-HANK economy with time-varying risk and the estimated fiscal backing.

textbook New Keynesian model. The right panel shows our D-HANK model with time-varying

risk and the calibrated value of the EIS, σ−1 = 0.25.

These results suggest that the quantitative success of the RANK model is likely the result of

a counterfactually strong intertemporal-substitution channel, which compensate for missing het-

erogeneous agents and risk channels. Once we discipline the fiscal backing with data and calibrate

the EIS to the estimates obtained from microdata, our model suggests that heterogeneous agents

and, in particular, time-varying risk are crucial for generating quantitatively plausible output dy-

namics. However, it is important to note that our model made several simplifications to incor-

porate time-varying aggregate risk without sacrificing the tractability of standard macro models.

A natural extension would be to incorporate these channels into a medium-sized DSGE model to

better assess the quantitative properties of the New Keynesian model.

5 The Effect of Risk and Maturity of Household Debt

We have focused so far on how monetary policy affects the value of households’ assets, such as

stocks and bonds. However, movements in risk premia induced by monetary policy can also affect

the real economy through its impact on household debt. In this section, we extend the baseline

model to allow workers to borrow a positive amount using long-term risky debt.

5.1 The model with long-term risky household debt

We describe next the model with long-term risky household debt. We highlight only the main

differences with respect to the model described in Section 2. Households issue long-term debt that

35



promises to pay exponentially decaying coupons given by e−ψPt at period t ≥ 0, where ψP ≥ 0.

Households cannot commit to always repay their debts. In response to a large shock, i.e., the

occurrence of a disaster, households default and lenders receive a fraction 1 − ζP of the promised

coupons, where 0 ≤ ζP ≤ 1. Fluctuations in the no-disaster state are small enough such that they

do not trigger a default. Thus, households default only in the disaster state.

Households can borrow up to DP,t = QP,tF, which effectively puts a limit on the face value of

private debt F.19 The (log-linearized) consumption of workers is given by

cw,t = χyyt −


ψP

iP + ψP
(iP,t − iP)− πt


dP, (25)

where dP ≡ DP
Y denotes the debt-to-income ratio in the stationary equilibrium, and iP,t =

1
QP,t

−ψP

is the yield on household debt. Equation (25) generalizes the expression for workers’ consumption

given in Section 2. When debt is short-term, ψP → ∞, and riskless, ζP = 0, we obtain iP,t = it.

At the other extreme, we have the case of a perpetuity, ψP = 0, when households simply pay

the coupon every period and there is no need to issue new debt. Therefore, they are completely

insulated from movements in nominal interest rates. For intermediate values of maturity and risk,

monetary policy affects borrowers through changes in the nominal interest rate it and the spread

rP,t.

The next proposition extends the decomposition in Proposition 5 to the case of long-term risky

household debt.

Proposition 8 (Aggregate output with long-term risky household debt). Suppose that it − rn =

e−ψmt(i0 − rn) and rPσcs,t = O(||it − rn||2). Aggregate output is then given by

yt = σ̃−1ŷm,t

  
ISE

+ χλŷλ,t

  
time-varying

precautionary motive

+
µwdPψP

1 − µwχy


ψ̃mŷm,t

ρ + ψP + ψm
+

rPλψ̃λŷλ,t

ρ + ψP + ψλ



  
household-debt effect

+ (ρ − ω)eωtΩ0,
  

GE factor×
aggregate wealth effect

where ψ̃k = ψk + ρ − rn for k ∈ {m, λ}.

Proposition 8 shows that household debt effectively amplifies the ISE and the time-varying

precautionary motive effect. If household debt is safe and short term (i.e, ζP = 0 and ψP → ∞),

then the household-debt effect loads on ŷm,t, amplifying the ISE. When debt is long-term or when
19This formulation guarantees that, after an increase in nominal rates, the value of household debt and the borrowing

limit decline by the same amount. This specification of the borrowing constraint, combined with the assumption of
impatient borrowers, guarantees that borrowers are constrained at all periods.
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Household-debt effect Aggregate output

Figure 5: Household-debt effect and output at t = 0 as a function of duration.

households can default, then rP > 0 and the household-debt effect also loads on ŷλ,t, amplifying

the precautionary motive effect.

An important implication of Proposition 8 is that default risk amplifies the household-debt

effect, while an increase in the duration of household debt weakens the effect. The spread rP is

increasing in ζP, so the interest rate on private debt responds more strongly to an increase in λ̂t

when debt is riskier. In contrast, an increase in the duration of household debt (i.e., a reduction in

ψP) means that households issue less debt at the new rates, so the impact of the change in the cost

of serving the debt gets attenuated. In the limit case of a perpetuity, ψP = 0, the household-debt

effect goes to zero. Given that households do not issue new debt, they are not affected by changes

in interest rates.

5.2 Quantitative implications

As shown in Proposition 8, default risk and maturity of household debt have opposing effects on

the response of output to monetary policy. To assess the quantitative impact of risk and maturity,

Figure 5 shows the initial response of the household-debt effect (left panel) and aggregate output

(right panel) as a function of the duration of private debt for different values of the haircut pa-

rameter ζP. Greenwald, Leombroni, Lustig and Van Nieuwerburgh (2021) estimate the duration

of mortgage debt as 5.2 years, the duration of student debt as 4.50, and the duration of consumer

debt as 1.0 year. Therefore, we focus on values of duration up to five years. We consider three

different values for the haircut parameter: riskless debt (ζP = 0); risky debt with a spread in

the stationary equilibrium of roughly 4.0% with a 5-year duration (ζP = 0.10); risky debt with a

spread of 5.0% with a 5-year duration (ζP = 0.25).

Default risk substantially amplifies the effect of monetary policy on output when debt is short
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term. The household-debt effect is almost three times larger in the case of ζP = 0.25 compared

to ζP = 0.0, which corresponds to an increase in the initial response of output of almost 25%.

However, this effect is strongly attenuated when household debt is long term. For even relatively

small values of duration, the household-debt effect with long-term risky debt is smaller than in

the case of short-term riskless debt. For instance, in the case of a five-year duration, the response

of output is roughly 10% smaller than the response in the case of short-term riskless debt. The

response of output when household debt is zero is roughly 35% smaller than in the economy with

(positive) riskless debt, a much larger drop relative to the one caused by introducing long-term

bonds.

6 Conclusion

In this paper, we provide a novel unified framework to analyze the role of heterogeneity and risk

in a tractable linearized New Keynesian model. The methods introduced can be applied beyond

the current model. For instance, they can be applied to a full quantitative HANK model with

idiosyncratic risk, extending the results of Ahn, Kaplan, Moll, Winberry and Wolf (2018) to allow

for time-varying risk premia. Alternatively, one could introduce a richer capital structure for

firms and study the pass-through of monetary policy to households and firms. These methods

may enable us to bridge the gap between the extensive existing work on heterogeneous agents

and monetary policy and the emerging literature on the role of asset prices in the transmission of

monetary shocks.
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Appendix

Proofs

Proof of Proposition 2. Consider the New Keynesian Phillips curve π̇t =


it − πt + λt
η∗

t
ηt


πt − 

ϕA

W
P ewt−pt − (1 − −1)A


Yeyt .

Linearizing the above expression, and using W
P = (1− −1)A, we obtain π̇t =


rn + λ


Cs
C∗

s

σ
πt −

ϕ−1( − 1)Y(wt − pt). Using the fact that wt − pt = φyt, we obtain π̇t = (ρs + λ)πt − κyt, where

κ ≡ ϕ−1( − 1)φY and we used that rn + λ


Cs
C∗

s

σ
= ρs + λ.

Consider next the generalized Euler equation. From the market-clearing condition for goods

and workers’ consumption, we obtain cs,t =
1−µwχy

1−µw
yt. Combining this condition with the Phillips

Curve and savers’ Euler equation, and using the fact that rn = ρ − λ


Cs
C∗

s

σ
, we obtain ẏt =

σ̃−1(it − π − rn) + δyt + χλλ̂t, where the constants σ̃−1, δ, and χλ are defined in the proposition.

Proof of Proposition 3. The linearized Euler equation for saver j is given by ċj,t = σ−1(it − πt −
rn) +

λ
σ


Cs
C∗

s

σ 
λ̂t + σcs,t


− ξ(cj,t − cs,t). Taking the difference of the Euler equation for the two

types, we obtain ċp,t − ċo,t = −ξ(cp,t − co,t). Linearizing the savers’ flow budget constraint, we

obtain

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk


r̂k,t


Bk

p

Bp
− Bk

o
Bo


+

Bk
p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t


−


Cp

Bp
cp,t −

Co

Bo
co,t


+ rn(bp,t − bo,t),

where r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t. The relative net worth in the disaster state at t = t∗ is given

by B∗
p

Bp
b∗p,t∗ −

B∗
o

Bo
b∗o,t∗ = bp,t∗ − bo,t∗ − ∑k∈{L,E}


Bk

p
Bp

− Bk
o

Bo


Q∗

k
Qk

qk,t∗ +
Qk−Q∗

k
Qk


Bk

p
Bp

bk
p,t∗ −

Bk
o

Bo
bk

o,t∗


.

From the revaluation of net worth in the disaster state, shown above, we can solve for the

difference in portfolios
Bk

p
Bp

bk
p,t∗ −

Bk
o

Bo
bk

o,t∗ . From the optimality condition for risky assets, we obtain

cp,t − co,t = c∗p,t − c∗o,t. Savers’ consumption in the disaster state is given by c∗j,t =
r∗nB∗

j
C∗

s
b∗j,t. Combinig

these expressions, we can solve for the relative net worth in the disaster state. We can then solve

for the dynamics of relative net worth in the no-disaster state:

ḃp,t − ḃo,t = ρ(bp,t − bo,t)− χb,c(cp,t − co,t) + χb,cs cs,t,
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where χb,cs ≡ (σ − 1)∑k∈{L,E} rk


Bk

p
Bp

− Bk
o

Bo


, and

χb,c ≡ σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+ µc,p

Co

Bo
+ µc,o

Cp

Bp
+

C∗
s (ρ − rn)

r∗nBs
,

where χb,c > 0. Assuming σrkcs = O(||it − rn||2), the term involving cs,t can be ignored up to first

order. We then obtain a dynamic system in cp,t − co,t and bp,t − bo,t, which has a positive and a

negative eigenvalue, so there is a unique bounded solution given by



cp,t − co,t

bp,t − bo,t



 =




ρ+ξ
χb,c

1



 e−ψλt(bp,0 − bo,0),

where ψλ = ξ. We can then write the market-implied disaster probability as follows:

λ̂t = e−ψλtσµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ρ + ξ

χb,c
(bp,0 − bo,0).

The revaluation of the relative net worth is given by bp,0 − bo,0 =


BL

p
Bp

− BL
o

Bo


qL,0, using the as-

sumption that BE
o = BE

p . The price of the long-term bond is given by qL,0 = − i0−rn
ρ+ψL+ψm

− rLλ̂0
ρ+ψL+ψλ

.

Combining the expressions for λ̂t, relative net worth, and bond prices, we obtain λ̂t = e−ψλtλ(i0 −

r), where λ is given by

λ ≡
σµc,oµc,p
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1
σ
p −λ

1
σ
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1
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.

Proof of Lemma 1. Linearizing the aggregate intertemporal budget constraint, we obtain QCqc,0 =

DGqL,0 + QEqE,0 + QHqH,0, where QH,t is the present discounted value of wages plus transfers.

Using the pricing condition for qk,0, k ∈ {C, H, E}, we obtain

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt [it − πt − rn + rC pd,t] dt =

ˆ ∞

0
e−ρt


Π̂t +

WN
PY

(wt − pt + nt) + T̂t


dt

−QH + QE
Y

ˆ ∞

0
e−ρt [it − πt − rn] dt −


QH
Y

rH +
QE
Y

rE


ˆ ∞

0
e−ρt pd,tdt +

DG
Y

qL,0.
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Using the fact that QC = DG + QE + QH and Q∗
C = DG

Q∗
L

QL
+ Q∗

E + Q∗
H, we obtain QC

Y − QH+QE
Y =

DG
Y ≡ dG and QC

Y rC − QHrH+QErE
Y = dGrL, given rk = λ


Cs
C∗

s

σ Qk−Q∗
k

Qk
. Combining these expressions

with the equation above, we obtain (21) after some rearrangement.

Proof of Propositions 5 and 6. We can write dynamic system in matrix form as Żt = AZt + Bνt,

where B = [1, 0]′. Applying the eigendecomposition to matrix A, we obtain A = VΩV−1 where

V =




ρ−ω

κ
ρ−ω

κ

1 1



, V−1 = κ
ω−ω



−1 ρ−ω
κ

1 − ρ−ω
κ



, and Ω =



ω 0

0 ω



. Decoupling the system, we

obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.

Solving the equation with a positive eigenvalue forward and the one with a negative eigen-

value backward, and rotating the system back to the original coordinates, we obtain

yt = V12


V21y0 + V22π0


eωt − V11V11
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e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22


V21y0 + V22π0


eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt, we obtain
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Rearranging the above expression, we obtain
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where we used the fact V11V11

ρ−ω + V12V21

ρ−ω = 0. Output is then given by yt = ỹt + (ρ−ω)eωtΩ0, where

ỹt = − ω−ρ
ω−ω

´ ∞
t e−ω(z−t)νzdz + ω−δ

ω−ω

´ t
0 eω(t−z)νzdz − ρ−ω

ω−ω eωt ´ ∞
0 e−ωzνzdz. Inflation is given by πt =

π̃t + κeωtΩ0, where π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz + κ

ω−ω

´ t
0 eω(t−z)νzdz − κ

ω−ω eωt ´ ∞
0 e−ωzνzdz.

If it − rn = e−ψmt(i0 − rn), then νt = σ̃−1e−ψmt(i0 − rn) + χpd λe−ψλt(i0 − rn). Then, ỹt =

σ̃−1ŷm,t + χλŷλ,t and π̃t = σ̃−1π̂m,t + χλπ̂λ,t, where χλ ≡ χpd λ, ŷk,t =
(ρ−ω)eωt−(ρ+ψk)e−ψkt

(ψk+ω)(ψk+ω)
(i0 − rn),

and π̂k,t =
κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn). Note that

´ ∞
0 e−ρtŷk,tdt = 0, ∂ŷk,0

∂i0
= − 1

ψk+ω < 0, and limt→∞ ŷk,t =

0. Moreover, π̂0 = 0, ∂π̂k,t
∂i0

≥ 0 with strict inequality if t > 0.

Proof of Proposition 8. The workers’ financial wealth in the no-disaster state evolves according to

Ḃw,t = (it − πt + rP,t)Bw,t + WtNw,t + Tw,t − Cw,t. Using the fact that Bw,t = −QP,tF and qP,t =

− iP,t−iP
iP+ψP

, we obtain equation (25). From the market clearing condition for goods, we obtain savers’
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consumption: cs,t =
1−µwχy

1−µw
yt +

µwdP
1−µw


ψP

iP+ψP
(iP,t − iP)− πt


. Assuming exponentially decaying

interest rates, and using the yield on the private bond iP,t − iP = iP+ψP
ρ+ψP+ψm

(it − rn) +
iP+ψP

ρ+ψP+ψλ
rPλ̂t,

we can write savers’ consumption as follows

cs,t =
1 − µwχy

1 − µw
yt +

µwdP

1 − µw


ψP

ρ + ψP + ψm
(it − rn) +

ψPrP

ρ + ψP + ψλ
λ̂t − πt


. (26)

The Euler equation for savers can be written as

ċs,t = σ−1(it − πt − rn) + λ


Cs

C∗
s

σ 
cs,t + σ−1λ̂t


. (27)

Combining equations (26) and (27), we obtain

ẏt =


σ̃−1 − µwdP

1 − µwχy
rn


(it − πt − rn) +


λ


Cs

C∗
s

σ

− µwdP

1 − µwχy
κ


yt

+


χpd +

µwdP

1 − µwχy

ψPrP(ρ − rn + ψλ)

ρ + ψP + ψλ


λ̂t +

µwdP

1 − µwχy


rn +

ψP(ρ − rn + ψm)

ρ + ψP + ψm


(it − rn).

We can then write the aggregate Euler equation as ẏt = σ̂−1(it − πt − rn) + δ̂yt + v̂t, where σ̂−1 ≡

σ̃−1 − µwdPrn
1−µwχy

, δ̂ ≡ λ


Cs
C∗

s

σ
− µwdPκ

1−µwχy
, and v̂t ≡


χpd +

µwdP
1−µwχy

ψPrPψ̃λ

ρ+ψP+ψλ


λ̂t +


σ̃−1 + µwdP

1−µwχy

ψPψ̂m
ρ+ψP+ψm


(it −

rn), where ψ̃k ≡ ψk + ρ − rn for k ∈ {m, λ}. Therefore, following a derivation analogous to the one

in Proposition 5, output is given by yt = σ̃−1ŷm,t + χλŷλ,t +
µwdP

1−µwχy


ψPψ̃m ŷm,t

ρ+ψP+ψm
+

rPλψ̃λ ŷλ,t
ρ+ψP+ψλ


+ (ρ −

ω)eωtΩ0, where the eigenvalues are given by ω =
ρ+δ̂+

√
(ρ+δ̂)2+4(σ̂−1κ−ρδ̂)

2 and ω =
ρ+δ̂−

√
(ρ+δ̂)2+4(σ̂−1κ−ρδ̂)

2 .
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Online Appendix

A Derivations for Section 2

A.1 The non-linear model

Savers’ problem. The HJB for the savers’ problem is given by

ρj,tVj,t = max
Cj,t ,BL

j,t ,B
E
j,t

C1−σ
j,t

1 − σ
+

∂Vj,t

∂t
+ λj


V∗

j,t − Vj,t


+

∂Vj,t

∂Bj,t


(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t + Tj,t − Cj,t


.

(A.1)

where V∗
j,t is evaluated at B∗

j,t = Bj,t + BL
j,t

Q∗
L,t−QL,t
QL,t

+ BE
j,t

Q∗
E,t−QE,t

QE,t
and Bj,t > 0.

The corresponding HJB in the disaster state is given by

ρ∗j,tV
∗
j,t = max

C∗
j,t,B

L,∗
j,t ,BE,∗

j,t

(C∗
j,t)

1−σ

1 − σ
+

∂V∗
j,t

∂t
+

∂V∗
j,t

∂B∗
j,t


(i∗t − π∗

t )Bj,t + T∗
j,t − C∗

j,t


,

where we imposed that r∗L,t = r∗E,t = 0, as there is no risk in the disaster state.

The first-order conditions are given by1

C−σ
j,t =

∂Vj,t

∂Bj,t
,

∂Vj,t

∂Bj,t
rk,t =

∂V∗
j,t

∂B∗
j,t

Qk,t − Q∗
k,t

Qk,t
, (C∗

j,t)
−σ =

∂V∗
j,t

∂B∗
j,t

, (A.2)

for k ∈ {L, E}. Savers are indifferent about their portfolio composition in the disaster state. From

the expressions above, we obtain eqn. (2) and (3). Differentiating the HJB equation in the no-

disaster state with respect to Bj,t, we obtain the envelope condition:2

ρj,t
∂Vj,t

∂Bj,t
=

∂Vj,t

∂Bj,t
(it − πt) +

Ej,t[d


∂Vj,t
∂Bj,t


]

dt
. (A.3)

Using the optimality condition for consumption and the condition above, we obtain:

it − πt − ρj,t = −
Et[dC−σ

j,t ]

C−σ
j,t dt

=
σC−σ−1

j,t Ċj,t − λj


(C∗

j,t)
−σ − C−σ

j,t



C−σ
j,t

, (A.4)

1Formally, the solution is also subject to a state-constraint boundary condition . See ? for a discussion of such
constraints in continuous-time savings problems.

2Here we used the fact that Ej,t[dF(Bj,t, t)] =


Ft + λj[F∗ − F] + FB


(i − π)Bj + rLBL

j + rEBE
j − Cj


dt for any

function F(Bj,t, t), according to Ito’s lemma.

1



using the fact that dCj,t = Ċj,tdt + [C∗
j,t − Cj,t]dNt and Ito’s lemma. Rearranging the expression

above, we obtain eqn. (1). A similar envelope condition holds in the disaster state, which gives

the Euler equation for the disaster state

Ċ∗
j,t

C∗
j,t

= σ−1(it − πt − ρ∗j,t). (A.5)

The relative net worth of optimistic and pessimistic savers evolves according to

Ḃo,t

Bo,t
−

Ḃp,t

Bp,t
= ∑

k∈{L,E}
rk,t


BL

o,t

Bo,t
−

Bk
p,t

Bp,t


−


Co,t − Ts,t

Bo,t
−

Cp,t − Ts,t

Bp,t


. (A.6)

Workers’ problem. The HJB for the workers’ problem is given by

ρwVw,t = max
C̃w,t,Nw,t,BL

w,t

C̃1−σ
w,t

1 − σ
+

∂Vw,t

∂Bw,t


(it − πt)Bw,t + rL,tBL

w,t +
Wt

Pt
Nw,t + Tw,t − C̃w,t −

N1+φ
w,t

1 + φ


.

+
∂Vw,t

∂t
+ λw


V∗

w,t − Vw,t


(A.7)

subject to the state-constraint boundary condition

∂Vw,t(0)
∂Bw,t

≥


Wt

Pt
Nw,t −

N1+φ
w,t

1 + φ
+ Tw,t

−σ

, (A.8)

where we adopted the change of variables C̃w,t ≡ Cw,t −
N1+φ

w,t
1+φ .

For simplicity, we have already imposed that BE
w,t = 0. We show below that BL

w,t = 0 and a

similar argument shows that workers would be against the short-selling constraint for equities

when BE
w,t is a choice variable.

The optimality condition for labor supply is given by

Nφ
w,t =

Wt

Pt
. (A.9)

We focus on an equilibrium where workers are always constrained. To derive the conditions

that ensure this is indeed the case, we start by considering a stationary equilibrium where all

variables are constant conditional on the state. If workers are constrained in the stationary equi-

librium, then they will also be constrained if fluctuations are small enough.

2



In a stationary equilibrium, net consumption C̃w in the no-disaster state is given by

C̃w =
W
P

Nw − N1+φ
w

1 + φ
+ Tw, (A.10)

and an analogous expression holds in the disaster state. Notice that the expression above does not

depend on ρw or λw.

For workers to be unconstrained, the following condition would have to hold:

˙̃Cw,t

C̃w,t
= σ−1(rn − ρw) +

λw

σ


C̃w,t

C̃∗
w,t

σ

− 1


. (A.11)

For ρw sufficiently large, workers would want a declining path of consumption, so current con-

sumption would be above W
P Nw − N1+φ

w
1+φ + Tw, which would violate the state-constraint. Hence, the

constraint must be binding for ρw sufficiently large.

If the workers hold a positive amount of the long-term bonds, then the following condition

must hold

rL = λw


C̃w

C̃∗
w

σ QL − Q∗
L

QL
. (A.12)

As Cw and C∗
w are independent of λw, the equation above would hold only if λw equals the value

λw ≡ rL
Cw
C∗w

σ QL−Q∗
L

QL

. For λw > λw, borrowers would want a smaller dispersion between Cw and

C∗
w, which requires holding less risky bonds, violating the non-negativity constraint on long-term

bonds. Therefore, borrowers will hold zero long-term bonds for λw sufficiently large.

Firms’ problem. The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et


ˆ t∗

t

ηs

ηt


Pi,s

Ps
Yi,s −

Ws

Ps

Yi,s

As
− ϕ

2
π2

s (j)


ds +
ηt∗

ηt
Q∗

i,t∗(Pi,t∗)


,

subject to Yi,t =


Pi,t
Pt

−
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
πi,t

ηt


Pi,t

Pt
Yi,t −

Wt

Pt

Yi,t

A
− ϕ

2
π2

i,t


dt + Et[d(ηtQi,t)], (A.13)

where Et[d(ηtQi,t)]
ηtdt = −(it − πt)Qi,t +

∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t

∂t + λt
η∗

t
ηt


Q∗

i,t − Qi,t


.

3



The first-order condition is given by

∂Qi,t

∂Pi
Pi,t = ϕπi,t.

The change in πt conditional on no disaster is then given by


∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t


Pi,t +

∂Qi,t

∂Pi
πi,tPi,t = ϕπ̇i,t. (A.14)

The envelope condition with respect to Pi,t is given by

0 =


(1 − )

Pi,t

Pt
+ 

Wt

Pt A


Pi,t

Pt

− Yt

Pi,t
+

∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t+

∂Qi,t

∂Pi
πi,t − (it − πt)

∂Qi,t

∂Pi
+ λt

η∗
t

ηt


∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi


. (A.15)

Multiplying the expression above by Pi,t and using eqn. (A.14), we obtain

0 =


(1 − )

Pi,t

Pt
+ 

Wt

Pt A


Pi,t

Pt

−

Yt + ϕπ̇t − (it − πt)ϕπi,t + λt ϕ
η∗

t
ηt


π∗

i,t − πi,t


.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips curve

π̇t =


it − πt + λt

η∗
t

ηt


πt −

ϕ−1

A


Wt

Pt
− (1 − −1)A


Yt,

where we have assumed that Pi,t = Pt for all i ∈ [0, 1] and that π∗
t = 0.

A.2 The stationary equilibrium

Aggregate output. Consider a stationary equilibrium with zero inflation. From the New Keyne-

sian Phillips curve, we obtain

W
P

= (1 − −1)A,
W∗

P
= (1 − −1)A∗. (A.16)

Combining the expressions above with the labor supply condition, we obtain

Y = µw(1 − −1)
1
φ A

1+φ
φ , Y∗ = µw(1 − −1)

1
φ (A∗)

1+φ
φ . (A.17)
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Disaster state. From the Euler equation for short-term bonds, an allocation with constant con-

sumption must satisfy r∗n = ρ∗j . Uzawa preferences implies that this condition is eventually sat-

isfied. For simplicity, we assume that ρ∗j (·) is constant and ρ∗o = ρ∗p. This is assumption is not

necessary for our results, but it simplifies presentation, as it ensures that allocations are constant

as the economy switches to the disaster state. We set ρ∗j = ρs, so there is no jump in the discount

rate of the representative saver. In this case, the real interest rate in the disaster state is given by

i∗t − π∗
t = r∗n = ρs.

The excess return on long-terms bonds and equity are equal to zero, r∗L = r∗E = 0, so the price

of the long-term bond is given by

Q∗
L =

1
r∗n + ψL

, (A.18)

and the equity price is given by Q∗
E = Π∗

r∗n
.

The consumption of borrowers is given by

C∗
w = (1 − −1)

Y∗

µw
+ T∗

w. (A.19)

We assume that the government chooses fiscal transfers so workers have a given share 0 <

µY,w < 1 of output, so C∗
w = µY,w

Y∗

µw
. The parameter µY,w captures the government’s preference for

redistribution. This requires that the government sets T∗
w =


µY,w
µw

− 1−−1

µw


Y∗. In the main text,

we focus on the case µY,w = µw.

Savers’ consumption is given by

C∗
j = r∗nB∗

j + T∗
j , (A.20)

where B∗
j = Bj + BL

j
Q∗

L−QL
QL

+ BE
j

Q∗
E−QE
QE

.

Aggregate consumption of savers is given by

C∗
s = r∗n

D∗
G

µs
+

Π∗

µs
+ Ts. (A.21)

Transfers to savers must satisfy Ts = (1−µY,w − −1)Y∗

µs
− r∗n

D∗
G

µs
such that the government’s budget

constraint is satisfied. This implies that the aggregate consumption of savers is given by C∗
s =

(1 − µY,w)
Y∗

µs
.

We focus on a symmetric allocation in the disaster state, so we assume that T∗
o,t − T∗

p,t =

−r∗n(B∗
o − B∗

p), for t ≥ t∗. This implies that C∗
j = C∗

s .
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No-disaster state. The consumption of workers is given by

Cw =

(1 − −1)A

 1+φ
φ

+ Tw. (A.22)

As in the disaster state, the government chooses fiscal transfers so workers have a given share

0 < µY,w < 1 of output, so Cw = µY,w
Y

µw
and Cs = (1 − µY,w)

Y
µs

. This requires that the government

sets Tw =


µY,w
µw

− 1−−1

µw


Y.

From the market clearing condition for assets, we obtain

Bs =
DG + QE

1 − µw
, BL

s =
DG

1 − µw
, BE

s =
QE

1 − µw
. (A.23)

The consumption of individual savers is given by

Cj = rnBj + rLBL
j + rEBE

j − Tj (A.24)

From the Euler equation for short-term bonds to be satisfied for both types of savers, the fol-

lowing condition must be satisfied: ρo − ρp = λp − λo, where ρj is an increasing function of Cj
Cs

.

As the consumption of type-j savers is increasing in Bj, ρo − ρp is increasing in Bo. Hence, there is

a unique value of Bo such that ρo − ρp = λp − λo. We assume the function ρj(·) is such that this

equality is achieved when Bo = Bp.

Using the fact that Bo = Bp and To = Tp in a stationary equilibrium, we can write the con-

sumption of optimistic and pessimistic savers as follows:

Co = Cs + rL
µp

µo + µp
(BL

o − BL
p) + rE

µp

µo + µp
(BE

o − BE
p ) (A.25)

Cp = Cs − rL
µo

µo + µp
(BL

o − BL
p)− rE

µo

µo + µp
(BE

o − BE
p ). (A.26)

We can use the Euler equations for risky assets to eliminate rL and rE from the expressions

above, which gives us

Co = Cs


1 + λ


Cs

C∗
s

σ µp

µo + µp
Ro


, C∗

o = C∗
s , (A.27)

Cp = Cs


1 − λ


Cs

C∗
s

σ µo

µo + µp
Ro


, C∗

p = C∗
s , (A.28)
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where Ro ≡ QL−Q∗
L

QL

BL
o −BL

p
Cs

+
QL−Q∗

L
QE

BE
o −BE

p
Cs

represents optimistic relative risk exposure.

From the optimality condition for risky assets, we obtain


1 + λ


Cs

C∗
s

σ µp

µo + µp
Ro

σ

=
λp

λo


1 − λ


Cs

C∗
s

σ µo

µo + µp
Ro

σ

. (A.29)

Rearranging the expression above, we obtain

λ


Cs

C∗
s

σ

R0 =
λ

1
σ
p − λ

1
σ
o

µo
µo+µp

λ
1
σ
p +

µp
µo+µp

λ
1
σ
o

, (A.30)

which is positive if λp > λo. The value of Ro pins down only a linear combination of BL
o − BL

p and

BE
o − BE

o . For concreteness, we assume that BE
o = BE

p , so savers have different exposure to bonds

in equilibrium.

Given Ro, we can solve for the share of consumption of optimistic savers:

µoCo

µoCo + µpCp
=

µo

µo + µp



1 +
µp(λ

− 1
σ

o − λ
− 1

σ
p )

µoλ
− 1

σ
o + µpλ

− 1
σ

p



 . (A.31)

Given the expression above, we obtain the market-implied disaster probability:

λ =


µoCo

µpCp + µpCp
λ

1
σ
o +

µpCp

µpCp + µpCp
λ

1
σ
p

σ

. (A.32)

From the Euler equations for short-term and long-term bonds, we obtain

rn = ρj − λj


Cj

C∗
j

σ

− 1


, rk = λj


Cj

C∗
j

σ
Qk − Q∗

k
Qk

, (A.33)

for k ∈ {L, E}, where rL = 1
QL

− ψL − rn, rE = Π
QE

− rn, and Π = −1Y.

Using the fact that λ


Cs
C∗

s

σ
= λj


Cj
C∗

j

σ

, we can write the Euler equations in terms of aggregate

savers’ consumption:

rn = ρs − λ


Cs

C∗
s

σ

− 1


, rk = λ


Cs

C∗
s

σ Qk − Q∗
k

Qk
, (A.34)

for k ∈ {L, E}, where ρs satisfy the condition ρs + λ = ρj + λj for j ∈ {o, p}.

7



We solve next for the price of risky assets. Given rL, we can solve for QL:

1
QL

− ψL − rn = λ


Cs

C∗
s

σ 
1 − Q∗

L
QL


⇒ QL = Q∗

L

r∗n + ψL + λ


Cs
C∗

s

σ

rn + ψL + λ


Cs
C∗

s

σ , (A.35)

where QL > Q∗
L, as rn < r∗n due to the precautionary motive in the no-disaster state.

The loss in long-term bonds in the disaster state is given by

QL − Q∗
L

QL
=

r∗n − rn

r∗n + ψL + λ


Cs
C∗

s

σ , (A.36)

which is positive as r∗n > rn. Long-term interest rates are higher than short-term interest rates in

the stationary equilibrium, i.e., the yield curve is upward sloping in this economy.

The equity price is given by

Π
QE

− rn = λ


Cs

C∗
s

σ 
1 − Q∗

E
QE


⇒ QE =

Π + λ


Cs
C∗

s

σ
Q∗

E

rn + λ


Cs
C∗

s

σ , (A.37)

so the loss on equity in the disaster state is given by

QE − Q∗
E

QE
=

Π − rnQ∗
E

Π + λ


Cs
C∗

s

σ
Q∗

E

=
ρsζΠ + λ


Cs
C∗

s

σ
− 1


(1 − ζΠ)

ρs + λ


Cs
C∗

s

σ
(1 − ζΠ)

, (A.38)

where ζΠ ≡ 1− Π∗

Π is the size of the drop in profits. As the expression above is positive, the equity

premium is positive in the stationary equilibrium.

A.3 Log-linear approximation

We consider next the effects of an unexpected monetary shock for an economy starting at the

stationary equilibrium described above.

Disaster state. As there is no monetary shock in the disaster state, inflation is equal to zero,

π∗
t = 0, and output is kept at the stationary-equilibrium level, y∗t = 0. Wages and hours are

unchanged, so c∗w,t = 0. Savers’ aggregate consumption is also the same as in the stationary

equilibrium, c∗s,t = 0. Savers’ flow budget constraint is given by µsC∗
s,t = r∗n,t(DG,t

Q∗
L,t

QL,t
+ Q∗

E,t) + T∗
s,t.

Notice that r∗n,t = r∗n, Q∗
L,t = Q∗

L, and Q∗
E,t = Q∗

E. For simplicity, we further assume that the
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government chooses transfers in the no-disaster state such that DG,t = DGqL,t, so transfers must

satisfy T∗
s,t = T∗

s . Consumption of type-j saver is then given by
C∗

j
B∗

j
c∗j,t = r∗nb∗j,t.

Market-based disaster probability. Linearizing eqn. (4) around the stationary equilibrium, we

obtain
λ

1
σ

σ
λ̂t = µc,oµc,p


λ

1
σ
p − λ

1
σ
o

 
cp,t − co,t


, (A.39)

where µc,j ≡
µjCj

µoCo+µpCp
and cj,t ≡ log Cj,t/Cj, for j ∈ {o, p}.

Euler equation for short-term bonds. Using the fact that λj


Cj,t
C∗

j,t

σ

= λt


Cs,t
C∗

s,t

σ
, we can write

the Euler equation for short-term bonds as follows

ċj,t = σ−1 it − πt − (ρj,t + λj)

+

λt

σ


Cs,t

C∗
s,t

σ

. (A.40)

Linearizing the discount-rate function, we obtain ρj,t = ρj + σξ(cj,t − cs,t), where we assumed

a common slope for both types σξ, so we obtain the linearized Euler equation

ċj,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ 
λ̂t + σcs,t


− ξ(cj,t − cs,t). (A.41)

Aggregating the expression above, and using cs,t = ∑j∈{o,p} µc,jcj,t, we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ


Cs

C∗
s

σ 
λ̂t + σcs,t


. (A.42)

Relative consumption. From the optimality condition for risky assets, we obtain

λ
1
σ
o

Co,t

C∗
o,t

= λ
1
σ
p

Cp,t

C∗
p,t

⇒ cp,t − co,t = c∗p,t − c∗o,t (A.43)

Relative consumption in the no-disaster evolves according to

ċp,t − ċo,t = −ξ(cp,t − co,t). (A.44)
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Relative net worth. Linearizing eqn. (A.6), we obtain

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk


r̂k,t


bk

p

bp
− bk

o
bo


+

bk
p

bp
(bk

p,t − bp,t)−
Bk

o
Bo

(bk
o,t − bo,t)



−


Cp

Bp
cp,t −

Co

Bo
co,t


+

Cp − Tp

Bp
bp,t −

Co − To

Bo
bo,t, (A.45)

where r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t. Using the fact that Cj−Tj

Bj
= rn + ∑k∈{L,E} rk

Bk
j

Bj
, we can write the

expression above as follows

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk


r̂k,t


Bk

p

Bp
− Bk

o
Bo


+

Bk
p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t


−


Cp

Bp
cp,t −

Co

Bo
co,t



+ rn(bp,t − bo,t). (A.46)

The relative net worth in the disaster state at t = t∗ is given by

B∗
p

Bp
b∗p,t∗ −

B∗
o

Bo
b∗o,t∗ = bp,t∗ − bo,t∗ − ∑

k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


Q∗

k
Qk

qk,t∗ +
Qk − Q∗

k
Qk


Bk

p

Bp
bk

p,t∗ −
Bk

o
Bo

bk
o,t∗


. (A.47)

Relative risk exposure. Consumption of savers in the disaster state is given by c∗j,t =
r∗nB∗

j
C∗

s
b∗j,t, so

we obtain that c∗p,t − c∗o,t =
r∗n
C∗

s
(B∗

pb∗p,t − B∗
o b∗o,t). Using this expression and the fact that c∗p,t − c∗o,t =

cp,t − co,t, we can solve for the relative risk exposure:

∑
k∈{L,E}

Qk − Q∗
k

Qk


Bk

p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t


= bp,t − bo,t −

C∗
s

r∗nBs
(cp,t − co,t)− ∑

k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


Q∗

k
Qk

qk,t. (A.48)

The dynamic system. Using the expression above to eliminate the relative risk exposure, the

relative net worth at the no-disaster state is given by

ḃp,t − ḃo,t = (λ̂t + (σ − 1)cs,t) ∑
k∈{L,E}

rk


Bk

p

Bp
− Bk

o
Bo


+ ρ(bp,t − bo,t)

−


rn +
Ts

Bs
+

C∗
s (ρ − rn)

r∗nBs


(cp,t − co,t)− ∑

k∈{L,E}
rk


Bk

p

Bp
(cp,t − cs,t)−

Bk
o

Bo
(co,t − cs,t)


, (A.49)

using r̂k,t = λ̂t + σcs,t +
Q∗

k
Qk−Q∗

k
qk,t,

Cj
Bj

= rn +
Tj
Bj
+ ∑k∈{L,E} rk

Bk
j

Bj
, and λ


Cs
C∗

s

σ
= ρ − rn.

The deviation of consumption from average can be written as

cp,t − cs,t = µc,o(cp,t − co,t), co,t − cs,t = −µc,p(cp,t − co,t). (A.50)
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Combining the expressions above, we can write ḃp,t − ḃo,t as follows

ḃp,t − ḃo,t = ρ(bp,t − bo,t)− χb,c(cp,t − co,t) + χb,cs cs,t, (A.51)

where χb,cs ≡ (σ − 1)∑k∈{L,E} rk


Bk

p
Bp

− Bk
o

Bo


, and

χb,c ≡ σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+


rn +

Ts

Bs
+

C∗
s (ρ − rn)

r∗nBs


(A.52)

+ ∑
k∈{L,E}

rk


µc,o

Bk
p

Bp
+ µc,p

Bk
o

Bo


.

Note that rn +
Ts
Bs

=
Cj
Bj
− ∑k∈{L,E} rk

Bk
j

Bj
, so rn +

Ts
Bs

= µc,p
Co
Bo

+ µc,o
Cp
Bp

− ∑k∈{L,E} rk


µc,p

Bk
o

Bo
+ µc,o

Bk
p

Bp


.

We can then write χb,c as follows:

χb,c = σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ∑
k∈{L,E}

rk


Bk

o
Bo

−
Bk

p

Bp


+ µc,p

Co

Bo
+ µc,o

Cp

Bp
+

C∗
s (ρ − rn)

r∗nBs
, (A.53)

so χb,c > 0, as rn < ρ.

In general, we would have to simultaneously solve for the aggregate variables and the relative

net worth and relative consumption of pessimistic savers, which would increase the dimensional-

ity of the problem relative to the standard New Keynesian. We assume that rkcs,t = O(||it − rn||2),

so this term is small and can be ignored in our approximate solution. This implies that the system

is now block recursive, where we can solve for the dynamics of relative consumption and rela-

tive net worth before fully characterizing the behavior of other aggregate variables. Under this

assumption, we can write the joint dynamics of bp,t − bo,t and cp,t − co,t as follows:



 ċp,t − ċo,t

ḃp,t − ḃo,t



 =



 −ξ 0

−χb,c ρ







cp,t − co,t

bp,t − bo,t



 . (A.54)

Persistence of λ̂t. The system above has a positive and a negative eigenvalue, so there is a unique

bounded solution given by



cp,t − co,t

bp,t − bo,t



 =




ρ+ξ
χb,c

1



 e−ψλt(bp,0 − bo,0) (A.55)
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where ψλ = ξ.

We can then write the market-implied disaster probability as follows:

λ̂t = e−ψλtλ̂0, (A.56)

where

λ̂0 ≡ σµc,oµc,p



λ
1
σ
p − λ

1
σ
o

λ
1
σ



 ρ + ξ

χb,c
(bp,0 − bo,0). (A.57)

Hence, ψλ captures the persistence of λ̂t. If ξ = 0, then ψλ = 0 and changes in λt are per-

manent. For high values of ψλ, the effects on λt are transitory and ψλ controls the speed of the

convergence.

Wealth revaluation and λ̂0. The revaluation of the relative net worth is given by

bp,0 − bo,0 = ∑
k∈{L,E}


Bk

p

Bp
− Bk

o
Bo


qk,0. (A.58)

The price of the long-term bond satisfies the condition

− 1
QL

qL,t + q̇L,t − (it − rn) = rL


λ̂t + σcs,t +

Q∗
L

QL − Q∗
L

qL,t


(A.59)

Rearranging the expression above, we obtain

q̇L,t − (ρ + ψL)qL,t = (it − rn) + rL(λ̂t + σcs,t). (A.60)

Solving the differential equation above, we obtain

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψL)trL(λ̂t + σcs,t)dt. (A.61)

Suppose it − rn = e−ψmt(i0 − rn) and rLσcs,t = O(||it − rn||2), then

qL,0 = − i0 − rn

ρ + ψL + ψm
− rLλ̂0

ρ + ψL + ψλ
. (A.62)
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We focus on the case
BE

p
Bp

= BE
o

Bo
, so the initial relative wealth revaluation is given by

bp,0 − bo,0 = −


BL
p

Bp
− BL

o
Bo


i0 − rn

ρ + ψL + ψm
+

rLλ̂0

ρ + ψL + ψλ


. (A.63)

Plugging the expression above into the expression for λ̂0

λ̂0 ≡
σµc,oµc,p


λ

1
σ
p −λ

1
σ
o

λ
1
σ


ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp



1 − σµc,oµc,p


λ

1
σ
p −λ

1
σ
o

λ
1
σ


ρ+ξ
χb,c


BL

o
Bo

− BL
p

Bp


rL

ρ+ψL+ψλ

i0 − rn

ρ + ψL + ψm
. (A.64)

Notice that there is an amplification mechanism between the price of the long-term bond and

the change in disaster probability. A wealth redistribution towards pessimistic investors tends

to increase λ̂0. An increase in λ̂0 depresses the value of long-term bonds, redistributing towards

pessimistic investors, further increasing λ̂t.

Workers’ consumption. Log-linearizing workers’ budget constraint, we obtain

cw,t =
WNw

PCw
(wt − pt + nw,t) +

Y
Cw

T′
w(Y)yt. (A.65)

Using the fact that wt − pt + nw,t = (1 + φ)yt, we can write the expression above as follows

cw,t = χyyt. (A.66)

where χy ≡ WNw
PCw

(1 + φ) + Y
Cw

T′
w(Y).

Phillips curve. Linearizing the Phillips curve, we obtain

π̇t = ρπt − κyt, (A.67)

where κ ≡ φ
ϕ

WN
P .

Stock prices. Linearizing the expression for rE,t, we obtain

Π
QE

(Π̂t − qE,t) + q̇E,t − (it − πt − rn) = rE


λ̂t + σcs,t +

Q∗
E

QE − Q∗
E

qE,t


. (A.68)
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Rearranging the expression above, we obtain

q̇E,t − ρqE,t = − 1
QE

Π̂t + (it − πt − rn) + rE

λ̂t + σcs,t


, (A.69)

Solving the differential equation above, we obtain

qE,t =
1

QE

ˆ ∞

t
e−ρ(s−t)Π̂sds −

ˆ ∞

t
e−ρ(s−t) (is + πs − rn) + rE(λ̂t + σcs,t)


ds. (A.70)

B Derivations for Section 3

B.1 Equilibrium determinacy and the Taylor principle

Combining the dynamics of the output and inflation from Proposition 2 and the Taylor rule it =

rn + φπ + t, we obtain the dynamic system



 ẏt

π̇t



 =



 δ −σ̃−1(1 − φπ)

−κ ρ



+



ν̃t

0



 , (B.1)

where

ν̃t = σ̃−1ut +
1 − µw

1 − µwχy

λ

σ


Cs

C∗
s

σ

e−ψλtλ̂0. (B.2)

The eigenvalues of the system incorporating the Taylor rule are given by

ωT =
ρ + δ +


(ρ + δ)2 + 4(σ̃−1(1 − φπ)κ − ρδ)

2
, ωT =

ρ + δ −

(ρ + δ)2 + 4(σ̃−1(1 − φπ)κ − ρδ)

2
. (B.3)

The two eigenvalues above will be positive, and there will be a unique locally bounded solu-

tion, if the following condition is satisfied

σ̃−1(1 − φπ)κ − ρδ̃ < 0 ⇒ φπ ≥ 1 − ρδ

σ̃−1κ
≡ φπ < 1 (B.4)

and φπ > 0 if Assumption 1 holds. As cs,t increases with yt, given (µbχy < 1), risk is procyclical

for savers in our economy. Bilbiie (2018) and Acharya and Dogra (2020) show that procyclical

uninsurable idiosyncratic risk reduces the threshold on the response of monetary policy to in-

flation required to achieve local determinacy. A similar phenomenon happens in our case with

aggregate disaster risk. Notice that the jump in marginal utility in the disaster state is given by


Cs,t
C∗

s,t

σ
, which in log-linear form is given by σcs,t. As cs,t is increasing in yt if µbχy < 1, so the jump
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in marginal utility is procyclical in our economy.

B.2 Trading in stocks

We consider next an extension where investors trade in stocks in the stationary equilibrium. In

this case, the wealth effect of individual investors depends on the amount they trade on short-term

bonds, long-term bonds, and stocks. However, as in the baseline model, the aggregate wealth

effect depends only on the amount of government bonds traded, as the household sector as a

whole act as buy-and-hold investors on stocks.

The replicating portfolio. Let i ∈ Ij denote saver i of type j and assume that saver i receives real

income Ij,t(i) = aj(i)e−ψEtΠt. We assume that
´

i∈Ij
aj(i)di = 0 and that the following condition is

satisfied in a stationary equilibrium:

Bj,0(i) + E


ˆ ∞

0

ηt

η0
Ij,t(i)dt


= Bj,0, (B.5)

where Bj,0(i) is the initial wealth of saver i and Bj,0 is the average wealth of type-j savers. This

implies that the consumption of all savers is the same in the stationary equilibrium. Let BS
j,t(i) =

BS
j + B̃S

j,t(i) and BE
j,t(i) = BE

j + B̃E
j,t(i), then

B̃S
j,t + B̃E

j,t + QIj(i),t = 0, B̃S
j,t + B̃E

j,t
Q∗

E
QE

+ Q∗
Ij(i),t

= 0. (B.6)

We can then solve for the portfolio of individual i:

B̃S
j,t(i) = QIj(i),t

Q∗
E

QE − Q∗
E
− Q∗

Ij(i),t
QE

QE − Q∗
E

, (B.7)

B̃E
j,t(i) = Q∗

Ij(i),t
QE

QE − Q∗
E
− QIj(i),t

QE

QE − Q∗
E

. (B.8)

Pricing. Notice that we can write the expression for B̃E
j,t(i) as follows:

QE − Q∗
E

QE
B̃E

j,t(i) = −
QIj(i),t − Q∗

Ij(i),t

QIj(i),t
QIj(i),t, (B.9)
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so rEB̃E
j,t(i) = −rIj(i)QIj(i),t. Assuming the economy is in the stationary equilibrium, the value of

the income claim in the disaster state is given by

Q∗
Ij(i),t

= aj(i)
e−ψEtΠ∗

r∗n + ψE
, (B.10)

and the value of the income claim in the no-disaster state is given by

QIj(i),t =
aj(i)Πe−ψEt + λ


Cs
C∗

s

σ
Q∗

Ij(i),t

rn + λ


Cs
C∗

s

σ
+ ψE

. (B.11)

We can then write the portfolio holdings of investor i as follows:

B̃E
j,t(i) = −aj(i)e−ψEt QE

QE − Q∗
E

Π − rn+ψE
r∗n+ψE

Π∗

rn + λ


Cs
C∗

s

σ
+ ψE

(B.12)

B̃S
j,t(i) = aj(i)e−ψEt QE

QE − Q∗
E




Π + λ


Cs
C∗

s

σ
Π∗

r∗n+ψE

rn + λ


Cs
C∗

s

σ
+ ψE

Q∗
E

QE
− Π∗

r∗n + ψE



 . (B.13)

Notice that rIj(i) is given by

rIj(i) = λ


Cs

C∗
s

σ Π − rn+ψE
r∗n+ψE

Π∗

Π + λ


Cs
C∗

s

σ
Π∗

r∗n+ψE

. (B.14)

Linearizing the pricing condition for the income claim, we obtain

qIj,0 =
aj(i)Y
QIj,0

ˆ ∞

0
e−(ρ+ψE)tΠ̂tdt −

ˆ ∞

0
e−(ρ+ψE)t


it − πt − rn + rIj(i)pd,t


dt. (B.15)

Wealth effects. The intertemporal budget constraint for household i is given by

E0


ˆ ∞

0

ηt

η0
Cj,t(i)dt


= Bj,0(i) + E


ˆ ∞

0

ηt

η0


Ij,t(i) + Tj,t


dt


. (B.16)

Linearizing the equation above, we obtain

Ωj,0(i) =
1
Cj


BL

j qL,0 + BE
j,0(i)qE,0 + QTj qTj ,0 + QIj(i),0qIj(i),0


+

QCj

Cj

ˆ ∞

0
e−ρt


it − πt − rn + rCj pd,t


dt,

(B.17)

where QIj(i),0 is the value at 0 of a claim on Ij,t(i) for all t ≥ 0.
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Using the fact that QCj = BS
j,0(i) + BL

j + BE
j,0(i) + QIj(i),0 + QTj and QCrCj = BL

j rL + BE
j,0(i)rE +

QIj(i),0rIj(i) + QTj rTj , we can write the wealth effect as follows:

Ωj,0(i) = Ωj,0 +
Y
Cj

ˆ ∞

0
e−ρt


BE

j,0(i)

QE
+ e−ψEtaj(i)


Π̂tdt

+
B̃S

j,0(i)

Cj

ˆ ∞

0
e−ρt(it − πt − rn)dt

+
QIj(i),0

Cj

ˆ ∞

0
e−ρt 1 − e−ψEt (it − πt − rn + rIj(i)pd,t)dt (B.18)

Notice that (1 − e−ψEt)QIj(i),0 = QIj(i),0 − QIj(i),t, QIj(i),t = −B̃S
j,t(i) − B̃E

j,t(i), and rIj QIj(i),t =

rEB̃E
j,t(i). We can then write the expression above as follows:

Ωj,0(i) = Ωj,0 +
Y
Cj

ˆ ∞

0
e−ρt


B̃E

j,0(i)

QE
+ e−ψEtaj(i)


Π̂tdt

+
1
Cj

ˆ ∞

0
e−ρt∆BS

j,t(it − πt − rn)dt

+
1
Cj

ˆ ∞

0
e−ρt∆BE

j,t(it − πt − rn + rE pd,t)dt, (B.19)

where ∆BE
j,t = B̃E

j,t(i)− B̃E
j,0(i) and ∆BS

j,t = B̃S
j,t(i). Notice that as

´

i∈Ij
aj(i)di = 0, then 1

µj

´

i∈Ij
Ωj,0(i)di =

Ωj,0.

B.3 Intertemporal budget constraint

The following lemma characterizes the intertemporal budget constraint faced by savers.

Lemma 2 (Savers’ intertemporal budget constraint). The intertemporal budget budget constraint (IBC)

for individual savers and the aggregate of all savers are given by

i. Individual IBC:

E0


ˆ ∞

0

ηt

η0
Cj,t(s)


= Bj,t(s). (B.20)

ii. Savers’ aggregate IBC:

Et


ˆ ∞

0

ηt

η0
Cs,tdt


= Bs,t, (B.21)

where Bs,t =
DG,t+QE,t

1−µw
.

Proof. We consider first the derivation of the individual intertemporal budget constraint. The net
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worth of a type-j saver born at date s evolves according to

dBj,t(s) =

(it − πt)Bj,t(s) + rL,tBL

j,t(s) + rE,tBE
j,t(s) + Tj,t − Cj,t(s)


dt + ∑

k∈{L,E}
Bk

s,t
Q∗

k,t − Qk,t

Qk,t
dNt, (B.22)

so the expected change in the net worth scaled by SDF is given by

Et[d(ηtBj,t(s))]
ηtdt

=


−(it − πt)− λt


η∗

t
ηt

− 1


Bj,t(s) + (it − πt)Bj,t(s) + rL,tBL
j,t(s) + rE,tBE

j,t(s)

Tj,t − Cj,t(s) + λt


η∗

t
ηt

B∗
j,t(s)− Bj,t(s)


, (B.23)

using Ito’s lemma and Etdηt/ηt = −(it − πt)dt.

Integrating the expression above and using the fact that rk,t = λt
η∗

t
ηt

Qk,t−Q∗
k,t

Qk,t
, we obtain

Et[ηTBj,T(s)]
ηt

− Bj,t(s) = Et


ˆ T

t

ηz

ηt
(Tj,z − Cj,z(s))dz


(B.24)

Given that the household problem with constant mortality rate ξ is identical to the problem of

an infinite-horizon household with an additional discount ξ, the standard transversality condition

holds3

lim
T→∞

Ej,t


e−ρjTC−σ

j,T (s)Bj,T(s)

= 0, (B.25)

where ρj ≡ ρ̃j + ξ.

We can change measure and price Bj,t(s) using the market-implied probabilities:

lim
T→∞

Et

ηTBj,T(s)


= 0, (B.26)

Combining the expressions above, we obtain the intertemporal budget constraint:

Et


ˆ ∞

t

ηz

ηt
Cj,z(s)dz


= Bj,t(s) + Et


ˆ ∞

t

ηz

ηt
Tj,zdz


. (B.27)

Notice that Cj,z(s) denotes planned consumption for time z for a type-j saver born at date s,

conditional on being alive. In particular, this equation implies that, for any date for the house-

3Merton (1992) provides a general proof of this equivalence for stochastic economies (see Chapter 5) and Blanchard
(1985) provides a discussion in the context of an otherwise deterministic model.

18



hold’s death t′ ≥ t, we obtain

Et


ˆ t′

t

ηz

ηt
(Cj,z(s)− Tj,z)dz +

ηt′

ηt
Bj,t′(s)


= Bj,t(s), (B.28)

where Bj,t′(s) denotes the (involuntary) bequest.

To simplify the aggregation process, it is helpful to index savers in a different way. Let i ∈

[µw, 1] index the family (or dynasty) of a given saver. At each point in time, a family has a single

member that derives no utility from bequests and faces mortality risk with intensity ξ ≥ 0. As

the member of the family dies, she is replaced by a new member who inherits the wealth, but

may have a different type. Let Ci,t denote the consumption of family i’s member at time t, Ti,t the

transfer to family i, Bi,t the net worth of family i, j(i, t) ∈ {o, p} the type of the member of the

family, and s(i, t) the birth date of the current member.

Under this alternative notation, we can write the IBC of family i as follows:

Et


ˆ t′

t

ηz

ηt
(Ci,z − Ti,z)dz +

ηt′

ηt
Bi,t′


= Bi,t, (B.29)

where t′ is the time of death and Bi,t′ is the involuntary bequest. Integrating this forward, the IBC

is then given by

Et


ˆ ∞

t

ηz

ηt
Ci,zdz


= Bi,t + Et


ˆ ∞

t

ηz

ηt
Ti,zdz


, (B.30)

The aggregate consumption and net worth of savers is given by Cs,t = 1
1−µw

´ 1
µw

Ci,tdi and

Bs,t =
1

1−µw

´ 1
µw

Bi,tdi. Aggregating the equation above across families, we obtain

Et


ˆ ∞

t

ηz

ηt
Cs,zdz


= Bs,t + Et


ˆ ∞

t

ηz

ηt
Ts,zdz


, (B.31)

where Bs,t =
DG,t+QE,t

1−µw
, using the market clearing condition for bonds and equities.

Aggregate IBC. Applying a similar argument to workers, we obtain

Et


ηT

ηt
Bw,T


− Bw,t = Et


ˆ T

t

ηz

ηt


Wz

Pz
Nw,z + T̃w,z − Cw,z


dz


. (B.32)
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Using the fact that Bw,t = 0, so limT→∞ Et


ηT
ηt

Bw,T


= 0, we obtain

Et


ˆ ∞

t

ηz

ηt
Cw,zdz


= Et


ˆ ∞

t

ηz

ηt


Wz

Pz
Nw,z + Tw,z


dz


. (B.33)

Combining the expression above with the IBC for savers, we obtain

Et


ˆ ∞

t

ηz

ηt
Czdz


= Et


ˆ ∞

t

ηz

ηt


Wz

Pz
Nz + Tz


dz

+ DG,t + QE,t, (B.34)

where Ct ≡ µwCw,t + (1 − µw)Cs,t and Tt = ∑j∈{w,o,p} µjTj,t.

Let QC,0 ≡ E0


´ ∞

0
ηt
η0

Ctdt


denote the value of the aggregate consumption claim and QH,0 ≡

E0


´ ∞

0
ηt
η0


Wt
Pt

Nt + Tt


dt


denote the value of human wealth (after transfers). These claims satisfy

the following pricing conditions:

rC,t = λt


Cs,t

C∗
s,t

σ
QC,t − Q∗

C,t

QC,t
, rH,t = λt


Cs,t

C∗
s,t

σ
QH,t − Q∗

H,t

QH,t
, (B.35)

where rC,t ≡ Ct
QC,t

+
Q̇C,t
QC,t

− (it − πt) and rC,t ≡
Wt
Pt

Nt+Tt

QH,t
+

Q̇H,t
QH,t

− (it − πt).

The price of the consumption claim in the stationary equilibrium satisfies the condition

C
QC

− rn = λ


Cs

C∗
s

σ 
1 − Q∗

C
QC


⇒ QC =

C + λ


Cs
C∗

s

σ
C∗

r∗n

ρ
(B.36)

Linearizing the pricing condition, we obtain

q̇C,t − ρqC,t = − C
QC

ct + it − πt − rn + rC pd,t, (B.37)

where we used the fact that C
QC

= rn + λ


Cs
C∗

s

σ QC−Q∗
C

QC
= ρ − λ


Cs
C∗

s

σ Q∗
C

QC
.

Integrating the expression above forward, we obtain

qC,0 =
C

QC

ˆ ∞

0
e−ρtctdt −

ˆ ∞

0
e−ρt (it − πt + rC pd,t) dt. (B.38)

Similarly, the initial price of the claim on human wealth is given by

qH,0 =
Y

QH

ˆ ∞

0
e−ρt (1 − α)(wt − pt + nt) + T̂t


dt −

ˆ ∞

0
e−ρt (it − πt + rH pd,t) dt, (B.39)
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where 1 − α ≡ WN
PY and T̂t =

Tt−T
Y

The linearized intertemporal budget constraint is given by

QCqc,0 = QHqH,0 + DGqL,0 + QEqE,0. (B.40)

We can write the expression above as follows

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt (it − πt − rn + rC pd,t) dt =

ˆ ∞

0
e−ρt (1 − α)(wt − pt + nt) + T̂t


dt

− QH

Y

ˆ ∞

0
e−ρt (it − πt − rn + rH pd,t) dt +

DG

Y
qL,0 +

ˆ ∞

0
e−ρtΠ̂tdt

− QE

Y

ˆ ∞

0
e−ρt[it − πt − rn + rE pd,t]dt (B.41)

Rearranging the expression above, we obtain

ˆ ∞

0
e−ρtctdt =

ˆ ∞

0
e−ρt Π̂t + (1 − α)(wt − pt + nt) + T̂t


dt +

DG
Y

qL,0

QC − QH − QE
Y

ˆ ∞

0
e−ρt (it − πt − rn) dt +

ˆ ∞

0
e−ρt


QC
Y

rC − QH
Y

rH − QE
Y

rE


pd,tdt. (B.42)

From the aggregate IBC in the no-disaster and disaster state, we obtain QC = QH + DG + QE

and Q∗
C = Q∗

H + D∗
G + Q∗

E, where D∗
G ≡ DG

Q∗
L

QL
. We then obtain the following condition

QC
Y

rC − QH
Y

rH − QE
Y

rE = λ


Cs

C∗
s

σ

[QC − Q∗
C − (QH − Q∗

H)− (QE − Q∗
E)]

1
Y

=
DG
Y

rL. (B.43)

We can then write the discount value of consumption as follows:

ˆ ∞

0
e−ρtctdt = Ω0, (B.44)

where

Ω0 ≡
ˆ ∞

0
e−ρt Π̂t + (1 − α)(wt − pt + nt) + T̂t


dt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt.

(B.45)
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B.4 Wealth effect determination

We consider next the determination of Ω0 as a function of nominal interest rates it and the fiscal

backing τt. The aggregate wealth effect is given by

Ω0 =

ˆ ∞

0
e−ρt


(1 − χτ)yt − τt − e−ψLtdGπt


dt +

ˆ ∞

0
e−ρt∆BL

t

it − πt − rn + rLλ̂t


dt, (B.46)

using the fact that Π̂t +
WN
PY (wt − pt + nt) = yt and T̂t = −(χτyt + τt).

Given yt = σ̃−1ym,t + χλŷλ,t + (ρ−ω)eωtΩ0 and πt = σ̃−1π̂m,t + χλπ̂λ,t + κeωtΩ0, we can write

the expression above as follows

Ω0 =


1 − χτ − dG

κ

ρ − ω


Ω0 +

ˆ ∞

0
e−ρt


−τt − dGπ̂t + ∆BL

t

it − rn + rLλ̂t


dt, (B.47)

As long as χτ + dG
κ

ρ−ω ∕= 0, we can then solve for Ω0 as follows:

Ω0 =
1

χτ + dG
κ

ρ−ω


−
ˆ ∞

0
e−ρtτtdt + dG

ˆ ∞

0
e−ρt (1 − e−ψLt)


it − rn + rLλ̂t


− π̂t


. (B.48)

Assuming exponentially decaying nominal interest rates, we obtain

Ω0 = − 1
χτ + dG

κ
ρ−ω

ˆ ∞

0
e−ρtτtdt +

dG
ρ−ω

χτ + κ dG
ρ−ω


ψL(ρ − ω)(i0 − rn)

(ρ + ψm)(ρ + ψm + ψL)
− σ̃−1κ(i0 − rn)

(ρ + ψm)(ω + ψm)



+

dG
ρ−ω

χτ + κ dG
ρ−ω


ψLrLλ(ρ − ω)(i0 − rn)

(ρ + ψλ)(ρ + ψλ + ψL)
− χλκ(i0 − rn)

(ρ + ψλ)(ω + ψλ)


. (B.49)

Notice that the term multiplying i0 − rn is going to be positive for ψL sufficiently small, that is,

if government bonds have sufficiently long duration.

B.5 Wealth effects and Hicksian compensation

In this subsection, we show that Ω0 corresponds to (minus) the sum of the Hicksian wealth compen-

sation for each household. Let ej(η, U) define the expenditure function

ej(η, U) = min
{Cj}

E0


ˆ t∗

0

ηt

η0
Cj,tdt +

ˆ ∞

t∗

η∗
t

η0
C∗

j,tdt


, (B.50)
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subject to E0


´ t∗

0 e−ρjt
C1−σ

j,t
1−σ dt +

´ ∞
t∗ e−ρt (C

∗
j,t)

1−σ

1−σ dt

= U. The solution to this problem is the Hicksian

demand Ch
j,t(η, U) and Ch,∗

j,t (η, U) in the no-disaster and disaster states.

Let η′ denote an alternative price process and U′ the corresponding utility under the new

equilibrium. Mas-Colell et al. (1995) (see page 62) defines the Hicksian wealth compensation as

ej(η
′, U)− ej(η

′, U′). We focus on a first-order approximation, that is, η′
t/η′

0 = ηt/η0 + η̃t, where

η̃t is small. Let c̃j,t ≡ log Ch
j,t(η

′, U)/Ch
j,t(η, U). Plugging the expression for Ch

j,t(η
′, U) into the

constraint and linearizing, we obtain

E0


ˆ t∗

0
e−ρjtCh

j,t(η, U)1−σ c̃j,tdt +
ˆ ∞

t∗
e−ρjtCh,∗

j,t (η, U)1−σ c̃∗j,tdt


= 0. (B.51)

Notice this implies that E0


´ t∗

0
ηt
η0

Ch
j,t(η, U)c̃j,tdt +

´ ∞
t∗

η∗
t

η0
Ch,∗

j,t (η, U)c̃∗j,tdt

= 0. As workers do not

engage in intertemporal substitution, we set c̃w,t = c̃∗w,t = 0, so this equation would hold for them

as well. We can then write ej(η
′, U) as follows

ej(η
′, U) = E0


ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt +

ˆ t∗

0

ηt

η0
Ch

j,t(η, U)c̃j,tdt +
ˆ ∞

t∗

η∗
t

η0
Ch,∗

j,t (η, U)c̃∗j,tdt


,

= E0


ˆ t∗

0

η′
t

η′
0

Ch
j,t(η, U)dt +

ˆ ∞

t∗

η′
t

η′
0

C∗,h
j,t (η, U)dt


. (B.52)

We assume that the initial equilibrium corresponds to the stationary equilibrium, so Ch
j,t(η, U) =

Cj and Ch,∗
j,t (η, U) = C∗

j . Therefore, the Hicksian wealth compensation is given by

ej(η
′, U)− ej(η

′, U′) = E0


ˆ t∗

0

η′
t

η′
0

Cjdt +
ˆ ∞

t∗

η′
t

η′
0

C∗
j dt


− E0


ˆ t∗

0

η′
t

η′
0

Cj,tdt +
ˆ ∞

t∗

η′
t

η′
0

C∗
j,tdt


,

(B.53)

which corresponds to the definition given in the text after aggregation.

Let Q̃C,0 ≡ E0


´ t∗

0
η′

t
η′

0
Cdt +

´ ∞
t∗

η′
t

η′
0
C∗dt


and QC,0 ≡ E0


´ t∗

0
η′

t
η′

0
Ctdt +

´ ∞
t∗

η′
t

η′
0
C∗

t dt

. In a station-

ary equilibrium, we have that Q̃C = QC. Linearizing these two expressions, we obtain

QC q̃C,0 = −QC

ˆ ∞

0
e−ρt[it − πt − rn + rC pd,t]dt (B.54)

QC q̃C,0 = Y
ˆ ∞

0
e−ρtctdt − QC

ˆ ∞

0
e−ρt[it − πt − rn + rC pd,t]dt. (B.55)
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Figure C.1: Estimated IRFs.

This implies that, up to first order, the Hicksian wealth compensation is given by

∑
j∈{w,o,p}

µj

ej(η

′, U)− ej(η
′, U′)


= −Y

ˆ ∞

0
e−ρtctdt = −YΩ0. (B.56)

Therefore, Ω0 corresponds to (minus) the sum of the Hicksian wealth compensation for all

households.

C Estimation of Fiscal Response to a Monetary Shock

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption, as in Chris-

tiano et al. (1999), extended to include fiscal variables. The variables included are: real GDP per

capita, CPI inflation, real consumption per capita, real investment per capita, capacity utilization,

hours worked per capita, real wages, tax revenues over GDP, government expenditures per capita,

the federal funds rate, the 5-year constant maturity rate, and the real value of government debt

per capita. We estimate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The

identification assumption of the monetary shock is as follows: the only variables that react con-

temporaneously to the monetary shock are the federal funds rate, the 5-year rate and the value of

government debt. All other variables, including tax revenues and expenditures, react with a lag

of one quarter.
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Data -26 68.88 -12.09 2.91 -49.74 30.13
[-72.89,20.89] [30.01,107.75] [-48.74,24.56] [-12.79,18.62] [-68.03,-31.46] [-4.74,65]

Table C.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 95% level.

Data sources. The data sources are: Nominal GDP: BEA Table 1.1.5 Line 1; Real GDP: BEA

Table 1.1.3 Line 1, Consumption Durable: BEA Table 1.1.3 Line 4; Consumption Non Durable:

BEA Table 1.1.3 Line 5; Consumption Services: BEA Table 1.1.3 Line 6; Private Investment: BEA

Table 1.1.3 Line 7; GDP Deflator: BEA Table 1.1.9 Line 1; Capacity Utilization: FRED CUMFNS;

Hours Worked: FRED HOANBS; Nominal Hourly Compensation: FRED COMPNFB; Civilian

Labor Force: FRED CNP16OV; Nominal Revenues: BEA Table 3.1 Line 1; Nominal Expenditures:

BEA Table 3.1 Line 21; Nominal Transfers: BEA Table 3.1 Line 22; Nominal Gov’t Investment:

BEA Table 3.1 Line 39; Nominal Consumption of Net Capital: BEA Table 3.1 Line 42; Effective

Federal Funds Rate (FF): FRED FEDFUNDS; 5-Year Treasury Constant Maturity Rate: FRED

DGS5; Market Value of Government Debt: Hall, Payne and Sargent (2018).

All the variables are obtained from standard sources, except for the real value of debt, which

we construct from the series provided by Hall et al. (2018). We transform the series into quarterly

frequency by keeping the market value of debt in the first month of the quarter. This choice is

meant to avoid capturing changes in the market value of debt arising from changes in the quantity

of debt after a monetary shock instead of changes in prices.

VAR estimation. Figure C.1 shows the results. As is standard in the literature, we find that a

contractionary monetary shock increases the federal funds rate and reduces output and inflation

on impact. Moreover, the contractionary monetary shock reduces consumption, investment, and

hours worked.

The Government’s Intertemporal Budget Constraint. The fiscal response in the model corre-

sponds to the present discounted value of transfers over an infinite horizon, that is, ∑∞
t=0 β̃tTt,

where β̃ = 1−λ
1+ρs

. We next consider its empirical counterpart. First, we calculate a truncated in-
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tertemporal budget constraint from period zero to T :

byb0


debt

revaluation

=
T
∑
t=0

β̃t



 τyt + τt

  
tax revenue

− β̃−1by(im
t−1 − πt − rn)

  
interest payments



− T0,T + β̃T bybT
  

other transfers/expenditures
& final debt

(C.1)

The right-hand side of (C.1) is the present value of the impact of a monetary shock on fiscal ac-

counts. The first term represents the change in revenues that results from the real effects of mone-

tary shocks. The second term represents the change in interest payments on government debt that

results from change in nominal rates. The last two terms are adjustments in transfers and other

government expenditures, and the final debt position at period T , respectively. In particular, T0,T

represents the present discounted value of transfers from period 0 through T . Provided that T is

large enough, such that (yt, τt, it) have essentially converged to the steady state, then the value of

debt at the terminal date, bT , equals (minus) the present discounted value of transfers and other

expenditures from period T onward. Hence, the last two terms combined can be interpreted as

the present discounted value of fiscal transfers from zero to infinity. Finally, the left-hand side

represents the revaluation effect of the initial stock of government debt.

Table C.1 shows the impact on the fiscal accounts of a monetary policy shock, both in the data

and in the estimated model. We first apply equation (C.1) to the data and check whether the

difference between the left-hand side and the right-hand side is different from zero. The residual

is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (C.1). The results

reported in Table C.1 imply that we cannot reject the possibility that the residual is zero and, there-

fore, we cannot reject the possibility that the intertemporal budget constraint of the government

is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we observed in

Figure ??. The response of initial debt is quantitatively important, and it accounts for the bulk of

the adjustment in the fiscal accounts.
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Figure C.2: IRFs for the federal funds rate and excess bond premium.

EBP. To estimate the response of the corporate spread in the data, we add the EBP measure of

Gilchrist and Zakrajšek (2012) into our VAR (ordered after the fed funds rate). Since the EBP is

only available starting in 1973, we reduce our sample period to 1973:1-2007:7. The estimated IRFs

are in line with those obtained for the longer sample. We find a significant increase of the EBP on

impact, of 6.5 bps, in line with the estimates in the literature.
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