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1. Introduction

Banks are connected with each other through a widely ramified network of financial

claims and obligations. The value of these claims depends on the financial health of the

obligor who himself might be an obligee such that his financial health depends on his

obligors. Through these linkages financial distress of one bank might draw other banks

into default and thereby create a domino effect of bank failures – a systemic crisis.

Under the labels of systemic risk and contagion this problem has gained considerable

attention in the literature on financial intermediaries (among others Allen and Gale

(2000), Giesecke and Weber (2004), Rochet and Tirole (1997), and Shin (2008)).

According to Boyd et al. (2005) the social costs of a systemic crisis range from 60%

to 300% of GDP. The prevention of a breakdown of financial intermediation is of vital

interest for central banks and regulatory authorities. To assess the probability and sever-

ity of such a cascade of defaults caused by interbank lending a large number of central

banks perform counterfactual simulations.1 In a first step bilateral credit exposures in

the interbank market are determined.2 Given these exposures there are two approaches

in the literature to simulate contagion. The first approach introduced by Furfine (2003)

assumes that a particular bank is not able to honor its obligations. All creditors of this

bank lose an exogenously specified fraction of their claims against this bank (loss given

default). If the losses of an affected bank exceed its capital, the bank is in default, too. In

the next round the creditors of all defaulting banks lose a fraction of their claims against

these banks. Again these losses are compared to the capital available. The procedure is

iterated until no additional bank goes bankrupt. If this simulation is performed for each

bank, it allows to determine which banks are systemically relevant in the sense that they

trigger contagious defaults. Yet, the approach is not able to assess the probability that a

particular bank defaults. Moreover, loss given default is not endogenous but exogenously

given.

The second simulation approach is based on a model developed by Eisenberg and Noe

(2001). In their framework banks are not only linked with each other via the interbank

market but are also endowed with exogenous income. Under the assumption of limited

liability of equity and absolute priority of debt Eisenberg and Noe (2001) show that

for a given level of exogenous income the equity values of the banks, default and loss

given default can be determined endogenously. Elsinger et al. (2006a) introduced this

approach to the contagion literature by applying it to the Austrian banking system.

1The different approaches are reviewed in Upper (2007).
2Typically these exposures are not readily available. They have to be estimated from aggregate data.
Mistrulli (2006) discusses the consequences of estimation errors.
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They take the net position of all non-interbank related parts of the balance sheet as

exogenous income. Using standard risk management techniques they simulate changes

in the value of this exogenous income for all banks in the system simultaneously. Given

such a scenario the interbank market is cleared and the equity values of the banks and the

values of the interbank debt contracts are determined. The advantage of this approach is

that it not only allows to identify systemically important banks but also allows to assess

the probability of default and the level of loss given default endogenously. Yet, two

important features commonly observed in real world networks are not included in this

framework. Firstly, cross shareholdings between the banks are not explicitly modeled.

The value of such holdings has to be treated as a part of exogenous income. This leads

to inconsistencies. The simulated value of the holding as a part of exogenous income

will typically not equal the value after the clearing procedure. Secondly, the seniority

structure of debt is not modeled. It is assumed that all debt in the interbank market is

of the same seniority and that it is junior relative to all other debt claims against the

banks.

The aim of this paper is to extend the work of Eisenberg and Noe (2001) by taking

cross holdings and a detailed seniority structure of debt explicitly into account. Banks

are modeled as nodes in a network which are endowed with exogenous income. They

may have nominal obligations to other nodes in the network and to outside creditors.

Furthermore the nodes may hold equity shares of other nodes. I assume limited liability,

absolute priority of debt, and proportional rationing of debt claims in case of default.

Additionally, there must not exist a subset of nodes where each node in the subset is

owned entirely by the other nodes in the subset. Given these assumptions neither equity

nor debt values are necessarily unique. Yet, banks with non-unique equity values have

to be entirely owned either by other banks with non-unique equity values or zero equity

value. If the debt payments of a bank are non-unique it has to hold that all claimants

are themselves banks with either non-unique debt payments or non-unique equity value.

Or to put it the other way round, the values of debt and equity claims that are held

by outside investors are unique. Moreover, given there are no bankruptcy costs it never

pays for outside investors to bail out defaulting banks.

The paper is organized as follows. In Section 2 a financial network with cross holdings

is presented and the main concepts are developed. In Section 3 I prove that a clearing

vector exists and characterize networks for which the clearing vector is unique. In Section

4 a solution algorithm is presented which lacks the elegance of the fictitious default

algorithm developed by Eisenberg and Noe (2001) but which is applicable under weaker

assumptions on the structure of the network. This algorithm allows to incorporate cross
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holdings and a detailed seniority structure. I discuss the comparative statics in Section

5. In a financial network without cross holdings Eisenberg and Noe (2001) show that

equity values are convex and debt values are concave in the exogenous income. Using a

simple example I show that is not true as soon as cross holdings are included. In Section

6 the model is augmented with a detailed seniority structure. It is shown that the main

results remain valid. Section 7 concludes the paper.

2. The Model

Consider an economy populated by n banks constituting a financial network. Each

of these banks is endowed with an exogenous income ei ∈ R which may be negative.

Exogenous income may be interpreted as a random variable. For each draw of e =

(e1, · · · , en)
′ the system is cleared. All the results derived are conditional on a particular

draw.

Without a detailed priority structure of debt, ei may be interpreted as operating

income minus all liabilities except the most junior. Ruling out that ei might be negative

would be equivalent to assuming that all liabilities except the most junior are always

repaid in full.3 Any bank may hold shares of companies outside the network. The value

of these holdings is not determined endogenously. It is included in e.

Banks may have nominal obligations to other banks in the network. The structure of

these liabilities is represented by an n × n matrix L where Lij represents the nominal

obligation of bank i to bank j. These liabilities are nonnegative and the diagonal elements

of L are zero as banks are not allowed to hold liabilities against themselves. Liabilities

to creditors outside the network are denoted by Di ≥ 0. Furthermore, banks may hold

shares of other banks which are denoted by the matrix Θ ∈ [0, 1]n×n where Θij is the

share of bank i held by bank j. A bank may hold its own shares (Θii > 0).

Suppose there are two banks, A and B. Bank A has an exogenous income of 1,

no outstanding debt, and owns bank B entirely. On the other hand bank B has an

exogenous income of 2, no debt and owns bank A. The equity value of A equals 1 plus

the equity value of B. B’s equity value equals 2 plus the equity value of A. The only

solution would be that both banks have an equity value of infinity. In this example

ownership is not well defined irrespective whether there is limited or unlimited liability.

To avoid this problem it suffices to assume that there is no group of banks where each

bank within the group is completely owned by other banks in that group. In particular,

a bank must not own itself entirely (Θii < 1).

3In Section 6 the framework is extended to deal with different seniority classes.
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Assumption 1. There exists no subset I ⊂ {1, . . . , n} such that

∑

j∈I

Θij = 1 for all i ∈ I.

with Θ ∈ [0, 1]n×n and Θ~1 ≤ ~1 where ~1 is an n× 1 vector of ones. Θ is called a holding

matrix if it fulfills this assumption.

A bank is defined to be in default whenever exogenous income plus the amounts

received from other nodes plus the value of the holdings are insufficient to cover the

bank’s nominal liabilities.4 Throughout the paper I assume that bank defaults do not

change the prices outside of the network, i.e. e is independent of defaults and exogenous.

If default changes prices due to e.g. fire sales, the story is different. Only in the special

case where defaults unequivocally decrease e the main results still hold.5

In case of default the clearing procedure has to respect three criteria:

1. limited liability: which requires that the total payments made by a node must

never exceed the sum of exogenous income, payments received from other nodes,

and the value of the holdings,

2. priority of debt claims: which requires that stockholders receive nothing unless the

bank is able to pay off all of its outstanding debt completely, and

3. proportionality: which requires that in case of default all claimant nodes are paid

off in proportion to the size of their claims on firm assets.

To operationalize proportionality let p̄i be the total nominal obligations of node i, i.e.

p̄i =

n
∑

j=1

Lij +Di

and define the proportionality matrix Π by

Πij =

{

Lij

p̄i
if p̄i > 0

0 otherwise

Evidently, it has to hold that Π ·~1 ≤ ~1.

4A bank is in default if liabilities exceed assets. Using a violation of capital requirements as default
threshold does not change the main results.

5Shin (2008) endogenized e in a model without cross share holdings.
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To simplify notation I define for any two (column) vectors x, y ∈ R
n the lattice oper-

ations
x ∧ y := (min(x1, y1), · · · ,min(xn, yn))

′

x ∨ y := (max(x1, y1), · · · ,max(xn, yn))
′.

Let p = (p1, . . . , pn)
′ ∈ R

n
+ be an arbitrary vector of payments made by banks to

their interbank and non interbank creditors. To define the equity values V of the banks

assume for a moment that these values are exogenously given (V ≥ ~0) and define the

map

Ψ1(V, p, e,Π,Θ) = [e+Π′p− p+Θ′V ] ∨~0 (1)

where ~0 denotes the n × 1 dimensional zero vector. Ψ1 returns the values of the nodes

given V and p. A necessary condition for V to be a vector of equity values is that V is

a fixed point, V ∗(p), of Ψ1(·; p, e,Π,Θ) : Rn
+ → R

n
+, i.e.

V ∗(p) = [e+Π′p− p+Θ′V ∗(p)] ∨~0. (2)

If Θ is a holding matrix, Lemma 4 in the Appendix establishes that V ∗(p) is unique for

any p. However, for arbitrary p it is possible that the equity value of bank i is positive

(V ∗
i (p) > 0) but the actual payments made do not cover the liabilities (pi < p̄i). In this

case absolute priority would not hold. Given p the amount available for bank i to pay off

its debt equals ei +
∑n

j=1
Πjipj +

∑n
j=1

ΘjiV
∗
j (p). If this amount is less than zero, bank

i has to pay nothing due to limited liability. If this amount is larger than the liabilities

(p̄i), bank i must pay off its debt completely because of absolute priority. If the amount

available is in the range from zero to p̄i, it is distributed proportionally amongst the debt

holders again due to absolute priority. A vector of payments p∗ respects the clearing

criteria if

p∗i =































0 for ei +
n
∑

j=1

(

Πjip
∗

j +ΘjiV
∗

j (p
∗)
)

≤ 0

ei +
n
∑

j=1

(

Πjip
∗

j +ΘjiV
∗

j (p
∗)
)

for 0 ≤ ei +
n
∑

j=1

(

Πjip
∗

j +ΘjiV
∗

j (p
∗)
)

≤ p̄i

p̄i for p̄i ≤ ei +
n
∑

j=1

(

Πjip
∗

j +ΘjiV
∗

j (p
∗)
)

.

For such a payment vector V ∗
i (p

∗) > 0 implies that p∗i = p̄i. V
∗(p∗) is a vector of equity

values consistent with limited liability, absolute priority, and proportional rationing in

the case of default.

Definition 1. A vector p∗ ∈ [~0, p̄] is a clearing payment vector if

p∗ =
{

[

e+Π′p∗ +Θ′V ∗(p∗)
]

∨~0
}

∧ p̄ (3)
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where V ∗(p∗) is the unique fixed point of Ψ1(·; p∗, e,Π,Θ).

Alternatively, a clearing vector p∗ can be characterized as a fixed point of the map

Φ1(·; Π, p̄, e,Θ) : [~0, p̄] → [~0, p̄] defined by

Φ1(p; Π, p̄, e,Θ) =
{

[

e+Π′p+Θ′V ∗(p)
]

∨~0
}

∧ p̄ (4)

Φ1 returns the minimum of the maximum possible payment and the promised payment

p̄. Hence, any p ≥ Φ1(p) is compatible with absolute priority but not necessarily with

limited liability. In the framework without cross holdings (Θ = 0n,n) Eisenberg and Noe

(2001) show that such a clearing vector exists. Furthermore, they are able to specify

sufficient conditions to guarantee uniqueness.

3. Existence and Uniqueness of a Clearing Payment Vector

To prove the existence of a clearing vector Eisenberg and Noe (2001) employ the Tarski

fixed point theorem (Theorem 11.E in Zeidler (1986)). As V ∗(p) and thereby Φ1 are

not monotone in p the Tarski fixed point theorem can not be applied forthrightly. The

problem has to be rephrased. Suppose – for a moment – that Θ = 0n,n and that a clearing

vector p∗ exists. The value of bank i is given by V ∗
i (p

∗) = max(ei+
∑n

j=1
Πjip

∗
j − p∗i , 0).

V ∗
i (p

∗) > 0 implies that p∗i = p̄i. The value of bank i may therefore be written as

W ∗
i (p

∗) = ei +
∑n

j=1
Πjip

∗
j − p̄i. If Θ is arbitrary, this translates into

W ∗(p∗) = [e+Π′p∗ − p̄] + Θ′(W ∗(p∗) ∨~0). (5)

W ∗(p∗) is the vector of node values under the assumption of limited liability for the cross

holdings. W ∗(p∗) is not necessarily nonnegative. But (W ∗(p∗) ∨ ~0) equals the equity

values V ∗(p∗) as will be proved in Theorem 1.

More formally,W ∗(p) may be defined as a fixed point of the function of Ψ2(·; p, p̄, e,Π,Θ) :

R
n → R

n, given by

Ψ2(W, p, p̄, e,Π,Θ) = e+Π′p− p̄+Θ′(W ∨~0). (6)

Lemma 5 in the Appendix establishes that W ∗(p) is unique for arbitrary p and more

importantly that W ∗(p) is increasing in p. The definition of a clearing vector has to

be adjusted to this alternative definition of equity values by substituting W ∗(p) ∨ ~0 for
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V ∗(p). Define the map Φ2(p; Π, p̄, e,Θ) : [~0, p̄] → [~0, p̄] by

Φ2(p; Π, p̄, e,Θ) =
{[

e+Π′p+Θ′(W ∗(p) ∨~0)
]

∨~0
}

∧ p̄ =
{

[W ∗(p) + p̄] ∨~0
}

∧ p̄ (7)

where W ∗(p) is the unique fixed point of Ψ2. If p∗ is a fixed point of Φ2(p) then it holds

that W ∗
i (p

∗) ≥ 0 is equivalent to p∗i = p̄i. So, we may call p∗ a clearing vector and

W ∗(p∗) ∨~0 the vector of equity values.

V ∗(p) is not equal to (W ∗(p) ∨~0) for arbitrary p. But if p is a supersolution of Φ1(p)

or Φ2(p), i.e. p ≥ Φ1(p) or p ≥ Φ2(p), then V ∗(p) = (W ∗(p) ∨~0).

Theorem 1. Let p̂ ∈ [~0, p̄] be a (super)solution of Φ1(p), i.e. p̂ ≥ Φ1(p̂; Π, p̄, e,Θ). Then

p̂ is a (super)solution of Φ2(p) with W ∗(p̂) = e + Π′p̂ − p̄ + Θ′V ∗(p̂). If p̂ ∈ [~0, p̄] is a

(super)solution of Φ2(p) then p̂ is a (super)solution of Φ1(p) with V ∗(p̂) = (W ∗(p̂) ∨~0).

As a consequence any fixed point of Φ2(p) is a fixed point of Φ1(p) and vice versa. To

prove that a clearing vector exists it suffices to show that Φ2(p) has a fixed point. By

construction Φ2(~0) ≥ ~0 and Φ2(p̄) ≤ p̄. The Tarski fixed point theorem guarantees that

there exists a least and a greatest fixed point for Φ2(p) if Φ2(p) is a monotone increasing

function on the complete lattice [0, p̄]. Lemma 5 in the Appendix shows that W ∗(p) and

thereby Φ2(p) are increasing in p.

Theorem 2. There exists a greatest (p+) and a least (p−) clearing vector.

If the clearing vector is not unique it might happen that the equity values of the banks

are different for different clearing vectors. In particular it could happen that a bank that

is in default at p− might have a positive equity value at p+. Eisenberg and Noe (2001)

show that for Θ = 0n,n the equity values of the nodes do not depend on the chosen

clearing vector. A bank defaulting at p− might not default at p+. Yet, the equity value

at p+ has to be zero and the bank is only just solvent. In the more general framework

under consideration in this paper the situation is more complicated as is illustrated by

the following example.

Example 1. Assume that the network is characterized by the following parameters.

e =

(

1

0

)

, Π =

(

0 0

1 0

)

, p̄ =

(

1

1

)

, Θ =

(

0 1

0 0

)

It is easy to check that any p(λ) = (1, λ)′ for λ ∈ [0, 1] is a clearing vector with corre-

sponding equity value V ∗(λ) = (λ, 0)′. The equity value of bank 1 is not unique. To see

why note that any amount λ ∈ [0, 1] paid by bank 2 is received entirely by bank 1 as it
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is the only obligee of bank 2. Bank 1 is able to cover all liabilities by exogenous income.

The additional payment of λ increases the equity value by the very same amount. But

bank 1 is entirely owned by bank 2. Hence, the value of the holdings of bank 2 increases

by λ and the initial payment of λ is affordable.

If Π21 or Θ12 or both were smaller than 1, the unique clearing payment would be (1, 0)′

with corresponding equity values (0, 0)′. Moreover, if the aggregate exogenous income

were not equal to 1, the clearing vector would be unique, too.

The existence of multiple clearing vectors in the example is driven by two facts. First

there exists a subset of banks with the property that each bank within this subset is

either entirely owned by other banks in the subset or all creditors of this bank belong

to the subset. Bank 1 is owned by bank 2 and bank 1 is the only creditor of bank

2. Additionally, the aggregate exogenous income of all banks in this particular subset

equals exactly the amount owed to creditors outside the subset. Aggregate exogenous

income of the two banks in the example equals 1. Bank 1 owes 1 unit to creditors outside

the network.

The next theorem establishes that exactly these two properties are necessary for the

existence of multiple clearing vectors.

Theorem 3. Suppose the network allows for multiple clearing vectors p+ 6= p− with

corresponding equity values V + and V −. Let I0 be the subset of banks with non–unique

equity values and I1 be the subset of banks with non–unique clearing payments. Denote

the union of I0 and I1 by I. It has to hold that

1. all banks in I0 are entirely owned by banks in I, i.e.
∑

j∈I Θij = 1 for all i ∈ I0,

2. the only creditors of banks in I1 are banks in I, i.e.
∑

j∈I Πij = 1 for all i ∈ I1,

and

3. the sum of the obligations of banks in I to banks not in I has to equal the aggregate

exogenous income of banks in I plus the value of all claims of banks in I against

banks not in I, i.e.

∑

i∈I



1−
∑

j∈I

Πij



 p̄i =
∑

i∈I

ei +
∑

i/∈I





∑

j∈I

Πij



 p∗i +
∑

i/∈I





∑

j∈I

Θij



V ∗
i

where p∗i = p+i = p−i and V ∗
i = V +

i = V −
i for i /∈ I.

The theorem shows that the clearing vector is necessarily unique if outside investors

hold some debt and equity claims against each bank or if e is sufficiently large. If
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aggregate exogenous income of banks in I exceeds the net obligations to banks outside

of I the clearing vector has to be unique.

Corollary 1. Suppose for any subset I of banks with

∑

j∈I Θij = 1 or
∑

j∈I Πij = 1 for all i ∈ I

it holds that
∑

i∈I ei >
∑

i∈I(1 −
∑

j∈I Πij)p̄i then the clearing vector is unique. For

Θ = 0n,n the clearing vector is unique if
∑

i∈I ei > 0.

Proof. Only the claim for Θ = 0n,n remains to be shown. In this case
∑

j∈I Πij = 1 for

all i ∈ I and
∑

i∈I(1−
∑

j∈I Πij)p̄i = 0.

Outside investors hold a share of 1 −
∑n

j=1
Θij of bank i’s equity and a share of

1 −
∑n

j=1
Πij of bank i’s debt. If the equity value of bank i is non–unique then the

bank is entirely owned by other banks, i.e. 1 −
∑n

j=1
Θij = 0. Analogously, if the

clearing payment of bank i is non–unique then the only obligees are other banks, i.e.

1 −
∑n

j=1
Πij = 0. As a consequence outside investors wealth does not depend on the

chosen clearing vector.

Corollary 2. The value of an outside investor’s portfolio is independent of the chosen

clearing vector. In particular, for clearing vectors p+ and p− and corresponding equity

values V + and V − it holds that ~1′(I−Θ′)(V + − V −) = ~1′(I−Π′)(p+ − p−) = 0.

To model bankruptcy costs, the framework needs to be adapted. Denote the vector of

bankruptcy costs by b(p) and assume that b(p) is decreasing in p. The simplest type of

bankruptcy costs would be such that the defaulting bank i loses a specified exogenous

amount ci > 0, i.e. bi(p̄i) = 0 and bi(pi) = ci for all pi < p̄i. A sufficient condition for a

clearing vector to exist is that W ∗(p) is increasing in p. With bankruptcy costs W ∗(p)

has to be defined as a fixed point of

Ψ̂2(W, p, p̄, e,Π,Θ) = e(p) + Π′p− p̄+Θ′(W ∨~0) (8)

where e(p) = e−b(p). W ∗(p) is unique and increasing in p by Lemma 5 in the Appendix.

Applying the Tarski fixed point theorem to

Φ̂2(p; Π, p̄, e,Θ) =
{[

e(p) + Π′p+Θ′(W ∗(p) ∨~0)
]

∨~0
}

∧ p̄ (9)

yields that a greatest and a least clearing vector exist. If e depends on p, the conditions

stated in Theorems 3 and 1 do not suffice to guarantee a unique clearing vector. Given
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that bankruptcy is costly different clearing vectors induce different equity values. As a

consequence, the value of an outside investor’s portfolio depends on the chosen clearing

vector. Additionally, it may be profitable to bail out defaulting banks to save the

bankruptcy costs.

4. Calculating a Clearing Vector

For the case Θ = 0n,n Eisenberg and Noe (2001) develop an extremely elegant algorithm

to calculate clearing vectors, the fictitious default algorithm. It has the nice feature that

it reveals a sequence of defaults. In the first round of the algorithm it is assumed that

the payments made equal the promised payments p̄. Banks that are unable to meet their

obligations are determined. These banks default even if all of their interbank claims are

honored. In the next step the payments of these defaulting banks are adjusted such that

they are in line with limited liability. If there are no additional defaults the iteration

stops. If there are further defaults the procedure is continued. The important point

is that the algorithm allows to distinguish between defaults that are directly related to

adverse economic situations – exogenous income – and defaults that are caused by the

defaults of other banks. The fictitious default algorithm works for e > ~0. For e ∈ R
n

the algorithm might break down as is demonstrated in the next example.

Example 2. To calculate a clearing vector for the case where Θ = 0n,n Eisenberg and

Noe (2001) propose the following iterative procedure. Define the diagonal matrix Λ(p) by

Λii(p) = 1 if ei+
∑n

j=1
Πjipj < p̄i and Λii(p) = 0 otherwise. Define the map p → FFp̂(p)

as follows:

FFp̂(p) ≡ Λ(p̂)[Π′(Λ(p̂)p+ (I− Λ(p̂))p̄) + e] + (I− Λ(p̂))p̄

This map returns for all nodes not defaulting under p̂ the required payment p̄. For all

other nodes it returns the node’s value assuming that non defaulting nodes pay p̄ and

defaulting nodes pay p. Under suitable restrictions this map has a unique fixed point

which is denoted by f(p̂). Note that the equation for the fixed point

f(p̂) = Λ(p̂)[Π′(Λ(p̂)f(p̂) + (I− Λ(p̂))p̄) + e] + (I− Λ(p̂))p̄

can actually be written quite compactly as

[I− Λ(p̂)Π′Λ(p̂)](f(p̂)− p̄) = Λ(p̂)(e+Π′p̄− p̄). (10)
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Premultiplying by (I− Λ(p̂)) yields

(I− Λ(p̂))(f(p̂)− p̄) = ~0.

For banks that do not default Λii(p̂) = 0 and fi(p̂) = p̄i. Premultiplying (10) by Λ(p̂)

gives

Λ(p̂)(I−Π′)Λ(p̂)(f(p̂)− p̄) = Λ(p̂)(e+Π′p̄− p̄).

The ijth entry of Λ(p̂)(I− Π′)Λ(p̂) is zero unless Λii(p̂) = Λjj(p̂) = 1. To calculate the

fixed point, it suffices to consider the subsystem (submatrix) of defaulting nodes. The

original system of equations can be chopped up into two independent systems. This is a

major advantage if the number of nodes is large and default is a rare event.

Eisenberg and Noe (2001) show that under the assumption that e > ~0 (and Θ = 0n,n)

the sequence of payment vectors p0 = p̄, pi = f(pi−1) decreases to a clearing vector in

at most n iterations. The assumption that e > ~0 is essential as is illustrated by the

following example.

e =







1
3

4

−9

8






, Π =







0 0 0
1

2
0 1

2

1

4

3

4
0






, p̄ =







1

2

1







Setting p0 = p̄ yields

e+Π′p0 =







9

4

3

2

−1

8






, Λ(p0) =







0 0 0

0 1 0

0 0 1






, and p1 = f(p0) =







1

− 3

20

−6

5






.

Hence, p1 is not feasible and the algorithm breaks down. A possible remedy would be

to use pi = [f(pi−1) ∨ ~0]. This procedure results in p2 = p1 = (1, 0, 0)′. It is easy to

verify that (1, 0, 0)′ is not a clearing vector. The unique clearing vector for the example

is given by p∗ = (1, 3
4
, 0)′.6

Even though the fictitious default algorithm might not work anymore it is still possible

to define a simple but admittedly less elegant iterative procedure to calculate a clearing

vector. We start with p0 = p̄ and calculate the implied node values W ∗(p0). This fix

point can be determined in finitely many steps. If p0 is affordable, i.e. p0 ≤ [(W ∗(pi) +

p̄) ∨ ~0)], we are done. Otherwise the payments are reduced such that they are in line

6The fictitious default algorithm works if each pi is a supersolution. This can be guaranteed for e > ~0
and p0 = p̄. For e 6≥ ~0 this property may not hold.
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with limited liability, i.e. p1 = [(W ∗(p0)+ p̄)∨~0)]∧ p̄. The next theorem shows that this

procedure converges to the largest clearing vector.

Theorem 4. If Θ is a holding matrix, the sequence pi+1 = [(W ∗(pi)+ p̄)∨~0)]∧ p̄ started

at p0 = p̄ is well defined, decreasing, and converges to the largest clearing vector p+.

The proposed solution algorithm detects the same sequence of defaults as the fictitious

default algorithm. Banks defaulting in the first round are those that default even if their

claims are honored fully. Banks defaulting in later rounds are dragged into default by

their interbank counter parties.

5. Comparative Statics

Without cross holdings the clearing vector is a concave function of e and p̄ as is shown

by Eisenberg and Noe (2001). A simple example shows that the clearing vector is not

concave as soon as cross holdings are included.

Example 3. Assume the network is characterized by the following parameters:

e =







0

λ

− 1

10






, Π =







0 1 0

0 0 0

1 0 0






, p̄ =







1

0

1






, Θ =







0 0 0
1

2
0 1

4

0 0 0







Table 1 shows the clearing vectors and equity values as functions of λ ∈ R
n. Figure 1

illustrates that the clearing payments of banks 1 and 3 are not concave in λ and that the

equity values of banks 1 and 2 are not convex in λ.

In Figure 1 the equity value of bank 2, V ∗
2 , increases disproportionately to exogenous

income e2, i.e.
∂V ∗

2

∂e2
> 1. Changing e2 from 3/15 to 7/15 increases the equity value of

bank 2 from 6/15 to 22/15. The value of bank 1’s debt increases from 0.2 to 1 and the

value of bank 3’s debt increases from 0 to 4/15. Hence, a subsidy of 4/15 increases both

the unconsolidated equity value of the system and the value of the debt payments each by

16/15. The value of the unconsolidated system increases by 8-times the original subsidy.

This multiplier effect is very pronounced for e2 in the interval [3/15, 7/15) where banks

1 and 3 are in default. But even for comparatively large e where all three banks are

solvent, changes in e2 cause a disproportionate change in the value of the unconsolidated

system. Increasing e2 from 4 to 5 has no effect on debt payments as all banks are solvent

but the equity value of the unconsolidated system increases by 1.75 from 7.65 to 9.4.

Supposedly small shocks to e may have large effects on the debt and equity values.
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Figure 1: Debt payments of node 1 (dotted line) and the equity value of node 2 (solid
line) as functions of e2 = λ in Example 3. Debt payments are not concave and
the equity value is not convex in λ.
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λ ≤ 0 p∗ =





0
0
0



 V ∗ =





0
0
0





λ ∈ [0, 0.2] p∗ =





λ
0
0



 V ∗ =





0
2λ
0





λ ∈ [0.2, 7

15
] p∗ =





3λ− 2

5

0
λ− 1

5



 V ∗ =





0
4λ− 2

5

0





λ ∈ [ 7
15
, 17

5
] p∗ =





1
0

λ
4
+ 3

20



 V ∗ =





3

4
λ− 7

20

λ+ 1
0





λ ≥ 17

5
p∗ =





1
0
1



 V ∗ =





1

2
(λ+ 1)
λ+ 1

1

4
(λ+ 1)− 11

10





Table 1: Clearing vector and equity value as functions of banks 2’s income λ in Example
3.

An alternative interpretation is that injecting money into the network increases the

(unconsolidated) value of the claims by more than the supplied money. But how does this

effect the wealth of outside investors? Let p∗(e) and V ∗(p∗(e), e) be the clearing vector

and the equity values corresponding to the financial network consisting of (e,Π, p̄,Θ).

Suppose some outside investor injects money into the network such that ẽ ≥ e. For e ≥ ~0

we have

V ∗(p∗(e), e) = e+ (Π′ − I)p∗(e) + Θ′V ∗(p∗(e), e)

or

(I−Θ′)V ∗(p∗(e), e) + (I−Π′)p∗(e) = e.

This implies that

~1′(I−Θ′)(V ∗(p∗(ẽ), ẽ)− V ∗(p∗(e), e)) +~1′(I−Π′)(p∗(ẽ)− p∗(e)) = ~1′(ẽ− e).

By increasing e to ẽ the value of an outside investor’s portfolio changes by

ǫ′(V ∗(p∗(ẽ), ẽ)− V ∗(p∗(e), e)) + δ′(p∗(ẽ)− p∗(e))

where ǫ comprises the equity and δ the debt holdings of the outside investor. Even

15



if the entire network is owned by a single outside investor, i.e. δ′ = ~1′(I − Π′) and

ǫ′ = ~1′(I−Θ′), the amount gained will never exceed the amount injected, i.e. ~1′(ẽ− e).

If there are no bankruptcy costs, it does never pay to bail out.

For the case where e 6≥ ~0 a part of the injected money is used to pay off more senior

liabilities and as consequence the increase in consolidated values may be the less than

~1′(ẽ− e).

6. Seniority Structure

Eisenberg and Noe (2001) interpret ei as exogenous operating cash flow. They restrict

ei to be nonnegative reasoning that any operating costs like wages can be captured by

appending a ”sink node“ to the financial system. Such a sink node has no operating

cash flow of its own, nor any obligations to other nodes. The implicit assumption is that

the operating costs are of the same priority as the liabilities in the financial system. If

these costs are of a higher priority, modeling them via a sink node is not correct.

Example 4. Assume that the financial system consists of two banks. Bank 1 has an

operating cash flow of 0.5. Bank 2 has revenues of 2 but has to pay wages of 4. In the

interbank market bank 1 owes bank 2 one unit and vice versa. If wages have the same

priority as the interbank liabilities, we append an additional node 3 to the system for the

workers. So

e =







1

2

2

0






, Π =







0 1 0
1

5
0 4

5

0 0 0






, p̄ =







1

5

0






, Θ = 03,3.

Clearing the system yields

p∗ =







1

3

0






and Π′p∗ + e− p∗ =







1

10

0
24

10






.

The shortfall of node 2 is proportionally shared between bank 1 and the workers. Each of

them loses 40% of the promised payments. If we assume by contrast that wages are more

senior than interbank claims, the sink node approach can not be used. Yet, the problem

is still well defined and can be solved. The system

e =

(

1

2

−2

)

, Π =

(

0 1

1 0

)

, p̄ =

(

1

1

)
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has the solution

p∗ =

(

1

2

0

)

, Π′p∗ + e− p∗ =

(

0

−3

2

)

In this case node 1 is bankrupt. It loses all payments promised by node 2. Node 2 is not

able to pay off its obligations to the workers either (e2 + Π1,2p
∗
1 < 0). The workers lose

1.5 of the promised payments.

Finally, suppose there is a simple bilateral netting agreement between banks 1 and 2

which stipulates that crosswise nominal obligations are netted. In this case bank 1 has a

value of 1/2 and the entire losses have to be borne by the workers. In this case interbank

obligations would be of the highest priority.

The example demonstrates that the introduction of sink nodes is not as innocuous as

it may seem. If there are different levels of priority, the amount available to pay off the

most junior debt might be negative. Bank i’s income ei in the previous sections can

be interpreted as the amount available to pay off the most junior debt. This makes it

necessary not to restrict ei to be nonnegative.

To adapt the framework to a more elaborate seniority structure I introduce seniority

classes. Different liabilities are in the same seniority class if – in case of default –

repayment is rationed proportionally between them.7 Each bank may have a different

number of priority classes Si. Let S∗ be the maximum of these Si. Assume that debt

claims in class 1 are of the highest priority, i.e. have to be satisfied first, then the

claims in class 2 sequentially up to class S∗ are satisfied. Debt claims include interbank

positions as well as obligations to parties outside the banking system such as depositors

or bondholders. Denote by p̄is =
∑N

j=1
Lijs + Dis the liabilities of bank i in class s.

Define

Πijs =

{

Lijs

p̄is
if p̄is > 0

0 otherwise

and assume that if bank i has no debt in seniority class s then it has no debt in seniority

class s+ 1 either (p̄is = 0 implies p̄is+1 = 0). Let p·s = (p1s, · · · , pns)
′ and

Πs =









Π11s · · · Π1ns

...
. . .

...

Πn1s · · · Πnns









.

7Lando (2004, pp. 247) and Elsinger et al. (2006b) discuss the consequences of bilateral netting agree-
ments in a network model. It is important to highlight that netting agreements can appropriately
be taken into account only if different priority levels exist. As can be seen in Example 4 netting of
nominal obligations is equivalent to assuming that the involved liabilities are of the highest priority.
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In analogy to the case of just one seniority class equity values V ∗(p) for a given p =

(p11 . . . p1S∗ , p21 . . . p2S∗ , . . . , pn1 . . . pnS∗) are defined as a fixed point of Ψ1(·; p, e,Π,Θ) :

R
n
+ → R

n
+

V ∗(p) = [e+

S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p·s +Θ′V ∗(p)] ∨~0.

Lemma 4 guarantees that V ∗(p) exists and is unique given that Θ is a holding matrix.

A clearing payment vector has to satisfy limited liability and the seniority structure of

the liabilities including absolute priority of debt.

Definition 2. p∗ ≥ ~0 is a clearing vector if ∀i ∈ {1, . . . , n} and ∀T ∈ {1, . . . , S∗}

p∗iT = min

(

max

(

ei +
N
∑

j=1

S∗

∑

s=1

Πjisp
∗
js −

T−1
∑

s=1

p∗is +
N
∑

j=1

ΘjiV
∗
j (p∗) , 0

)

, p̄iT

)

.

The definition insures that debt is paid off according to seniority. A clearing vector

has the property that if debt in seniority class T is not fully honored (p∗iT < p̄iT ), debt

in seniority class T + 1 is not served at all (p∗iT+1
= 0). On the other hand repaying at

least a fraction of the debt in seniority class T + 1, i.e. p∗iT+1
> 0, implies that debt in

seniority class T is repaid in full. As a consequence of a detailed priority structure ei

might as well be assumed to be nonnegative.

The introduction of a detailed seniority structure does not change the main results

which are summarized in the sequel. In analogy to the case of only one seniority class a

clearing vector can be defined as a fixed point of the map

Φ1(p) = (Φ1
11 . . .Φ

1
1S∗ ,Φ1

21 . . .Φ
1
2S∗ , . . . ,Φ1

n1 . . .Φ
1
nS∗)′ : [~0, p̄] → [~0, p̄] defined by

Φ1
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

pis +
N
∑

j=1

ΘjiV
∗
j (p)



 ∨ 0







∧ p̄iT . (11)

Let

W ∗(p) = e+
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s +Θ′(W ∗(p) ∨~0) (12)

and

Φ2
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

p̄is +
N
∑

j=1

Θji(W
∗
j (p) ∨ 0)



 ∨ 0







∧ p̄iT . (13)

Theorem 1’. If p̂ ∈ [~0, p̄] is a (super)solution of Φ1(p), i.e. p̂ ≥ Φ1(p̂; Π, p̄, e,Θ), then
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p̂ is a (super)solution of Φ2(p) with

W ∗(p) = e+
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s +Θ′V ∗(p)

and vice versa with V ∗(p̂) = (W ∗(p̂) ∨~0).

Theorem 2’. There exists a greatest (p+) and a least (p−) clearing vector.

Theorem 3’. Suppose the network allows for multiple clearing vectors p+ 6= p−

with corresponding equity values V + and V −. Let I0 be the subset of banks with non–

unique equity values and Is be the subset of banks with non–unique clearing payments

in seniority class s. Let I =
⋃S∗

s=0
Is. It has to hold that

1. all banks in I0 are entirely owned by banks in I, i.e.
∑

j∈I Θij = 1 for all i ∈ I0,

2. the only creditors in seniority class s of banks in Is are banks in I, i.e.
∑

j∈I Πijs =

1 for all i ∈ Is, and

3. the sum of the obligations of banks in I to banks not in I has to equal the aggregate

exogenous income of banks in I plus the value of all claims of banks in I against

banks not in I, i.e.

S∗

∑

s=1

∑

i∈I



1−
∑

j∈I

Πijs



 p+is =
∑

i∈I

ei +
S∗

∑

s=1

∑

i/∈I





∑

j∈I

Πijs



 p∗is +
∑

i/∈I





∑

j∈I

Θij



V ∗
i

where p∗is = p+is = p−is and V ∗
i = V +

i = V −
i for i /∈ I. If there is only one seniority

class this boils down to

∑

i∈I



1−
∑

j∈I

Πij1



 p̄i1 =
∑

i∈I

ei +
∑

i/∈I





∑

j∈I

Πij1



 p∗i1 +
∑

i/∈I





∑

j∈I

Θij



V ∗
i .

To calculate a clearing vector we start with p0 = p̄ and calculate W ∗(p0). If

p0iT ≤

{[

W ∗
i (p

0) +
S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT ∀i ∈ {1, . . . , n} and ∀T ∈ {1, . . . , S∗}

we are done. Otherwise we set

p1iT =

{[

W ∗
i (p

0) +
S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT
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and iterate the procedure. W ∗(p) is increasing in p implying that p1 ≤ p0 for all k and

limk→∞pk = p+ where p+ denotes the largest clearing vector.

Theorem 4. If Θ is a holding matrix, the sequence

pkiT =

{[

W ∗
i (p

k−1) +

S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT

started at p0 = p̄ is well defined, decreasing, and converges to the largest clearing vector

p+.

Example 5. Using different priority classes we may rewrite Example 3 to show that

even if e > 0, p∗ is not necessarily concave in e. To do this interpret e in Example 3

as the net position after subtracting high priority debt from income. Assume that the

counterparties of the highest priority debt are not part of the network. These liabilities

are given by D·1 = (D11, D21, D31)
′ =

(

1, 1, 11
10

)′
. There are no liabilities of the same

priority within the network and hence L1 = 03,3. Let e = (1, 1+λ, 1)′. So the net position

after clearing highest seniority debt is equal to e in Example 3. The other parameters

are given by D·2 = ~0,

L2 =







0 1 0

0 0 0

1 0 0






, and Θ =







0 1

2
0

0 0 0

0 1

4
0






.

Hence, p̄ =
(

1, 1, 11
10
, 1, 0, 1

)

. It is easy to verify that the clearing payments of node 1 in

seniority class 2 equal the clearing payment of node 1 in Example 3. Hence, p∗ is not

concave in e.

7. Conclusions

In this paper I analyze networks of financial institutions that are linked with each other

via debt and equity claims. Limited liability of equity and a detailed seniority structure

of debt are taken into account explicitly. The values of these claims are finite but not

necessarily unique. Yet, whenever an outside investor holds a claim against a bank the

value of this claim is unique. By adjusting the fictitious default algorithm developed in

Eisenberg and Noe (2001) debt and equity values can be determined.

As long as bankruptcy costs are zero it never pays to bail out insolvent banks. Intro-

ducing bankruptcy costs does not change the main result that a solution to the clearing

problem exists. Yet, bailing out insolvent banks or forgiving debt may become profitable.
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The model is static. But by the inclusion of a detailed seniority structure it allows

to take the timing of the payments into account and has thereby a dynamic flavor.

The contagion effects of a negative shock to the economy (low realization of e) can be

analyzed more precisely than in the case were all liabilities are modeled as pari passu.

The model presented is part of a simulation software at the Oesterreichische Nation-

albank to assess the stability of the Austrian banking sector.8 The simulations rest on

the assumption that exogenous income e is a multidimensional random variable. For

each draw of e the system is cleared. If e is drawn from the objective distribution,

default probabilities and contagion effects can be assessed. If e is drawn from the risk

neutral measure, the value of debt and equity can be determined by averaging across

the simulations.

Modeling correlated defaults is not only an issue in the banking literature but also in

the literature on the valuation of complex portfolio credit derivatives such as collateral-

ized debt obligations (CDOs). The value of the different CDO tranches depends crucially

on the joint distribution of default of the underlying collateral securities. The linkages

between these securities (obligors) are not modeled explicitly but via the assumption

that the default intensities of these securities are correlated (Duffie and Gârleanu (2001),

Longstaff and Rajan (2008), and Errais et al. (2009)).

8A detailed description of the software is given in a technical document (Boss et al. (2006)) which is
available upon request.
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A. Proofs

Definition 3. Let y and x be n×1 vectors. Then Λ := diag(y ≥ x) is an n×n diagonal

matrix where Λii = 1 if yi ≥ xi and Λii = 0 otherwise. diag(y > x), diag(y ≤ x),

diag(y < x), diag(y 6= x), and diag(y = x) are defined analogously.

Lemma 1. Let Θ ∈ [0, 1]n×n be a matrix of interbank share holdings and let I be the

n× n identity matrix. (I−Θ′) is invertible if and only if Assumption 1 is satisfied, i.e.

Θ is a holding matrix.

Proof. It suffices to show that (I − Θ′) is invertible. Assume that there is a subset

I ⊂ {1, . . . , n} such that
∑

j∈I Θij = 1 for all i ∈ I. Let x be an n × 1 vector with

components xi = 1 if i ∈ I and xi = 0 otherwise. Clearly, (I−Θ)x = ~0 where ~0 denotes

the n× 1 dimensional zero vector. Thus (I−Θ) is not invertible.

Now assume that (I−Θ) is not invertible. Then there exists a vector x 6= ~0 such that

(I − Θ)x = ~0. Writing down this system equation by equation we have a linear system

given by

xi =
n
∑

j=1

Θijxj for i = 1, ..., n.

Taking absolute values on both sides and applying the triangle inequality yields

|xi| = |
n
∑

j=1

Θijxj | ≤
n
∑

j=1

Θij |xj | for i = 1, ..., n.

Now construct an index set I ⊂ {1, . . . , n} as follows. The index i is in I if and only

if |xi| ≥ |xj | for j = 1, ..., n. Since the triangle inequality holds for all i it holds in

particular for all i ∈ I. Thus we have

|xi| ≤
n
∑

j=1

Θij |xj | ≤ |xi|





∑

j∈I

Θij +
∑

j 6∈I

Θij



 ≤ |xi| for all i ∈ I

with equality only if
∑

j∈I Θij = 1. Hence, if (I−Θ) is not invertible it has to hold that
∑

j∈I Θij = 1 for all i ∈ I. This violates Assumption 1.

Lemma 2. Let Θ be an n×n holding matrix, let u be a n×1 vector, and let Λ = diag(u >

~0). If Λ 6= 0n,n where 0n,n is an n× n matrix of zeros, it holds that ~1′Λ(I−Θ′)Λu > 0.

Analogously, if Λ = diag(u < ~0) then ~1′Λ(I−Θ′)Λu > 0.
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Proof. Let Λ = diag(u > ~0). Λ is idempotent. Hence,

~1′Λ(I−Θ′)Λu = ~1′Λ(I−Θ′)ΛΛu

Λu ≥ ~0 by construction. ~1′Λ(I − Θ′)Λ ≥ ~0′ as no row sum of Θ exceeds one. This

implies that ~1′Λ(I−Θ′)Λu ≥ 0. Now, suppose ~1′Λ(I−Θ′)Λu = 0 and define the index

set I := {i|ui > 0}. Λ 6= 0n,n implies that I is not empty. It has to hold that

0 =
∑

i∈I

ui −
∑

i∈I

∑

j∈I

Θjiuj =
∑

i∈I

ui −
∑

j∈I

(

∑

i∈I

Θji

)

uj

This implies that
∑

i∈I Θji = 1 for all j ∈ I. But this violates Assumption 1. The

second part of the lemma can be proved analogously.

Lemma 3. Let Θ be a n×n holding matrix and let y ≥ ~0 be a n× 1 vector. Then there

exists a unique x ≥ y such that x = y +Θ′x.

Proof. Lemma 1 implies that x is unique. Now, suppose x 6≥ y and let Λ = diag(x < y).

Λx = Λy + ΛΘ′Λx+ ΛΘ′(I− Λ)x.

By construction (I− Λ)x ≥ (I− Λ)y. So the last equation may be rewritten as

Λ(I−Θ′)Λ(x− y) ≥ ΛΘ′y.

Premultiplying by ~1′ yields

~1′Λ(I−Θ′)Λ(x− y) ≥ ~1′ΛΘ′y ≥ 0.

If Λ 6= 0n,n the left hand side is smaller than 0 by Lemma 2. Therefore, x ≥ y.

Lemma 4. Let u ∈ R
n and Θ be a holding matrix. Then the map F (·;u) : Rn → R

n
+

F (V ;u) = [u+Θ′V ] ∨~0 (14)

has a unique fixed point, V ∗ ≥ ~0.

Proof. Define Ṽ by Ṽ = [u ∨ ~0] + Θ′Ṽ . Given that Θ is a holding matrix , Lemma 1

implies that Ṽ is well defined and unique. Lemma 3 implies Ṽ ≥ [u ∨~0] ≥ ~0. Moreover,

F (Ṽ ;u) = [u+Θ′Ṽ ] ∨~0 = [u− (u ∨~0) + Ṽ ] ∨~0 ≤ Ṽ .
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As F (V ;u) is increasing on the complete lattice [~0, Ṽ ] the Tarski fixed point theorem

(Theorem 11.E in Zeidler (1986)) implies that there exists a greatest and a least fixed

point, V + and V −, in the interval [~0, Ṽ ]. Suppose V ∗, not necessarily in [~0, Ṽ ], is an

arbitrary fixed point of F (·;u). Let Λ = diag(V ∗ > V −). Note that ΛV ∗ = Λ(u+Θ′V ∗)

and ΛV − ≥ Λ(u+Θ′V −). This implies that

Λ(V ∗ − V −) ≤ ΛΘ′
(

Λ(V ∗ − V −) + (I− Λ)(V ∗ − V −)
)

.

Rearranging and premultiplying by ~1′ yields

~1′Λ(I−Θ′)Λ(V ∗ − V −) ≤ ~1′ΛΘ′(I− Λ)(V ∗ − V −).

The right hand side of the above inequality is less than or equal to 0. Lemma 2 implies

that the left hand side is larger than 0 as long as Λ 6= 0n,n. So it has to hold that

V ∗ ≤ V −. Evidently, V ∗ ≥ ~0. But as V − is the smallest fixed point in [~0, Ṽ ] it follows

that V ∗ = V − and the fixed point is unique.

Lemma 5. Let Θ be a holding matrix. Then

W = u+Θ′(W ∨~0) (15)

has a unique solution W ∗ for any n×1 vector u. If u1 and u2 are two n×1 vectors such

that u2 ≥ u1 then W ∗(u2)−W ∗(u1) ≥ u2−u1 and (I−Θ)(W ∗(u2)−W ∗(u1)) ≤ u2−u1

where W ∗(u1) and W ∗(u2) are the respective fixed points.

Proof. Lemma 4 establishes that V ∗ = [u+Θ′V ∗]∨~0 is unique. Let X = u+Θ′V ∗. It is

easy to see that X solves (15). On the other hand if W ∗ solves (15) then X = [W ∗∨~0] is

a fixed point of F (·;u). To prove uniqueness assume there exist two solutions, W 1 and

W 2. As F (·;u) has a unique fixed point, [W 1 ∨ ~0] = [W 2 ∨ ~0]. But this in turn implies

that W 1 = W 2. Hence, Equation (15) has a unique solution.

To prove the second claim assume that u1 and u2 are two vectors in R
n such that

u2 ≥ u1. Let W ∗(u1) = u1 +Θ′(W ∗(u1) ∨~0) and W ∗(u2) = u2 +Θ′(W ∗(u2) ∨~0) be the

respective fixed points. Let x = u2 − u1 ≥ ~0. It holds that

W ∗(u2)−W ∗(u1) = x+Θ′([W ∗(u2) ∨~0]− [W ∗(u1) ∨~0])

Let Λ = diag(W ∗(u1) > W ∗(u2)). Note that Λ([W ∗(u2)∨~0]−[W ∗(u1)∨~0]) ≥ Λ(W ∗(u2)−
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W ∗(u1)) and (I − Λ)([W ∗(u2) ∨~0]− [W ∗(u1) ∨~0]) ≥ ~0. Hence,

Λ(W ∗(u2)−W ∗(u1)) ≥ Λx+ ΛΘΛ(W ∗(u2)−W ∗(u1))

Rearranging and premultiplying by ~1′ yields

~1′Λ(I−Θ′)Λ(W ∗(u2)−W ∗(u1)) ≥ ~1′Λx

The right hand side is larger or equal to 0. The left hand side is smaller than 0 by

Lemma 2 unless Λ = 0n,n. Hence, W
∗(u2) ≥ W ∗(u1). This implies

W ∗(u2)−W ∗(u1) ≥ ([W ∗(u2) ∨~0]− [W ∗(u1) ∨~0]) ≥ 0

and therefore W ∗(u2)−W ∗(u1) ≥ u2−u1 and (I−Θ′)(W ∗(u2)−W ∗(u1)) ≤ u2−u1.

The remaining theorems are proved for a detailed seniority structure. This needs some

additional notation. In analogy to the case of only one seniority class a clearing vector

can be defined as a fixed point of the map

Φ1(p) = (Φ1
11 . . .Φ

1
1S∗ ,Φ1

21 . . .Φ
1
2S∗ , . . . ,Φ1

n1 . . .Φ
1
nS∗)′ : [~0, p̄] → [~0, p̄] defined by

Φ1
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

pis +
N
∑

j=1

ΘjiV
∗
j (p)



 ∨ 0







∧ p̄iT . (16)

Let

W ∗(p) = e+
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s +Θ′(W ∗(p) ∨~0) (17)

and

Φ2
iT (p) =









ei +
N
∑

j=1

S∗

∑

s=1

Πjispjs −
T−1
∑

s=1

p̄is +
N
∑

j=1

Θji(W
∗
j (p) ∨ 0)



 ∨ 0







∧ p̄iT . (18)

Theorem 1. If p̂ ∈ [~0, p̄] is a (super)solution of Φ1(p), i.e. p̂ ≥ Φ1(p̂; Π, p̄, e,Θ), then

p̂ is a (super)solution of Φ2(p) with

W ∗(p) = e+

S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s +Θ′V ∗(p)

and vice versa with V ∗(p̂) = (W ∗(p̂) ∨~0).
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Proof. I prove the assertion for the case of supersolutions. The proof for solutions

is analogous. Suppose that p̂ is a supersolution of Φ1, i.e. p̂ ≥ Φ1(p̂). Let X =

e+
S∗

∑

s=1

(Πs)
′p̂·s −

S∗

∑

s=1

p̄·s +Θ′V ∗(p̂). Evidently, V ∗(p̂) ≥ X. Whenever, V ∗
i (p̂) > 0 it has

to hold that

0 < ei +

N
∑

j=1

S∗

∑

s=1

Πjisp̂js −

S∗

∑

s=1

p̂is +

N
∑

j=1

ΘjiV
∗
j (p).

This implies that

p̂iT < ei +

N
∑

j=1

S∗

∑

s=1

Πjisp̂js −

T−1
∑

s=1

p̂is +

N
∑

j=1

ΘjiV
∗
j (p) ∀T ∈ {1, . . . , S∗}.

Given that p̂ is a supersolution of Φ1 we get p̂iT = p̄iT for all T ∈ {1, . . . , S∗}. Therefore,

V ∗(p̂) = (X ∨ ~0) and X solves (17). As Φ1(p̂) ≥ Φ2(p̂) the vector p̂ is a supersolution

of Φ2, too. Now, assume that p̂ is a supersolution of Φ2. Let X = (W ∗(p̂) ∨ ~0). If

W ∗
i (p̂) ≥ 0 then

p̄iT ≤ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
T−1
∑

s=1

p̄is +
N
∑

j=1

Θji(W
∗
j (p) ∨ 0) ∀T ∈ {1, . . . , S∗}

implying that p̂iT = p̄iT for all T ∈ {1, . . . , S∗}. Hence, for all i with W ∗
i (p̂) ≥ 0 we get

Xi = ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj .

Suppose W ∗
i (p̂) < 0 and let Hi be the highest index such that p̂iHi

= p̄iHi
. If Hi = S∗

then

0 > ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj .

For Hi < S∗ it has to hold that

p̄iHi+1 > p̂iHi+1 ≥ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −

Hi
∑

s=1

p̂is +
N
∑

j=1

ΘjiXj (19)

as p̂ is a supersolution. Hence.

0 ≥ ei +
N
∑

j=1

S∗

∑

s=1

Πjisp̂js −
S∗

∑

s=1

p̂is +
N
∑

j=1

ΘjiXj .
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So we may write

X =

(

e+
S∗

∑

s=1

Π′
sp̂·s −

S∗

∑

s=1

p̂·s +Θ′X

)

∨~0.

To prove that p̂ is a supersolution of Φ1 note that for all s ≤ Hi + 1, Φ1
is = Φ2

is and for

all s > Hi + 1, it has to hold that 0 ≥ Φ1
is ≥ Φ2

is as can be seen by (19). The vector p̂ is

indeed a supersolution of Φ1.

Theorem 2. There exists a greatest (p+) and a least (p−) clearing vector.

Proof. The last theorem establishes that any fixed point of Φ2(p) is a fixed point of Φ1(p)

and vice versa. To prove that a clearing vector exists it suffices to show that Φ2(p) has a

fixed point. By construction Φ2(~0) ≥ ~0 and Φ2(p̄) ≤ p̄. The Tarski fixed point theorem

guarantees that there exists a least and a greatest fixed point for Φ2(p) if Φ2(p) is a

monotone increasing function on the complete lattice [0, p̄]. Lemma 5 shows that W ∗(p)

and thereby Φ2(p) are increasing in p.

Theorem 3. Suppose the network allows for multiple clearing vectors p+ 6= p− with

corresponding equity values V + and V −. Let I0 be the subset of banks with non–

unique equity values and Is be the subset of banks with non–unique clearing payments

in seniority class s. Let I =
⋃S∗

s=0
Is. It has to hold that

1. all banks in I0 are entirely owned by banks in I, i.e.
∑

j∈I Θij = 1 for all i ∈ I0,

2. the only creditors in seniority class s of banks in Is are banks in I, i.e.
∑

j∈I Πijs =

1 for all i ∈ Is, and

3. the sum of the obligations of banks in I to banks not in I has to equal the aggregate

exogenous income of banks in I plus the value of all claims of banks in I against

banks not in I, i.e.

S∗

∑

s=1

∑

i∈I



1−
∑

j∈I

Πijs



 p+is =
∑

i∈I

ei +
S∗

∑

s=1

∑

i/∈I





∑

j∈I

Πijs



 p∗is +
∑

i/∈I





∑

j∈I

Θij



V ∗
i

where p∗is = p+is = p−is and V ∗
i = V +

i = V −
i for i /∈ I. If there is only one seniority

class this boils down to

∑

i∈I



1−
∑

j∈I

Πij1



 p̄i1 =
∑

i∈I

ei +
∑

i/∈I





∑

j∈I

Πij1



 p∗i1 +
∑

i/∈I





∑

j∈I

Θij



V ∗
i .
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Proof. Let p− be the least and p+ be the largest clearing vector with p+ 6= p−. Denote

the corresponding equity values by V − and V +. Let Λ0 = diag(V + > V −) and Λs =

diag(p+.s > p−.s) for each s ∈ {1, . . . , S∗}. Let Λ characterize all banks that either belong

to Λ0 or some Λs, i.e. Λ = I−
∏S∗

s=0
(I−Λs). Subtracting V − from V + and multiplying

by ~1′Λ yields

~1′Λ(I−Θ′)Λ0(V + − V −) ≤
S∗

∑

s=1

~1′Λ(Π′
s − I)Λs(p+·s − p−·s).

The left hand side of the inequality is greater than or equal to 0 whereas the right hand

side is less than or equal to 0. The inequality turns into an equality and each summand

on the right hand side has to equal 0. Or written differently

∑

j∈I

Θij = 1 for all i ∈ I0

and
∑

j∈I

Πijs = 1 for all i ∈ Is.

To prove the third claim note that

ΛV + = Λ(e+
S∗

∑

s=1

Π′
sp

+
·s −

S∗

∑

s=1

p+·s +Θ′V +).

Premultiplying by ~1′ yields

~1′Λ(I−Θ′)V + = ~1′Λe+
S∗

∑

s=1

~1′Λ(Π′
s − I)p+·s.

Banks with unique equity value but non-unique debt payments have to have an equity

value of 0, i.e. (Λ− Λ0)V + = ~0. Together with ~1′Λ(I−Θ′)Λ0V + = 0 the left hand side

equals ~1′Λ(I−Θ′)(I− Λ)V + = −~1′ΛΘ′(I− Λ)V +. Rearranging yields

S∗

∑

s=1

~1′Λ(I−Π′
s)Λp

+
·s = ~1′Λe+~1′ΛΘ′(I− Λ)V + +

S∗

∑

s=1

~1′ΛΠ′
s(I− Λ)p+·s
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or

S∗

∑

s=1

∑

i∈I



1−
∑

j∈I

Πijs



 p+is =
∑

i∈I

ei +
S∗

∑

s=1

∑

i/∈I





∑

j∈I

Πijs



 p∗is +
∑

i/∈I





∑

j∈I

Θij



V ∗
i

Note that the right hand side does not depend on the chosen clearing vector as (I −

Λ)p+·s = (I − Λ)p−·s and (I − Λ)V + = (I − Λ)V −. Assume that only one seniority class

exists, i.e. S∗ = ~1. The i-th entry in the diagonal of (Λ − Λ1) equals 1 if bank i’s

debt payment is unique but the equity value is non-unique. In this case p+i1 = p̄i1, i.e.

(Λ− Λ1)p+·1 = (Λ− Λ1)p̄·1. We get

~1′Λ(I−Π′
1)Λp̄·1 = ~1′Λe+~1′ΛΘ′(I− Λ)V ∗ +~1′ΛΠ′

1(I− Λ)p∗·1

where V ∗
i = V +

i = V −
i and p∗i1 = p+i1 = p−i1. Alternatively, we may write

∑

i∈I



1−
∑

j∈I

Πij1



 p̄i1 =
∑

i∈I

ei +
∑

i/∈I





∑

j∈I

Πij1



 p∗i1 +
∑

i/∈I





∑

j∈I

Θij



V ∗
i .

~1′Λ(I−Θ′)Λ0 = ~1′Λ(Π′
s − I)Λs = 0 for all s.

Start with p0 = p̄ and calculate W ∗(p0) using

W ∗(p) = e+
S∗

∑

s=1

(Πs)
′p·s −

S∗

∑

s=1

p̄·s +Θ(W ∗(p) ∨~0).

Let

pkiT =

{[

W ∗
i (p

k−1) +
S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT

and iterate the procedure. W ∗(p) is increasing in p implying that pk ≤ pk−1 for all k

and limk→∞pk = p+ where p+ denotes the largest clearing vector.

Theorem 4. If Θ is a holding matrix, the sequence

pkiT =

{[

W ∗
i (p

k−1) +
S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT

started at p0 = p̄ is well defined, decreasing, and converges to the largest clearing vector
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p+.

Proof. pk+1 is well defined if W ∗(pk) is well defined. This is the case as Θ is a holding

matrix.

To calculate W ∗(pk) let

u = e+
S∗

∑

s=1

(Πs)
′pk·s −

S∗

∑

s=1

p̄·s,

W 0 = u, Λj = diag(W j > ~0), and W j+1 = u+Θ′ΛjW j+1. As Θ′Λj is a holding matrix

Lemma 1 implies that W j+1 exists and is unique. By construction ΛjW j ≥ Λj−1W j .

Therefore u + Θ′ΛjW j ≥ u + Θ′Λj−1W j = W j . Let y = u + Θ′ΛjW j − W j ≥ ~0.

It holds that W j+1 − W j = y + Θ′Λj(W j+1 − W j). Applying Lemma 3 implies that

W j+1 −W j ≥ y ≥ ~0. This in turn implies that Λj+1 ≥ Λj . If Λj = Λj−1, it follows that

W j+1 = W j and ΛjW j = (W j ∨ ~0). Hence, W j is a solution to W = u+Θ(W ∨ ~0). If

Λj 6= Λj−1, the procedure has to be continued. The iteration has to stop after at most

n steps because Λj ≤ I for all j.

To prove that pk is decreasing note that p1 ≤ p0 = p̄ by construction. Now suppose

p0 ≥ p1 ≥ · · · ≥ pi. W ∗(p) is increasing in p. Hence, W ∗(pk) ≤ W ∗(pk−1) and therefore

pk+1 ≤ pk. Now suppose the series converges to some p̃. This implies that

p̃iT =

{[

W ∗
i (p̃) +

S∗

∑

s=T

p̄is

]

∨ 0

}

∧ p̄iT

So p̃ is a clearing vector. Next note that W ∗(p0) ≥ W ∗(p+) where p+ is the largest

clearing vector. This implies that p1 ≥ p+. Now suppose it holds for k up to l that

pk ≥ p+. Hence, W ∗(pl) ≥ W ∗(p+). But this implies that pl+1 ≥ p+ and p̃ ≥ p+. As p+

is the largest clearing vector by assumption, p̃ = p+.
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