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Abstract. Front-running is the malicious, and often illegal, act of both
manipulating the order of pending trades and injecting additional trades
to make a profit at the cost of other users. In decentralized finance
(DeFi), front-running strategies exploit both public knowledge of user
trades from transactions pending on the network and the miner’s abil-
ity to determine the final transaction order. Given the financial loss and
increased transaction load resulting from adversarial front-running in de-
centralized finance, novel cryptographic protocols have been proposed to
mitigate such attacks in the permission-less blockchain setting. We sys-
tematize and discuss the state-of-the-art of front-running mitigation in
decentralized finance, and illustrate remaining attacks and open chal-
lenges.

1 Introduction

Specific instances of front-running in decentralized finance (DeFi) were first
quantified by Daian et al. [17] and systematized by Eskandari et al. [23]. Besides
imposing a financial penalty on honest users, front-running can also degrade
the performance of blockchain networks, as recently observed on the Avalanche
blockchain [3]. In order to evaluate the efficacy of front-running mitigation tech-
niques, we first formulate the set of adversarial powers which permit front-
running strategies to be exploited: concretely, if users submit their intended
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interaction to a pool of pending transactions, the front-running adversary has
the ability to:

1. Append pending transactions to the blockchain.
2. Infer user intentions from pending transactions and blockchain state.

In this work, we describe common front-running attacks (§2) and assess three
front-running mitigation categories (§3) for their isolated and combined effi-
cacy in neutralizing front-running (Figure 1). We introduce a speculative sand-
wich attack on input batching techniques (§3.2), which can be mitigated with
private user balances and secret input stores (§3.3).

Adversarial power §3 Mitigation

1. Transaction sequencing
§3.1 Fair ordering

§3.2 Batching of blinded inputs
Commit & reveal

2. Inference of user intent
Input aggregation

§3.3 Private user balances & secret input store

Fig. 1. Overview of mitigation techniques

Fair ordering (§3.1), implemented at the consensus protocol layer, ensures
that the local receipt-order of gossiped transactions seen by a node is consistent
with the final transaction ordering in the blockchain. We observe that fair or-
dering effectively mitigates the miner’s ability to freely sequence transactions,
but introduces a front-running adversary which rushes the network.

User balance & input store

Public Private, secret

Batching of

blinded inputs

Commit & reveal Speculative

Sandwich Attacks

Taint of user balances

Input aggregation -

Fig. 2. Efficacy: batching of blinded inputs.

Batching of blinded inputs (§3.2) replaces the sequential model of DeFi
interaction with a round-based one, where user inputs are blinded in each round
to ensure input independence, thereby thwarting front-running strategies that
rely on prior knowledge of other users’ intentions. However, if user balances
are public, the input may still be partially inferred when the valid user’s in-
put space is constrained by its balance: here, we contribute a novel, speculative
front-running attack that exploits the direction of an automated market maker
(AMM) swap, leaked from the victim’s public balance. Furthermore, we highlight
differences between commit & reveal and input aggregation approaches to batch-
ing of blinded inputs (Figure 2). In commit & reveal schemes, user inputs are
revealed individually : Although front-running in the specific round is no longer
possible, they necessarily leak information about the subsequent balance-update
for each participating user, even if the user balances are private. If the taint of
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private balances is sufficiently strong, this can allow the front-running adversary
to infer the users future inputs (e.g. the intended AMM swap direction).

Private user balances (§3.3) are thus necessary to prevent the leakage of
the valid user input space from balances and application state. Although DeFi
state must generally remain public to retain its utility [2], we show that it is
necessary to shield certain fragments thereof which explicitly reveal future user
intent. Secret input stores (§3.3) protect inputs that are evaluated by the
application after a time delay [44] or, in the case of order books, whenever a
match with other user inputs [24,7] can be found.

2 Front-running attacks

AMM sandwich: We briefly summarize the functionality of constant product
AMM’s, namely, a liquidity pool holding token balances, r0 and r1, of two differ-
ent token types, τ0 and τ1 respectively, s.t. r0 · r1 is always constant when swaps
are being carried out between τ0 and τ1. A user swaps units of τ0 for units of
τ1 by authorizing a left swap action SL(v : τ0, w : τ1). Here, the user is sending
v : τ0 to the AMM in return for at least w : τ1 (swap limit). For this left swap to
be valid, the product of the reserves must be maintained. Thus, the following re-
lation between initial and updated reserves must hold: r0 ·r1 = (r0+v) ·(r1−w′),
where w′ ≥ w and w′ represents the units of τ1 that the user actually gets. We
refer w as the swap limit. A right swap of SR(v : τ0, w : τ1) follows similarly: the
user sends w : τ1 for at least v : τ0 in return such that r0 · r1 = (r0−v′) · (r1+w)
and v′ ≥ v where v′ represents the units of τ0 received. Constant product AMM’s
exhibit slippage: subsequent swaps in the same direction exhibit decreasing ex-
change rates.

User swaps can be “sandwiched”, exploiting slippage for the gain of the
attacker. Consider a left swap A : SL(vA : τ0,wA : τ1) submitted by user A. A
front-run swap by attacker M in the same direction reduces the exchange rate
for the subsequent victim swap: a final back-run swap by M in the opposing
direction then profits from an improved exchange rate.

M : SL(vfM : τ0,w
f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Optimal front-run (vfM,w
f
M) and back-run (vbM,w

b
M) parameters are a function of

the victim’s swap, inferred from the pending victim transaction gossiped across
the network [5].

We illustrate a step-wise execution of a sandwich in Figure 3 and introduce
notation for user and AMM state proposed in [4] for this purpose. The wallet of
A is modelled as the term A[vi : τ0, ..., vn : τn], where v0, ..., vn are the respective
balances of token types τ0, ..., τn. The state of an AMM holding token types τ0
and τ1 is given by its reserve balances (r0 : τ0, r1 : τ1). Thus, we express the
system state as a composition of wallets and reserve balances.

A[v : τ] | (r0 : τ0, r1 : τ1)

Let the initial AMM balance be (100 : τ0, 100 : τ1). User A wishes to perform
the swap A : SL(15 : τ0, 10 : τ1). For simplicity, we assume unit values of τ0
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and τ1 to be equal: given the ratio of AMM reserves is 1, there is no arbitrage
opportunity to be exploited [4]. If A’s order is executed immediately, A receives
13 : τ1 for the 15 : τ0 it sends to the AMM. Instead, however, if the user
swap is sandwiched by attacker M (Figure 3), A only obtains the minimum
amount 10 : τ1, implying a reduction of 3 : τ1. Note that the reserve product

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1)

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1)

A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1)

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1)

Fig. 3. Sandwich attack

is maintained at each execution step and that the sandwich execution preserves
the initial reserve ratio: the attack leaves no arbitrage opportunity unexploited.
The attacker M’s profit of 5 units of τ0 (or τ1) is optimal [5]: A receives the
minimum amount possible, namely its swap limit.

Scheduled AMM sandwich: For certain AMM variants, the knowledge of
the user’s intent to perform a swap can be directly inferred from the blockchain
state. Paradigm [44] propose scheduled AMM swaps, or more generally, scheduled
inputs. Let A : SL(15 : τ0, 10 : τ1, r) be a swap that is not executed immediately,
but scheduled for evaluation together with the first user-AMM interaction fol-
lowing blockchain round r, thus requiring no further interaction from A. Since
scheduled orders are stored in the AMM smart contract and evaluated at the
beginning of a known round, the sandwich attack strategy can be exploited, al-
beit over two block rounds [44]: the front-run is sequenced at the end of round
r and the back-run as the first newly submitted swap of round r + 1.

Generalized front-run attacks: In decentralized finance, actions exist which
are profitable for the authorizing user, but which can also be performed by any
other agent with a sufficient balance. In the permissionless blockchain setting,
generalized front-runners, a term coined by Daian [37], are automated agents that
identify profitable, pending transactions, which can be authorized by any user,
and simply replicate these with their own account, thereby depriving the original
transaction submitter of it’s profit. Since the security of DeFi applications rely
on rational agents to solve for profitable arbitrage [46,43,20] and liquidation [40]
strategies, the presence of generalized front-running threatens to restrict such
opportunities to agents colluding with miners.
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3 Mitigation categories

3.1 Fair ordering

A recent line of research [33,30,31] has formalized an intuitive notion of γ-receipt-
order-fairness: given two distinct transactions tx and tx′ broadcast by users,
receipt-order-fairness of a consensus protocol ensures that tx will be finalized
prior to tx′ if a γ fraction of network nodes receives tx prior to tx′. However,
Kelkar et al. [30] show that even if all nodes agree on the relative order in
which any pair of transactions were first observed at the gossip stage, a global
transaction ordering of all transactions consistent with the local view of pair-wise
orderings is not always possible (Condorcet Paradox). Instead, a weaker notion
of γ-batch-order-fairness is realized in [31], where tx will be sequenced prior to
or in the same block as tx′ if a γ node fraction receives tx first.

Front-running despite fair ordering: Although order fairness removes the
miner or block-round leader’s privilege to sequence transactions, it introduces
a new front-running adversary: here, a rushing agent that observes a pending
victim transaction tx before it has been received by a γ fraction of nodes can
send its front-running tx′ to a γ threshold of nodes just before tx is received
by the same network fraction. Whereas in the standard setting the miner or
round leader incurs no additional cost for front-running victims, a non-trivial
communication cost is now imposed on the rushing adversary. Still, since order-
fairness does not eliminate front-running attacks, the motivation for stronger
front-running mitigation properties remains.

3.2 Batching of blinded inputs

Batching of blinded inputs is a technique to ensure 1) the independence between
user inputs and 2) the prevention of any adversarial sequencing of inputs. Inter-
actions occur in rounds: in each, inputs are committed during the input-phase,
followed by an output phase where the application state is updated after evalu-
ating user inputs with valid parameters. The collection of inputs can occur in a
smart contract or by a committee executing a cryptographic protocol which au-
thorizes the distribution of funds from a smart contract in the output phase. The
update of the application state following each round can result from the evalu-
ation of valid inputs in randomized order or an application-specific aggregation
thereof: for example, a subset of submitted AMM swaps can be aggregated into
a single resulting swap. In batching of blinded inputs, we distinguish between
commit & reveal and input aggregation (fig. 4). Both schemes commit in-
puts in the input-phase of each round, thereby ensuring input independence.
However, while input aggregation keeps the users’ input private indefinitely,
commit & reveal schemes leak individual user inputs when commitments are
opened, thereby offering no input privacy by definition. Input privacy is nec-
essary to prevent front-running in subsequent interaction rounds: past inputs
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Input

independence

Input

privacy

Open

challenges

Commit & reveal

Hash commitments* - - Output bias

Timed commitments* • - Delay parameters

Threshold encryption** • - Honest majority

Secure multi-party

computation**

• - Honest majority

Input aggregation
• • Abort penalty

Homomorphic encryption** • • Efficiency

Fig. 4. Batching of blinded inputs sent to a smart contract* or committee**

leak information about updates to private balances (§3.3), which in turn can be
exploited by front-runners, as balances constrain the valid user input space.

Past user inputs
reveal−−−→ Private user balances

reveal−−−→ Future user inputs

In contrast, input aggregation only outputs the application state update: for
aggregated AMM swaps, only reserve updates are revealed, and updates to user
balances remain private, if private balances are supported. Naturally, input ag-
gregation can only offer input privacy up to the input batch size.

Commit & reveal: Although hash commitments collected by a smart contract
may appear to be an obvious approach to implement the commit & reveal func-
tionality, they suffer from output bias, as the adversary can selectively refrain
from opening its commitment.

Time-lock puzzles [41] or timed commitments [11] generated by users and
sent to a smart contract promise to eliminate output bias, since the adversary’s
commitment can be force-opened after a delay, guaranteeing the inclusion of its
input in the output-phase. However, in the worst case, each user time-locked
input must be solved separately by a constant number of squaring operations
in a randomly sampled group, rendering the approach impractical for larger
batches of time-locked inputs. To this end, Doweck and Eyal propose multi-
party timed commitments [22] constructed from El-gamal encryption with a
randomly sampled public key of a small group size. All inputs are encrypted with
a random public key and opened when the private key is discovered by brute-
force. However, key space exploration is parallelizable, such that no lower bound
of operations can be guaranteed. Furthermore, it remains an open challenge
to match time-lock puzzle parameters to real-world delays which depend on
assumed gate speeds used in practice.

Threshold encryption [21] can realize a commit & reveal scheme with the
assumption of an honest majority committee holding trapdoor information of the
encrypted inputs. In a setup phase, a public key is produced by the committee,
with which users encrypt their inputs in each round. Encrypted inputs are posted
to a smart contract which verifies the decryption by the committee during each
reveal-phase.

Secure multi-party computation [45,27] (MPC) has been proposed [35,1] to
realize a commit & reveal functionality with guaranteed input reveal in an anony-
mous fashion, also formalized as anonymous committed broadcast (ACB) in [1].
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The anonymization of inputs is achieved by random shuffling of user inputs in
an efficient manner. Here, honest majority MPC protocols [8,18] are favoured, as
the output is guaranteed as long as the honest majority assumption holds true.
To implement a DeFi application with MPC, an MPC-controlled smart contract
is required, to which users send their funds prior to each round.

MPC
servers

Smart
contract

Users

3a. Authorization

2. Private Intent 1. Funds in

3b. Funds out

In the output phase of each MPC round, funds in the smart contract are redis-
tributed to users according to the output(s) of the MPC execution. In practice,
users can safely delegate the MPC execution to a group of servers [1].

Input aggregation: Naturally, MPC can realize any aggregation function over
private user inputs, and in some instances in an efficient manner. Given the
emphasis on the privacy of inputs, dishonest majority MPC protocols [14,10,19]
are favoured, which ensure that private inputs can never be obtained by the
adversary as long as a single participant remains honest. Informal proposals to
implement AMM instances in a dishonest majority MPC have been proposed
by Li et al. [34]. Although dishonest majority MPC can be aborted by a single
dishonest party, a recent line of research [32,6,7] has realized an efficient set
of protocols that identify and financially punish the aborting adversary. This
achieves a weaker notion of fairness as the rational adversary is incentivized to
never abort. Still, the penalty must exceed the financial option value of aborting
in order to be effective: given that inputs are private, it remains an open research
question on how to size financial penalties for identifiable abort in MPC.

Penumbra [39] proposes the use of homomorpic encryption to realize the se-
cure aggregation of homomorphically encrypted AMM swap orders. The aggre-
gated swap is then decrypted to reveal the updated AMM reserves. User balances
are implemented with private coins (see §3.3), thus the privacy of the inputs are
only dependent on the batch size. We note the non-trivial complexity of aggre-
gating a batch of encrypted AMM swaps with swap limit constraints: efficient
secure multi-party computation with fully homomorphic encryption schemes re-
mains an open research problem [26]. In [39], consensus validators are proposed
to perform the secure computation, consolidating MPC and consensus layers.

Speculative sandwich w/public user balances: We illustrate that batch-
ing of blinded inputs alone is not sufficient to prevent front-running attacks.
Instead, speculative AMM sandwich attacks are possible in blinded input batch-
ing schemes as long as the direction of the victim swap is known by the adversary.
This can be inferred from public user balances, as detailed in the subsequent ex-
ample. Such speculative sandwich attacks on batched inputs also assume that
the adversary in the permissionless setting can “isolate” a single victim’s input
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in a given round, such that only front-run and victim transactions remain: we
argue that each batching round has participant limits due to gas constraints or
number of clients that MPC servers can support. Thus, the adversary can oc-
cupy any arbitrary number of user slots per round and provide invalid inputs5

on slots not dedicated to the front-running swap. In this speculative attack, we

Round r Round r+1

M : SL(vfM : τ0,w
f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Fig. 5. Speculative sandwich

assume that private AMM swaps in each blinded input batch are evaluated in a
random order, as proposed in [34,1]. The front-running M can only speculate on
achieving the correct order to execute the sandwich. Since balances are public,
M can observe that A’s balance of τ1 is zero: thus, A’s submitted swap to the
AMM (τ0, τ1) must be in the left direction. M submits the front-run swap in the
same direction as the victim in the initial round r.

In the optimistic case shown in Figure 5,M’s front-run swap is evaluated prior
to the victim swap (in round r), thus enabling M to position the profitable back-
run swap in round r + 1, where all other users are prevented from submitting
inputs. M’s front-run parameters can be chosen such that the front-run swap
simply does not execute should the front-run not be ordered prior to the victim
swap in round r, thereby aborting the attack. We refer to Appendix A for the
proof that this speculative sandwich is rational for the attacker.

An execution of a speculative sandwich is shown in Figures 6 and 7: here,
adversaryM observes victim A’s interaction with an AMM which batches blinded
inputs. A has a public balance of 20 : τ0 only, allowing M to infer that A can only
perform a left swap from τ0 to τ1 with an input amount of at most 20 : τ0. The
attack strategy is executed over two subsequent rounds beginning in the initial
state shown in Figure 6, where we assume unit values of τ0 and τ1 are equal.

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[20 : τ0] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[21.5 : τ1] | (122 : τ0, 82 : τ1)

Round r + 1
M:SR(22:τ0,18:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[22 : τ0, 3.5 : τ1] | (100 : τ0, 100 : τ1)

Fig. 6. Successful speculative sandwich

In the first round r, M submits the front-run swap in the same direction as
the victim’s, with arbitrarily chosen input amount 7 : τ0. The minimum output

5 e.g. AMM swap parameters which cannot be executed in the current AMM state.
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amount or swap limit of the front-run is then is chosen to be 6.5 : τ1 such that
(100 + 7) · (100 − 6.5) = 1002 holds: thus, if the front-run were executed in the
initial state, M would receive exactly its swap limit. Since all other user orders
(other than the victim swap of A) are suppressed, there is a probability of 0.5
that the front-run is randomly evaluated before the victim’s swap, as shown in
Figure 6. The back-run swap of M in the opposing direction then follows in the
subsequent round with probability 1, since M suppresses all user actions other
than its own back-run. Assuming equal unit value of both token types, the attack
profit for M is 3.5.

Should the front-run ordering fail (Figure 7), then M’s front-run parame-
ters are chosen such that the front-run swap will not execute, resulting in an
abort of the speculative sandwich attack. This is due to the chosen front-run
parameters: following the execution step of A’s swap in Figure 7, the constant
product invariant can only hold if M receives 5 : τ1 for the 7 : τ0 it sends:
(115 + 7)× (87− 5) = 1002. However, this contradicts M swap limit of 6.5 : τ1,
such that the front-run cannot execute in the state following A’s swap. M can
still perform a back-run in round r+ 1, thereby restoring the initial reserve ratio
and extracting an arbitrage profit of 2, which is less than in the successful spec-
ulative sandwich execution in Figure 6. Still, the speculative sandwich attack is
always profitable, as shown in Appendix A.

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)
M:(((((

SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)

Round r + 1
M:SR(15:τ0,13:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[22 : τ0, 2 : τ1] | (100 : τ0, 100 : τ1)

Fig. 7. Aborted speculative sandwich

Importantly, if victim A’s swap direction were unknown, M would have to
guess the direction of the front-running swap. An incorrect guess can result in a
loss forM as shown in Appendix B. Thus, we argue that private user balances are
necessary for batching of blinded inputs to be effective. Furthermore, for sched-
uled AMM orders introduced in [44], private user balances remain insufficient if
scheduled orders are stored in public smart contracts: we sketch a speculative
sandwich attack on publicly scheduled swaps in Appendix C. Finally, we note
that hash-based commit & reveal schemes permit speculative sandwich attacks
even when user balances are private, as the adversary can selectively reveal the
appropriate sandwich strategy which matches on the swap first revealed by the
victim (Appendix D).
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3.3 Private & secret state

As argued in §3.2, both the aggregation of blinded inputs and use of private bal-
ances and secret input stores is necessary to mitigate front-running in the current
and future rounds. Whilst it may be possible to maintain the entire DeFi ap-
plication state secretly in an MPC instance in order to prevent front-running,
this will naturally reduce its utility to users in the permissionless setting. No-
tably, Angeris et al. [2,15] argue that both marginal price and validity of a given
AMM swap order must be queryable for an AMM interaction to be meaningful.
Therefore, we restrict our study of secret state in DeFi applications to user in-
put stores [44,24], which maintain submitted inputs until they are evaluated or
executed at a later point in time.

Private user balances: Private block-chain currencies and tokens have been
realized with zero-knowledge proof systems: confidential transactions [36] shield
output amounts with efficient zero-knowledge range proofs [13], thereby ensur-
ing that newly created output values do not exceed those spent by the same
transaction. Confidential transactions only shield output amounts: a transaction
graph connecting outputs can still be inferred from public transactions on the
block-chain, permitting coin taint to propagate downstream.

Z-cash [42] style decentralized anonymous payment (DAP) schemes break
such public links between outputs, as well-formed relations between new and
spent outputs are not revealed but publicly verifiable with SNARK [28,25,38,9,29]
zero-knowledge proofs. DAP schemes have also been proposed for DeFi func-
tionality in Manta [16], but here front-running is not mitigated, since the AMM
reserve state is public and swap inputs are not batched. Even though swap pa-
rameters are blinded in Manta, each individual swap execution results in a public
update of AMM reserves. Thus, the affect of each swap on the current AMM
reserves is known, leaking exchanged amounts and permitting sandwich attack
strategies.

Importantly, when implementing input batching (Figure 4) with secure com-
putation and block-chains supporting private user balances, zero-knowledge proofs
must be generated inside the MPC instance in order to update private user
balances. Doing so efficiently in MPC or even fully homomorphic encryption
remains on open research question.

Finally, Submarine commitments [12] propose that users can rely on k-
anonymity alone to privately commit funds during the input-phase without the
use of private balances. Here, users commit value to an k-anonymized address
which can only be withdrawn by a specific smart contract after the address is
revealed together with the input by the user.

Secret input stores: We note that shielded scheduled AMM swaps [44] or long-
running order lists [24] cannot be maintained by encryption alone: encryption
of a scheduled swap by a user implies its decryption at a later stage, requiring
repeated user interaction, and thus defeating the purpose of scheduled inputs.
Alternatively, a decryption by an honest majority committee implies that the
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round or block-height of the input schedule is known. Instead, we suggest a
long-running MPC instance to realize secret input stores in decentralized fi-
nance. Here, stored inputs are secret shared across MPC servers: in each round,
both newly submitted inputs and secretly stored inputs are secretly evaluated to-
gether to update the application state, neither being visible to the front-running
adversary.
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A Formalization: speculative sandwich

We formalize the example attack trace introduced in Figure 5 and prove that
the attack strategy is either profitable or cost-neutral for the attacker. Again,
we assume unit value of τ0, τ1 to be equal, and the initial AMM reserve state to
be (r : τ0, r : τ1): in this state, there is no arbitrage opportunity to be exploited,
simplifying our analysis. We omit both AMM and transaction fees.

The victim A swap direction is left, inferred by M from A’s public balance of
vinitA : τ0 (A holds no units of τ1). The attack strategy is as follows:

1. Round r: Front-run victim with M : SL(vfM : τ0,w
f
M : τ1) such that

(r + vfM) · (r − wf
M) = r2 (1)

2. Round r + 1: Back-run victim in opposing direction to reestablish initial
AMM reserve ratio, or if attacker balance is insufficient, back-run with largest
amount available to attacker M.

We must show that this strategy is always profitable (when the victim swap
direction can be inferred by the attacker). We note that there are several variables
beyond the attackers control. The ordering of both front-run and victim swap
in round r is random. Thus the desired ”front-run” ordering of the victim swap
in round r may not succeed (the sandwich is unsuccessful if the victim swap
precedes attacker front-run swap). Furthermore, the victim swap parameters can
be arbitrarily chosen, so that the victim swap may not be enabled or execute in
a given sequence. Thus, we must exhaustively demonstrate the profitability of
the attacker strategy for all possible cases:

1) Successful sandwich & enabled victim swap
2) Successful sandwich & disabled victim swap
3) Unsuccessful sandwich & enabled victim swap
4) Unsuccessful sandwich & disabled victim swap

Case 1: (Successful sandwich & enabled victim swap): We illustrate the symbolic
execution of the attack trace below in terms of initial balances, chosen swap
parameters and exchanged amounts.

0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w
′
A : τ1] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] |
(r + vfM + vA : τ0, r − wf

M − w′
A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM − vfM + vbM

′
: τ0,w

init
M + wf

M − wb
M : τ1] |

(r + vfM + vA − vbM
′
: τ0, r − wf

M − w′
A + wb

M : τ1)
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We show that the attack is profitable. For τ0 and τ1 of equal unit value, the net
change in value exchanged by M must be positive. Thus, we must prove

profitM = −vfM + wf
M − wb

M + vbM
′
> 0 (2)

Note that the amounts exchanged in the front-run are equal to the front-run
parameters (vfM,w

f
M), as they are chosen such that (1) holds. We consider the

sub-case (a) in which the attacker M has sufficient balance to perform the
back-run swap such that the AMM reserves are restored to the original state
and the sub-case (b) in which the attacker initially has no balance of τ1 to
perform the back-run: winit

M = 0. Here, the funds of τ1 required to execute the
back-run are received entirely in the front-run execution.

For sub-case (a), we rewrite (2) in terms of independently chosen param-
eters vfM, vA (the attacker only knows the victim swap direction) and initial
reserve amounts r. The reserves of the AMM are restored to the initial state
in final state 3 : summing all step changes to the reserves across the sandwich
execution yields

r + vfM + vA − vbM
′
= r r − wf

M − w′
A + wb

M = r

vfM + vA − vbM
′
= 0 − wf

M − w′
A + wb

M = 0

or

vbM
′
= vfM + vA wb

M = wf
M + w′

A

Inserting RHS of equations above into our proof obligation (2) yields

profitM = −��v
f
M +��v

f
M + vA +�

�wf
M −�

�wf
M − w′

A >? 0

vA − w′
A >? 0 (3)

To evaluate whether this inequality holds, we must solve for w′
A in terms of

vA and vfM chosen independently by the victim and adversary respectively. We
exploit the constant reserve product invariant which holds for across the entire
execution.

(r + vfM) · (r − wf
M) = r2 (front-run swap)

(r + vfM + vA) · (r − wf
M − w′

A) = r2 (victim swap)

We can derive r − wf
M = r2

r+vfM
from the first equation, and substitute the RHS

for r − wf
M in the second equation to obtain

(r + vfM + vA) · (
r2

r + vfM
− w′

A) = r2
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Solving for w′
A ...

w′
A =

r2

r + vfM
− r2

r + vfM + vA

=
r2(r + vfM + vA)− r2(r + vfM)

(r + vfM)(r + vfM + vA)

=
r2

r2 + (2vfM + vA)r + (vfM)
2 + vAvfM

· vA

and substituting the RHS for w′
A in the proof obligation in (3) finally yields

profitM = (1− r2

r2 + (2vfM + vA)r + (vfM)
2 + vAvfM

) · vA > 0 (4)

The fraction expression above is less than 1 for any choice of positive vfM and vA
as the numerator is smaller than the denominator. The attacker profit is thus
positive and increases with vM, justifying the front-run swap by M.

Next, we consider the sub-case (b), where the attacker initially has no
balance of τ1, and restate the profit of attacker for the reader’s convenience.

profitM = −vfM + wf
M − wb

M + vbM
′
>? 0

We assume initial attacker balance in winit
M : τ1 to be 0 : τ1, so that all the

amount of τ1 available for the back-run in state 2 is received in the front-run:
thus, substituting wb

M = wf
M into the equation above yields

profitM = −vfM + vbM
′
>? 0 (5)

To prove this inequality, we solve for vbM
′
in terms of vfM and vA chosen indepen-

dently by the victim and adversary respectively and initial reserves amounts r.
We exploit the constant reserve product invariant which holds throughout the
execution.

(r + vfM) · (r − wf
M) = r2 (Front-run)

(r + vfM + vA) · (r − wf
M − w′

A) = r2 (Victim swap)

(r + vfM + vA − vbM
′
) · (r − wf

M − w′
A + wb

M) = r2 (Back-run)

Since wf
M = wb

M is assumed in sub-case (b), the 3rd equation (back-run) yields

vbM
′
= r + vfM + vA − r2

r − w′
A

(6)

From the 2nd equation (victim swap), we solve for w′
A in terms of independent

parameters vfM, vA and r

w′
A = r − wf

M − r2

r + vfM + vA
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From the 1st equation (front-run) wf
M =

r·vfM
r+vfM

, so we can rewrite the above as

w′
A = r − r · vfM

r + vfM
− r2

r + vfM + vA
=

r2

r + vfM
− r2

r + vfM + vA
=

r2 · vA
(r + vfM)(r + vfM + vA)

r − w′
A =

r(r + vfM)(r + vfM + vA)− r2 · vA
(r + vfM)(r + vfM + vA)

Substituting the RHS above for r−w′
A in the denominator expression of (6) and

then substituting the RHS of (6) for vbM
′
in (5) yields

profitM = −��v
f
M + r +��v

f
M + vA − r2(r + vfM)(r + vfM + vA)

r(r + vfM)(r + vfM + vA)− r2 · vA

= vA − r3vA
r(r + vfM)(r + vfM + vA)− r2 · vA

= (1− r2vA
(r + vfM)(r + vfM + vA)− r · vA

) · vA

= (1− r2

r2 + 2vfMr + (vfM)
2 + vAvfM

) · vA (7)

The attacker profit is positive but strictly less than the gain (4) obtained in
sub-case (a).

Case 2 (Successful sandwich & disabled victim swap): Should the victim swap
not execute in round r, then M can simply revert the state of the AMM with a
back-run in the round r+1 with the same parameter values as in the front-run.

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:((((((
SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

Case 3 (Failed sandwich & enabled victim swap): We must show that the at-
tacker front-run must be disabled assuming the attacker parameters are chosen
as described in the attack strategy. Further, we can demonstrate that the back-
run by the attacker is profitable.
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0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′

A : τ1)

M:((((((
SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′

A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM + vbM

′
: τ0,w

init
M − wb

M : τ1] | (r : τ0, r : τ1)

As described in step (1) of attack strategy, M’s front-run parameters are chosen
such that

(r + vfM) · (r − wf
M) = r2

wf
M =

r · vfM
r + vfM

(8)

Thus, the front-run swap is only enabled if the received amount is equal or
greater to wf

M shown above. Note, that this doesn’t hold if the front-run is
executed in state 1 of case (3) following the enabled victim swap. We prove this
by contradiction: assume that the front-run executes following the victim swap,
then the constant reserve product invariant must hold.

(r + vA) · (r − w′
A) = r2 (Victim swap)

(r + vA + vfM) · (r − w′
A − wf

M

′
) = r2 (Front-run)

We solve for (r − w′
A) in the first equation and insert into the second equation

to obtain

(r + vA + vfM) · (
r2

r + vA
− wf

M

′
) = r2

Further, we solve for wf
M

′
in terms of r, vA and vfM

r2

r + vA
− wf

M

′
=

r2

(r + vA + vfM)

wf
M

′
=

r2

r + vA
− r2

r + vA + vfM
=

r2 · vfM
(r + vA) · (r + vA + vfM)

=
r

r + vA
· r · vfM
(r + vA + vfM)

Comparing with wf
M in (8), we can infer the following inequality

wf
M

′
< wf

M

which cannot hold in a valid execution by definition of swaps: a user cannot
receive less than the chosen swap limit. Thus, the front-run cannot be enabled
in state 1 of case (3).

Next, we prove the profitability of the back-run. Assuming a sufficient balance
of the attacker to revert the effect of the victim swap, the swap parameters of
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the back-run can be chosen to reverse the affects of victim swap on the AMM
reserves, which M observes following the output-phase of round r: namely, vbM =
vA and wb

M = wA
′. We insert these into the reserve product invariant from the

victim swap

(r + vA) · (r − wA
′) = r2 (Victim swap)

to obtain

(r + vbM) · (r − wb
M) = r2

wb
M =

r

r + vbM
· vbM

wb
M < vbM

For equal unit value of both token types, this is clearly profitable, as M receives
more value (vbM) as it sends (w

b
M). If attacker has no balance of τ1 it simply omits

the back-run and the attack is aborted, resulting in a cost-neutral execution for
the attacker.

Case 4 (Failed sandwich & disabled victim swap): As in case (2) - should the
victim swap not execute in round r, then M can simply revert the state of the
AMM with a back-run in the round r + 1

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
A:((((((

SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

M:SL(vfM:τ0,w
f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

B Speculative sandwich with private user balances

Importantly, when performing the speculative AMM swap attack as shown in A,
the direction of the victim swap must be known. If user balances are private, M
will have to guess the direction of the front-running swap. However, this is not
a profitable strategy: an incorrect guess can result in a loss for M as shown in
the trivial example execution below.
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A[10 : τ0, 10 : τ1] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[10 : τ0, 10 : τ1] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)

A:SR(17:τ0,6.5:τ1)−−−−−−−−−−−→ A[7 : τ0, 3.5 : τ1] | M[21.5 : τ1] | (100 : τ0, 100 : τ1)

Again, assuming equal unit value of τ0 and τ1, M realizes a loss of 7+15−21.5 =
0.5. No back-run swap is possible that extracts any arbitrage value given that
the reserve ratio is already consistent with the assumption that unit values of
τ0 and τ1 are equal [4]. Thus, speculative sandwich attacks are only rational if
the victim swap direction can be inferred, motivating the need for private user
balances.

C Example: speculative sandwich of scheduled swap

We illustrate an example of a sandwich of a scheduled swap. Such an attack
can be exploited despite the batching of blinded user inputs §3.2, as long as
input schedules remain public. Let A : SL(20 : τ0, 15 : τ1, r) be a swap action
that is scheduled to execute as soon as possible following block-chain round
r, thus requiring no further interaction from the user. Further, let the set of
scheduled swap orders be captured in a publicly observable state fragment, i.e.
Γ = [ A : SL(15 : τ0, 10 : τ1, r) ]. In practice, such a scheduled swap order will be
evaluated prior to the first swap order in round r + 1, so that it is not possible
for the adversary to place a front-run swap before it in round r + 1.

However, the sandwich attack can still be executed by an adversary which
prevents honest users from submitting swap. The adversary simply submits the
front-run to round r, and the back-run to round r + 1, whilst suppressing all
other user inputs.

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1) | Γ
Round r

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1) | Γ
Round r + 1

A:SL(15:τ0,10:τ1,r)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1), r ]

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1, r) ]

We emphasize that scheduled swap orders do not require the submitting user
A to participate in the round it is scheduled: it is evaluated automatically by
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the application. Furthermore, since the victim’s swap parameters are public, the
front-run and back-run parameters can be chosen to optimize M’s profit.

D Speculative sandwich in hash-based commit & reveal
schemes

As shown in Appendix A, the speculative sandwich attack is rational as long as
the direction of the victim swap is known. Hash-based commit & reveal schemes
suffer from selective output by the adversary (fig. 4), permitting a speculative
attack to succeed even if the swap direction cannot be inferred from public user
balances. Here the attacker simply commits two front-run swaps of opposing
directions in the same round as the victim swap, whilst suppressing other user
inputs. In the output-phase, the adversary learns the direction of the victim swap
before having to open its own commitments and selectively opens the front-run
of the same direction as the victim swap, whilst refraining from opening the
other front-run swap. The back-run is then executed as in Appendix A.


