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Abstract

This paper studies the conduct of monetary policy in a model with an endogenous

degree of expectations anchoring. I use an estimated New Keynesian model with en-

dogenous forecast switching to replicate the time-varying excess sensitivity of long-term

inflation expectations to inflation surprises as well as the resulting movements of long-

term inflation expectations. In this model, de-anchoring leads to increased inflation

volatility and can cause deflationary spirals when the zero lower bound (ZLB) is bind-

ing. This can be prevented by an asymmetric monetary policy rule which responds

more aggressively to below-target inflation. Price Level Targeting, on the other hand,

can increase the risk of deflationary spirals near the ZLB.
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1. Introduction

The anchoring of inflation expectations is a central tenet of monetary policy making. Most

central banks in advanced economies try to anchor private long-term inflation expectations to

their inflation target. Anchored long-term expectations reflect the trust in the central bank’s

commitment to offset inflationary shocks and to bring inflation eventually back to target.

However, when households lose trust in the central bank’s commitment, their expectations

may de-anchor so that they start to believe that temporary inflation movements will have

permanent effects. This may cause long-term expectations to eventually diverge from the

central bank’s target. The resulting sensitivity of long-term expectations to short-term

conditions can lead to self-reinforcing inflation movements as in the 1970s (see Figure 1).1

More recently, fears of deflationary de-anchoring following the great recession of 2008-09 have

renewed the importance of this question. Concerns about inflationary de-anchoring have been

raised as well as a consequence of the monetary responses to the Covid-19 pandemic (Reis,

2021) and the war in Ukraine (Federal Open Market Comittee, 2022).

Therefore, this paper studies the conduct of monetary policy when the anchoring of ex-

pectations is evolving endogenously. First, I illustrate the time-varying excess sensitivity

of long-term inflation expectations to inflation surprises using survey data from the U.S.

This feature of the data is consistent with forecasters perceiving temporary shocks as having

permanent effects. I then show that such a de-anchoring can occur in a model of endoge-

nous forecast switching even when structural shocks are transitory and the central bank is

committed to stabilising inflation.2 I take the model to the data and provide the first gen-

eral equilibrium model with endogenous de-anchoring that is fully estimated using likelihood

methods and expectations data.

Using this model, I evaluate two policy frameworks, Inflation Targeting (IT) and Price

Level Targeting (PLT), in terms of their stability properties and their ability to stabilise

inflation. My analysis delivers two key policy implications. First, PLT can increase the

risk of deflationary spirals near the zero lower bound (ZLB) unless the central bank reacts

1There is no widely agreed-upon definition of expectations de-anchoring (Kumar et al., 2015). Instead,
researchers work with a set of properties commonly thought to characterise de-anchored expectations, such
as sensitivity of long-term expectations to inflation news or short-term expectations. A common theme
of de-anchoring is that households perceive temporary shocks to have persistent effects, even if this is not
justified by the fundamental structure of the economy. Because these expectations are not necessarily model-
consistent, de-anchoring is not easily handled in the context of rational expectations, as Ben Bernanke pointed
out in his speech at the NBER Monetary Economics Workshop in July 2007.

2In this paper I study the possibility of de-anchoring despite the central bank’s commitment to stable
inflation. Of course, de-anchoring can also arise when the central bank does not attempt to stabilise inflation,
e.g. because it misinterprets the state of the economy or because it accommodates the fiscal authority. In
this case policy prescriptions are more straightforward compared to the case when de-anchoring is driven by
agents’ beliefs.
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extremely aggressive to movements of inflation. Second, an asymmetric policy rule that

responds more aggressively to below-target inflation than to above-target inflation addresses

the risk of de-anchoring best. Similar to the ECB’s recently adopted new strategy (ECB,

2021), this implies a state-dependent central bank reaction function. However, by being

more willing to tolerate above-target inflation than below-target inflation, this policy goes a

step further to counter the risk of expectations de-anchoring.

The key feature of my model is that households optimally choose between two competing

forecasting heuristics in the sense of Brock and Hommes (1997): the first heuristic forecasts

inflation and output basically as under rational expectation, in the sense that it maps the

exogenous states today into output and inflation tomorrow, but updates the parameters of

the forecasting function using adaptive learning (Evans and Honkapohja, 2001). The second

heuristic does not assume that the central bank stabilises the economy and accordingly

forecasts a random walk in output and inflation.3 The share of agents using this naive,

random walk forecasting heuristic has a direct interpretation as the degree of de-anchoring:

naive forecasters perceive changes of inflation to be permanent. Thus, de-anchoring occurs

when the share of naive forecasters increases because the naive forecasting heuristic yields

smaller forecast errors. In that case, the sensitivity of long-term inflation expectations to

short-term developments increases.

Figure 1: 10-year Ahead U.S. Inflation Expectations & Realised Inflation

This theory of expectation formation embedded in an otherwise standard New Keynesian

(NK) framework provides a novel, quantitatively realistic model of endogenous expectation

3This is the rational forecast for agents who do not believe that the central bank follows the Taylor
principle (i.e. agents who believe that φπ = 1) and who do not account for the fact that other agents might
hold diverging forecasts (i.e. agents who engage in level-0 thinking). Therefore, the selection between these
two forecasting heuristics can be interpreted as social learning about the central bank’s responsiveness to
inflation.
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de-anchoring. The model features the same steady state as under rational expectations (RE)

but when expectations de-anchor, the volatility of output growth and inflation increases.

Even if expectations de-anchor, monetary policy can prevent inflationary or deflationary

spirals if it reacts more than one-to-one to inflation, i.e. if the Taylor principle is satisfied.

When monetary policy is constrained by the zero lower bound, however, de-anchoring can

lead to self-reinforcing deflationary spirals (a feature absent from the standard rational ex-

pectations model and different from the self-fulfilling liquidity trap of Benhabib et al. (2002),

for example). Thus, the potential welfare loss of de-anchoring is asymmetric and bigger in a

low-interest rate environment. My results have implications regarding the monetary policy

regime most likely to ensure macroeconomic stability. I find that Inflation Targeting ensures

stationary model dynamics even when expectations are fully de-anchored. However, under

Price Level Targeting there exists a threshold level of de-anchoring, above which the model

becomes unstable unless the central bank is extremely responsive to inflation. This is the

case because the combination of naive forecasting and a history-dependent policy rule, leads

to explosive dynamics if naive forecasters dominate the economy. To prevent this scenario, a

central bank would have to react to inflation movements by adjusting the interest rate more

than threefold for realistic slopes of the Philips curve. Thus, my findings provide an even

stronger case against PLT when agents are not fully rational than the arguments brought

forward by Mele et al. (2020), contradicting the well-established result under rational expec-

tations of Evans (2012), for example.

I subsequently estimate the model using a particle filter and U.S. expectations data. Here,

I first establish that indeed, the model with forecast switching fits the data much better than

a standard rational expectations model. In fact, this is a common property of models that

deviate from the rational expectations assumption (e.g. Milani, 2007). Furthermore, the

model-implied long-term inflation expectations fit the data quite well even though long-term

expectations were not used in the estimation. As a result, the model-implied expectations,

both short-term and long-term, exhibit the same degree of time-varying sensitivity to news

as the observed forecasts of the SPF. Finally, the model-implied share of naive forecasters

suggests that expectations were highly de-anchored from the 1980s until the early 1990s.

After a period of re-anchoring, the Global Financial Crisis led to another uptick of de-

anchoring. This uptick, however, was small and short-lived.

After having established that the estimated model provides a realistic description of

expectation formation, I use simulation methods to investigate the performance of the two

policy regimes. Price Level Targeting leads to higher welfare than Inflation Targeting in a

high nominal interest rate environment. However, in a low nominal interest rate environment

(i.e. close to the ZLB), Price Level Targeting entails a high risk of deflationary spirals. This
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is not the case under Inflation Targeting. Since the biggest risk of de-anchoring is the

emergence of belief-driven deflationary spirals at the zero lower bound, I argue that an

asymmetric Inflation Targeting framework (in form of the asymmetric Taylor-type rule of

Bianchi et al. (2021)) can address this directly: by reacting more forcefully to below-target

than to above-target inflation, this policy stabilises inflation and prevents deflationary spirals.

Furthermore, it leads to higher welfare than a symmetric Inflation Targeting framework, both

in low and in high nominal interest rate environments. Therefore, the asymmetric policy rule

is more robust than Price Level Targeting across different nominal interest rate environments

and dominates a symmetric policy rule in terms of welfare.4

With this set of results, I contribute to the literature on the conduct of monetary policy

under endogenously (de-)anchored inflation expectations. Here, Eusepi et al. (2021) have

argued that optimal policy is less aggressive under the endogenous anchoring of expectations

relative to rational expectations. Extending this result, Gáti (2020) argues that monetary

policy should respond more aggressively when expectations de-anchor to suppress the volatil-

ity caused by high degrees of de-anchoring. Furthermore, Eusepi et al. (2021) argue that

optimal forward guidance policy makes large, front-loaded promises to stabilise expectations

at the ZLB. These papers have in common that they measure de-anchoring as the magnitude

of the learning gain – the parameter which governs the degree to which expectations react

to forecast errors. The endogenous determination of the learning gain builds on the seminal

work of Marcet and Nicolini (2003) and is estimated in a partial equilibrium version in the

context of de-anchoring by Carvalho et al. (2020).

In contrast, I model de-anchoring using the endogenous switching between different fore-

casting heuristics: de-anchoring is not determined by the size of the learning gain, but by

the endogenous adoption of a naive forecasting heuristic and, thus, by the doubt about the

central bank’s commitment. The time-varying responsiveness of inflation expectations to

news emerges as a symptom rather than an underlying determinant. Unlike the estimated

models of endogenous gain learning, this approach successfully replicates the two periods of

de-anchoring from the 1980s to the early 1990s as well as around the global financial crisis

that have been previously documented (e.g. Strohsal et al., 2016). With this approach, my

paper is closer to the literature on the conduct of monetary policy under endogenous central

bank credibility that builds on the framework by Brock and Hommes (1997). Here, for ex-

ample, Honkapohja and Mitra (2020) discuss the stability conditions of price level targeting.

Further studies in this literature investigate, for example, forward guidance under endoge-

nous credibility (Goy et al., 2020). In a similar fashion, Lansing (2021) models a rational

4In Appendix E I also simulate the performance of an Average Inflation Targeting framework and show
that it does not lead to higher welfare than the asymmetric Inflation Targeting framework does.
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agent who optimally updates his beliefs about the probability of being on the transition

path to the targeted equilibrium or deflation equilibrium. In this model, monetary policy

can improve by reacting to the natural rate gap.

Against the backdrop of this literature, my contribution is threefold. First and foremost,

I discuss different monetary policy frameworks in the first New Keynesian model with en-

dogenous expectations de-anchoring that is fully estimated using likelihood methods and

expectations data.5 As argued before, this model supports the finding that PLT is sub-

optimal when expectations are not rational (Molnár and Santoro, 2014; Mele et al., 2020).

Furthermore, it supports the asymmetric policy proposal of Bianchi et al. (2021) by showing

that it improves over a symmetric policy in a setting of endogenously anchored expectations.

The second main contribution is on the theoretical side. Here I incorporate adaptive

learning into a general equilibrium model featuring heuristic switching. The existing liter-

ature on central bank credibility (e.g. Hommes and Lustenhouwer, 2019; Honkapohja and

Mitra, 2020) commonly constrains heuristics to be either naive or anchored to the central

bank’s target. This combination of heuristics is not well suited to studying de-anchoring:

any deviation from the central bank’s target leads to the adoption of the naive forecasting

rule as households are not aware of the shocks in the model. In contrast, in my setup agents

can make use of either current news to form expectations (i.e. the solution of the standard

NK model under rational expectations) or naively forecast the last period’s realisations.

Time-varying shares generate dynamic interactions between the two heuristics that affect

not only the mean of the process as in Goy et al. (2020) but also the endogenous amplifica-

tion of shocks. This extends the existing literature on the conduct of monetary policy under

heterogeneous expectations such as Berardi (2007) or Gibbs and Kulish (2017), who do not

model endogenously varying forecasting shares. Only Ozden (2021) & Ozden and Wouters

(2021) add adaptive learning to an endogenous heuristic switching model but do not derive

steady state properties.

Finally, I improve over the simulation exercises used in the existing literature: simulating

the linearised model does not adequately capture the performance of monetary policy in

a model with many non-linearities such as the ZLB. Therefore, I simulate the heuristic

switching model using the time iteration approach of Richter et al. (2014).

More generally, my paper is connected to the wide literature on the empirical properties

of inflation expectations. Here, the most closely related part of the literature investigates

whether expectations are anchored or not (e.g. Levin et al., 2004; Beechey et al., 2011;

5This stands in contrast to Carvalho et al. (2020) who estimate the process for inflation as well as
inflation expectations only; to Gáti (2020) who uses simulated method of moments to estimate a subset of
parameters; and to Ozden (2021) & Ozden and Wouters (2021) who do not use expectations data to estimate
the parameters of their endogenous expectations switching model.
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Strohsal et al., 2016; Reis, 2021). Furthermore, it is part of a broader literature that attempts

to explain features of expectations data that do not coincide with the predictions of the

standard full-information rational expectations hypothesis (e.g. predictability of forecast

revisions (Coibion and Gorodnichenko, 2015), over- and under-reaction to news (Bordalo

et al., 2018), heterogeneity of forecasts (Mankiw et al., 2003), heterogeneity of forecasting

tools (Pfajfar and Santoro, 2010)). There is a wide range of literature that attempts to

explain these patterns (e.g. the incomplete/noisy information assumption of Mankiw and

Reis (2002) or the adaptive learning framework by, among others, Sargent (1999)). Angeletos

et al. (2020) provide stylised facts of expectations to distinguish among these competing

theories. My analysis embeds both incomplete information and adaptive learning. My

results suggest that both are important to understand the de-anchoring of expectations and

to match the observations of Angeletos et al. (2020).

The paper proceeds as follows. Section 2 documents the empirical patterns of de-anchored

inflation expectations. Section 3 introduces the model with heterogeneous expectations. Sec-

tion 4 describes the model solution and stability properties. Section 5 describes the estima-

tion procedure and illustrates the dynamics of the estimated model. Section 6 analyses the

performance of different monetary policy rules by simulating the estimated model. Section

7 concludes.

2. De-anchoring in Practice

When doubts arise regarding the central bank’s ability (or willingness) to offset inflation

shocks, these movements are increasingly perceived to be permanent even if this is not jus-

tified. When this happens, inflation expectations reflect this perceived increased persistence

by becoming significantly reactive to forecast errors (e.g. Strohsal et al., 2016) and to past

inflation realisations (e.g. Ehrmann, 2015). In the following, I illustrate these two patterns

and show that they arise jointly in short- and long-term expectations.

Denoting Êi,tπt+k as the k quarter ahead subjective inflation forecast of forecaster i at

time t reported in the Philadelphia Fed’s Survey of Professional Forecasters (SPF), I estimate

Êi,tπt+k = αw1,i + βw1 (πt−1 − Êi,t−5πt−1) + ε1,t (1)

where w indexes rolling windows of 20 quarters, αwi are forecaster fixed effects, and

k ∈ (4, 40). That is, I regress the 1-year and 10-year ahead (CPI) inflation forecasts of

the panel of the SPF forecasters on lagged6 individual forecast errors. Figure 2 plots the

6I lag the respective regressors to account for the lagged publication of inflation realisations.
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time series of the estimated coefficient βw along with 95% confidence intervals.7 As the

left column shows, both short- and long-term expectations display time-varying sensitivity

to forecast errors: starting from 1981, 1-year ahead inflation expectations react significantly

positively to lagged forecast errors up until the early 2000s (with brief exceptions). Similarly,

10-year ahead expectations (for which data starts in 1991 only) react significantly to forecast

errors up until the early 2000s. With the beginning of the early 2000s, expectations over

both horizons became much more anchored. In the years following the Great Recession,

expectations at times became responsive to news again, but only temporarily and with a

rather small magnitude.

Figure 2: Time-varying Sensitivity of Expectations to Inflation Surprises and Inflation

Note: The panels show the estimated time-varying sensitivity of short-run (upper row) and long-
run (lower row) inflation expectations from the Survey of Professional Forecasters to inflation
surprises (left column) and realised inflation (right column). Solid blue lines depict the estimated
time-varying coefficient with 95% confidence intervals shaded in grey.

A direct consequence of de-anchoring is that the sensitivity of inflation expectations to

realised inflation increases as well.8 To demonstrate this, I estimate the following model

Êi,tπt+k = αw2,i + βw2 πt−1 + ε2,t (2)

in the same fashion as Equation (1). As the right column of Figure 2 shows, the sensitivity

of inflation expectations to realised inflation behaves almost the same way as the sensitivity

7Standard errors are estimated by clustering on the forecaster and quarter level.
8Sensitivity to past inflation realisations can be explained in a RE framework by a history-dependent mon-

etary policy rule or highly persistent inflation shocks, but sensitivity to forecast errors cannot be explained
this way. Nonetheless, we would expect a higher sensitivity of inflation expectations to realised inflation as
a consequence of de-anchoring. This is because of 1) mechanical reasons and 2) because households perceive
temporary inflation shocks to have permanent effects because they doubt the central bank’s commitment.
Therefore, testing the sensitivity of inflation expectations to forecast errors enables us to test whether a high
sensitivity to realised inflation is a consequence of de-anchoring or caused by structural factors.
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to forecast errors. This is not surprising for two reasons: first, when households perceive

temporary inflation shocks to have permanent effects because they doubt the central bank’s

ability to offset these shocks, forecasts should reflect this perceived increased persistence;

and second, the only difference between the two regressions is the inclusion of the lagged

inflation forecast. As a robustness check, I show in Appendix A.1 that the same pattern arises

when using the inflation expectations of the Michigan Fed’s Survey of Consumers instead of

professional forecasts. Furthermore, in Appendix A.2 I show that the same pattern arises in

the euro zone.

To summarise, short-run inflation expectations simultaneously exhibit the same signs of

de-anchoring as long-run expectations: they become increasingly sensitive to inflation news

such as realised inflation or forecast errors in the same periods as long-term expectations do.

In the next section I build a model of de-anchoring using the heuristic switching approach of

Brock and Hommes (1997) to replicate this pattern. I focus on replicating the time-varying

excess sensitivity of short-term expectations and then show that this accurately captures the

behaviour of long-term expectations as well.

3. A Model of De-anchoring

I use a standard New Keynesian (NK) model to study the de-anchoring of expectations. To

isolate the effect of de-anchoring, I keep the model simply and only introduce one distortion,

sticky prices à la Rotemberg (1982). In the following, I first lay out the non-linear version of

the model before turning to the linearised version and discussing the expectation formation.

3.1. The New Keynesian Framework

The model is populated by a representative household, intermediate and final goods produc-

ers, a central bank, and the government. The representative household9 chooses consump-

tion Ct, labour Ht, and government bonds Bt to maximise the expected discounted stream

of utility

Ê0

∞∑
t=1

βtΞt−1

[
C1−σ
t

1− σ
− χH

1+η
t

1 + η

]
(3)

9To simplify notation I use the representative household framework to derive the model conditions and
then impose heterogeneous expectations only ex-post. For a microfounded approach with heterogeneous
expectations see Branch and McGough (2009). They propose a set of assumptions that restrict agents’
expectations so that they satisfy the law of iterated expectations at both the individual and aggregate level,
which enables aggregation.
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subject to the budget constraint

PtCt +Bt = PtWtHt +Rt−1Bt−1 + PtDivt + Tt (4)

where Ê is the non-rational expectations operator, Ξt is a shock to the discount factor, Pt is

the price level, Wt is the real wage, Rt is the gross interest rate, Tt is a lump-sum tax and

Divt are real profits from the intermediate good firms. Bt denotes the one-period government

bonds in zero net supply. Solving the representative household’s problem yields the Euler

equation

1 = βRtÊt
Ξt

Ξt−1

(
Ct
Ct+1

)σ
1

Πt+1

(5)

and the labour supply

Wt = χHη
t C

σ
t (6)

The final goods producers transform intermediate goods into the homogeneous good,

which is obtained by aggregating intermediate goods using the following technology

Yt =

(∫ 1

0

Yt(j)
ε−1
ε dj

) ε
ε−1

(7)

where Yt(j) is the intermediate good of firm j. The price index for the aggregate homogeneous

good is

Pt =

[∫ 1

0

Pt(j)
1−εdj

] 1
1−ε

(8)

and the demand for the differentiated good j ∈ (0, 1) is

Yt(j) =

(
Pt(j)

Pt

)−ε
Yt (9)

The intermediate goods producer j produces using labour as the only input

Yt(j) = AtH
1−α
t (10)

where At denotes the total factor productivity, which follows an AR(1) process in logs like the

discount factor shock. The firm j sets the price Pt(j) of its differentiated good to maximise

its profits

Divt(j) = Pt(j)

(
Pt(j)

Pt

)−ε
Yt
Pt
− αmct

(
Pt(j)

Pt

)−ε
Yt −

ϕ

2

(
Pt(j)

Π̄Pt−1(j)
− 1

)2

Yt (11)
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subject to the demand curve for intermediate goods and where Π ≥ 1 is the steady-state

inflation rate. The parameter ϕ ≥ 0 measures the cost of price adjustment in units of the

final good with ϕ = 0 leading to the flexible-price output level Y ∗t . Solving the intermediates

firm problem can be shown to yield the New Keynesian Phillips curve

ϕ

(
Πt+1

Π̄
− 1

)
Πt

Π̄
= (1− ε) + εαMCt + ϕÊtΛt,t+1

(
Πt+1

Π̄
− 1

)
Πt+1Yt+1

Π̄
(12)

where Λt,t+1 is the household’s stochastic discount factor.

The fiscal authority sets taxes to balance the budget in every period so that the aggre-

gate resource constraint is

Ct = Yt

[
1− ϕ

2

(
Πt

Π̄
− 1

)2
]

(13)

Combining and linearising Equations (3) - (13) around the zero-inflation steady state

yields the familiar 3 equation system (where small letters symbolise deviations of the respec-

tive variable from its steady state)

yt = Êt {yt+1} − 1
σ

(
rt − Êtπt+1 + ξt

)
πt = βÊt {πt+1}+

ε− 1

ϕ

(
σ +

χη + α

1− α

)
︸ ︷︷ ︸

≡κ

yt − 1+χη
1−α/(σ+χη+α

1−α )︸ ︷︷ ︸
≡ϑ

at

 (14)

with
at = ρaat−1 + εat

ξt = ρξξt−1 + εξt
(15)

where ξt = log
(

Ξt
Ξt−1

)
. The shocks εat and εξt are distributed normally with standard devia-

tions σa and σξ around a mean of zero.

To close the model, I consider two different monetary policy frameworks for the central

bank, Inflation Targeting and Price Level Targeting. Under Inflation Targeting, the central

bank follows a standard Taylor rule subject to the zero lower bound

rt = max [0, π̄ + φπ(πt − π̄) + φyŷt +mt] (16)

10



where mt evolves according to

mt = ρmmt−1 + εrt εrt ∼ N (0, σr)

and y∗ is the output gap

ŷt = yt − ϑat (17)

Under Price Level Targeting the central bank reacts to the deviation of the price level pt

from the target price level path p∗t

rt = max [0, π̄ + φπp̂t + φyŷt +mt] (18)

where, for some given π0, the price level gap p̂t evolves according to p̂t = πt − π̄ + p̂t−1 and

p̂t−1 enters the model as an additional state variable.

3.2. Heterogeneous Expectations

To model the de-anchoring of expectations I deviate from the rational expectations bench-

mark and assume that agents do not know the true model of the economy. Instead, the

environment is populated by two groups of agents: one acts as econometricians and esti-

mates the law of motion of the economy using constant gain learning; the second naively

forecasts a random walk for output and inflation. Both groups make use of the same infor-

mation set It = {z{t−1,t−∞},w{t,t−∞}} but form disparate forecasts. That is, both groups

observe the contemporaneous values of the exogenous processes w but observe the endoge-

nous realisations z only with a lag of one period.10 The average forecast is a weighted average

of the two heuristics, i.e.

Êtzt+1 = (1− nt)Êat zt+1 + ntÊ
n
t zt+1 (19)

where Êa denotes the expectations of the adaptive learners, Ên denotes the expectations of

the naive forecasters, nt is the share of naive forecasters in the economy, and zt is a vector

containing the endogenous realisation yt, πt (and, in the case of Price Level Targeting, also

the price level gap p̂t).

Adaptive learners assume that the endogenous variables zt evolve according to the fol-

10The learning rule introduced here is not derived at the micro level and then aggregated. Instead, it is
imposed ex-post, on the demand and supply equations. This has also been the approach in the learning
literature pioneered by Evans and Honkapohja (2001).
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lowing linear perceived law of motion (PLM):

zt = Ψtxt−1 + εt (20)

where Ψt = [at, bt] and xt = (1, ξt, at, mt)
′ so that the corresponding forecast becomes

Êat zt+1 = Ψxt (21)

Under Price Level Targeting the adaptive forecasting heuristic additionally makes use of

the lagged price level gap to forecast z so that Ψt = [at, bt, c̃t] and xt = (1, ξt, at, mt, p̂t−1)′.11

In both cases, households forecast inflation and output tomorrow as a function of the ex-

ogenous states of the economy today, as under rational expectations. However, the adaptive

learners do not know the exact structural relationship between the exogenous shocks and

the endogenous variables. Furthermore, they do not observe the share of naive forecasters

nt. Therefore, the adaptive learners re-estimate their perceived law of motion and update

the parameters Ψt in each period when new information becomes available using:

Ψ′t = Ψ′t−1 + γR−1
t−1xt−2 (zt−1 −Ψxt−2)′

Rt = Rt−1 + γ
(
xt−2x

′
t−2 −Rt−1

) (22)

where γ is the constant gain parameter determining the weight given to new information.

A constant γ implies that recent observations receive relatively higher weights than older

observations. This loss of distant memory is supported by the experience-based learning

documented by Malmendier and Nagel (2016). If instead γ = 1/t, each observation would

be weighted equally, and the updating of coefficients would be equivalent to running a re-

cursive OLS regression in every period. In either case, if the economy were only populated

by adaptive learners, the coefficient matrix Ψt would eventually converge to its rational ex-

pectations counterpart. However, the presence of the naive forecasters prevents this from

happening. These households do not believe that the central bank will stabilise the economy

and accordingly forecast that output and inflation follow a random walk (i.e. they believe

that φπ = 1):

Ênt zt+1 = Ênt zt = zt−1 (23)

Both forecasting heuristics are the best available forecasts under level-0 thinking (because

nt is unobserved) conditional on the available information and the two different assumptions

about the central bank’s responsiveness to inflation (i.e. φπ > 1 and φπ = 1). Since the share

11c̃t is a 3× 1 vector of coefficients assigned to the lagged price level gap and denoted by a tilde because
later it will be convenient to define c = [03×2 c̃]
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of the two heuristics is time-varying, the model has to be closed by specifying a law of motion

for nt: agents evaluate each heuristic based on its respective forecasting performance in terms

of the sum of its squared forecast errors. A standard way to formalise this is to assume that

the probability of choosing the naive forecasting rule follows a logistic distribution (Brock

and Hommes, 1997).12 This smooth transition function maps the forecast errors into the

share of the population nt that follows the naive forecasting rule:

nt =
exp

(
−θent−1

)
exp

(
−θent−1

)
+ exp

(
−θeat−1

) (24)

with

eit = (1− γ)eit−1 + γεit i ∈ {a, n} (25)

where eit−1 is the recursive weighted average of the sum of squared forecast errors εit. That is,

agents avoid making systematic forecasting mistakes by switching to the better performing

forecast rule. Therefore, this setup of forecast switching can also be interpreted as learning

about the central bank’s responsiveness to inflation. The two parameters γ and θ jointly

determine how the shares of agents using each forecasting model evolve: γ controls the rate

at which previous forecast errors decay. For simplicity, I assume that the recursive weighted

moving average of forecast errors is governed by the same γ as the updating equations (22).

θ determines the sensitivity to differences in the forecasting performance: when θ → ∞,

agents immediately switch to the forecasting rule with the lower forecast error. Conversely,

with θ = 0 agents never switch and the shares remain fixed at 0.5. Any intermediate value

implies an imperfect adoption of the better performing forecast rule. In the steady state, that

is, when neither heuristic makes any forecast error because there are no exogenous shocks,

each group makes up half of the economy and n = 0.5. Unlike, for example, De Grauwe and

Ji (2019), I assume that the two forecasting rules are compared on their overall performance

and not separately for each endogenous variable, i.e. nt is a scalar and not a vector. This

expectation formation process has empirically plausible properties as it replicates the stylised

facts of Angeletos et al. (2020): in response to shocks, expectations initially under-react,

followed by a delayed over-reaction. This behaviour would not arise if the model were

populated by adaptive learners only (see Appendix D.2).

One way to interpret this information setup is that there exists a subgroup of informed

agents in the population who read current news and make their forecasts accordingly (e.g.

increasing inflation expectations when reading about a positive oil price change). The second

12This can be formalised by assuming that the forecasting performance of both heuristics is publicly
available, but subject to noise. Assuming that the noise is logistically distributed, the probability that an
agent chooses a given heuristic is then given by the logistic function (e.g. Anufriev et al., 2013; De Grauwe
and Ji, 2019).
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group, on the other hand, is uninformed and simply forecasts based on recent experience.

This difference could be due to some cost of information acquisition which the group of

adaptive learners considers worthwhile whereas naive forecasters do not. Alternatively, this

information setup can of course also be interpreted as one representative agent using a

weighted average of two forecasting heuristics.

Both forecasting heuristics are of course biased in the sense that they do not incorpo-

rate all available information when forming expectations but only one subset of relevant

predictors, namely either exogenous processes or lagged endogenous realisations. However,

as De Grauwe (2011) points out, the bias of the forecasting heuristics does not necessarily

imply that agents are irrational: while the individual heuristics may be biased, agents try

to reduce that bias and react to forecast errors by adapting better performing heuristics.

This heuristic switching mechanism provides an easy statistic measuring the degree of

expectation anchoring: when expectations are well anchored, the adaptive rule will produce

good forecasts and the share of naive forecasters will go down. When expectations are

not well anchored, for example, because the central bank does not react enough to offset

shocks that move away output and inflation from their target, the adaptive rule will produce

bad forecasts and the share of naive forecasters will go up. Monetary policy can affect these

dynamics by sending correct signals for the evolutionary selection of the heuristics and induce

stable dynamics converging to the rational expectations steady state.

3.3. Implied Long-term Expectations

The heuristic switching model implicitly also pins down long-term expectations. The long-

term forecast (i.e. the forecast for a horizon k sufficiently large) of the adaptive heuristic is

simply the intercept of the learning rule:

Êat zt+k = at (26)

Naive forecasters extend their forecasts over the relevant horizon using the following formu-

lation

Ênt zt+k = (1− 1/k)Ênt−1zt+k−1 + 1/k zt−1 (27)

That is, the naive heuristic specifies forecasts over horizon k as the recursive weighted average

of realisations over the previous k periods. For k = 1 this nests the one quarter ahead forecast

discussed previously. Furthermore, for k →∞ the naive forecast will converge to the mean

of the process z, which corresponds to the long-run forecast of the adaptive heuristic.13

13This setup assumes that 1) the adaptive learners do not internalise future revisions of the learning rule
leading to changes in the intercept (this assumption is known in the learning literature as anticipated utility
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The average long-run forecast is a weighted average of the two heuristics. As before, the

share of naive forecasters is pinned down by the accuracy of the one-quarter ahead forecast.

The same share then pins down the weights for the long-term forecast:

Êtzt+k = (1− nt)Êat zt+k + ntÊ
n
t zt+k

= (1− nt)a + nt((1− 1/k)Ênt−1zt+k−1 + 1/k zt−1)
(28)

Therefore, the sensitivity of long-term inflation expectations to short-term developments

is increasing in the share of naive forecasters. This expectation formation process is empiri-

cally plausible: following a monetary policy shock, these expectations react in the same way

as observed long-run expectations (see Appendix D.1).

4. Model Equilibria and Stability

In this section I solve the model under the two different monetary policy frameworks, Inflation

Targeting and Price Level Targeting, and discuss the stability properties both away from and

at the ZLB. In each case, I first derive the fixed points of the adaptive forecasting heuristic

under some fixed share n of naive forecasters. In a second step, I use these fixed points to

characterise the steady state under time-varying nt. In a third step, I discuss the E-Stability

of this steady state, i.e. whether the steady state can be learned.14

4.1. Dynamics under Inflation Targeting

To simplify the analysis, I assume that the central bank only reacts to deviations of inflation

from target (i.e. φy = 0). Furthermore, I initially consider an environment without the zero

lower bound in 4.1.1 before reintroducing it in 4.1.2.

4.1.1. Away from the ZLB

Substituting the monetary policy rule as well as the perceived laws of motion (20) & (23)

into the system of equations (14) and rearranging yields the Actual Law of Motion (ALM)

yt = (1− nt)[ay + by,aat + by,ξξt + by,mmt] + ntyt−1 −
1

σ
(π̄ + φπ(πt − π̄)

+mt − (1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt] + ntπt−1] + κ(yt − ϑat)

(29)

(Kreps, 1997)) and 2) neither group anticipates switching heuristics in the future. This of course imposes a
higher degree of non-rationality but keeps the model tractable.

14E-stability ensures that estimated coefficients of the learners converge to their respective fixed points.

15



or in matrix notation

⇔ zt = A [(1− nt)(a + bwt) + ntzt−1]︸ ︷︷ ︸
Êtzt+1

+Bwt + Cz̄ (30)

Substituting (30) into the ODE associated with the updating equations (22) yields

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)Ψxt−1)] + Anzt−2 + Bwt + Cz̄)−Ψxt−2)′ (31)

where τ denotes notional time (Evans and Honkapohja, 2001). As long as the ALM in

Equation (30) is asymptotically stationary, i.e. has roots within the unit circle so that it is

mean-reverting

λ < 1 ∀λ ∈ Λ = {Λ : |I− nA−ΛI| = 0} (32)

and when holding n fixed, the coefficients of the adaptive PLM converge to their respective

fixed points (for a detailed derivation see Appendix B)

vec(ā′) =(I −A)−1vec ((Cz̄)′) (33)

vec(b̄′) = (I −G1)−1 G2vec(B
′) (34)

where

G1 = A(1− n)⊗ F + An⊗Σw
−1A(1− n)⊗Σw (35)

+ An⊗Σw
−1An⊗ I [I− nA⊗ F]−1 [A(1− n)⊗ FΣw] (36)

G2 = I⊗ F + An⊗Σw
−1I⊗Σw (37)

+ An⊗Σw
−1An⊗ I [I −An⊗ F]−1 FΣw ⊗ I (38)

Holding n fixed, the mapping T from the perceived to the actual law of motion can therefore

be characterised as

T (Ψ′, n) =

(
T (a′, n)

T (b′, n)

)
=

(
((I −An)−1A(1− n))

′

G1

)
(39)

This result is summarised in the following proposition:

Proposition 1. The mapping (39) from the PLM to the ALM has a unique fixed point

∀n ∈ [0, 1] if the Taylor principle is satisfied by the central bank, i.e.

φπ > 1
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Proof. See Appendix C.1.

The fixed point ā is independent of n and equivalent to the steady state under rational

expectations:

ā = (I−A)−1Cz̄ =

(
0 1−β

κ

0 1

)(
ȳ

π̄

)
(40)

On the other hand, b̄ is a non-linear function in the share of naive forecasters. Intuitively,

two offsetting effects determine the magnitude of b̄: as n decreases wt has a stronger effect

on zt because the average forecast of zt+1 loads stronger on wt. At the same time, as n

decreases, the correlation between zt+1 and zt decreases so that wt has a smaller effect on

zt+1.

Now, if nt is allowed to vary over time, only nt = 0.5 is consistent with a steady state in

which both heuristics do not make any forecast error. Therefore, this fixed point implies a

unique steady state under heterogeneous expectations:

Proposition 2. The dynamic system (29) has a unique steady state with π∗ = π̄, y∗ = 1−β
κ
π̄,

r∗ = π̄ and n∗ = 0.5

Proof. See Appendix C.2

The question remains whether this steady state is E-stable under learning, even if all

eigenvalues of (nA) lie within the unit circle. According to the E-stability principle (Evans

and Honkapohja, 2001, Chapter 13), convergence under learning requires that all eigenvalues

of

DTΨ(Ψ′, n))− I (41)

need to have negative real parts to ensure that estimated coefficients of the learners converge

to their respective fixed points. Holding n∗ fixed at the steady state, the stationarity and

E-stability requirements are always satisfied for the steady state away from the ZLB:

Proposition 3. The steady state away from the zero lower bound is asymptotically stationary

and E-stable

Proof. See Appendix C.3.

However, convergence to the steady state may not occur because the true model features a

time-varying share of naive forecasters. Only asymptotically a so-called restricted perception

equilibrium (RPE, see Evans and Honkapohja, 2001; Berardi, 2009) can be attained. In this
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Figure 3: Stability Conditions

Note: This figure shows the stability properties of the model
under Inflation Targeting as a function of the (constant) share
of naive forecasters without and with the ZLB. For stationarity,
the minimum eigenvalue needs to be positive. For E-stability the
maximum eigenvalue needs to be negative.

steady state, expectations might not be rational, but they are optimal given the under-

parameterised information set that the adaptive learners are endowed with.15 Away from

the steady state, the forecast switching can create, or at least amplify, booms and busts. For

example, if the adaptive learners underestimate inflation over several quarters, the resulting

deterioration in forecasting performance will increase the share of the naive forecasters.

The resulting drift of inflation and output leads to further coordination away from the

minimum state variable forecast. This can lead to self-reinforcing cycles which amplify the

drift and poses additional challenges to monetary policy not present in the standard rational

expectations framework.

15That is, the forecast errors are orthogonal to the variables in the information set. However, the forecasting
function is still biased because it is based on an under-parameterised information set. If agents were able to
step out of the model they would be able to detect this but, given the model they are endowed with, this is
the best they can do.
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4.1.2. At the ZLB

Re-introducing the ZLB into the system, the ALM at the ZLB becomes

yt = (1− nt)[ay + by,aat + by,ξξt + by,mmt] + ntyt−1

− 1

σ
(0− (1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,aat + bπ,ξξt] + ntπt−1] + κ(yt − ϑat)

(42)

or in matrix form

⇔ zt = Ã [(1− nt)(a + bwt) + ntzt−1] + B̃wt + C̃z̄ (43)

where the matrices containing the coefficients of the ZLB ALM are denoted with a tilde.

Following the same approach as before, it can be shown that the ALM has a fixed point at

vec(˜̄a) =(I − Ã)−1vec
(

(C̃z̄)′
)

(44)

vec(˜̄b′) =
(
I − G̃1

)−1

G̃2vec(B̃
′) (45)

vec(˜̄b′) =
(
I − G̃1

)−1

G̃2vec(B̃
′) (46)

where

G̃1 = Ã(1− n)⊗ F + Ãn⊗Σw
−1Ã(1− n)⊗Σw

+ Ãn⊗Σw
−1Ãn⊗ I

[
I− nÃ⊗ F

]−1 [
Ã(1− n)⊗ FΣw

]
G̃2 = I⊗ F + Ãn⊗Σw

−1I⊗Σw

+ Ãn⊗Σw
−1Ãn⊗ I

[
I − Ãn⊗ F

]−1

FΣw ⊗ I

Holding n fixed, the mapping T̃ from the perceived to the actual law of motion for the PLM

coefficients at the ZLB is now given by

T̃ (Ψ′, n) =

(
T̃ (a′, n)

T̃ (b′, n)

)
=

((I − Ãn)−1Ã(1− n)
)′

G̃1

 (47)

However, this mapping has a fixed point only for certain values of n:

Proposition 4. The mapping (47) from the PLM to the ALM has a unique fixed point for

all n ∈ [0, n̄)
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Proof. See Appendix C.4

If n̄ > 0.5, the fixed point ˜̄a exists. The fixed point is independent of n and equivalent

to the steady state under rational expectations:

˜̄a = (I− Ã)−1C̃z̄ =

(
0 0

0 0

)(
ȳ

π̄

)
(48)

Again, if nt is allowed to vary over time, only nt = 0.5 is consistent with a steady state in

which neither heuristic makes any forecast error, so this fixed point implies a second steady

state:

Proposition 5. If n̄ > 0.5, there exists a second steady state with π̃∗ = 0, ỹ∗ = 0, r̃∗ = 0

and n∗ = 0.5

Proof. See Appendix C.5

However, even if the ZLB steady state exists, it is not stable when holding n∗ fixed at

the steady state:

Proposition 6. The zero lower bound steady state is not E-stable.

Proof. See Appendix C.6

In general, at the ZLB both conditions (asymptotic stationarity and E-stability) never

hold at the same time. This is because the eigenvalues of DT̃Ψ(Ψ′, n)− I have negative real

parts only if the eigenvalues of nÃ are outside the unit circle, as Figure 3 shows.

To summarise, under Inflation Targeting the model has two steady states: one steady

state away from the ZLB and one at the ZLB, but only the former is stable. These steady

states are identical to the ones under rational expectations. However, the model features

complex dynamics away from the steady state: whenever the share of naive forecasters

changes, the relationship between exogenous and endogenous realisations changes so that

the learners have to update their beliefs. This in turn causes the share of naive forecasters

to change again, creating fluctuations around the steady state.

4.2. Dynamics under Price Level Targeting

Under Price Level Targeting the fixed points ā, b̄, c̄ of the adaptive forecasting heuristic are

all (non-linearly) dependent on each other so that no closed-form solution can be derived.

To characterise the solution at least computationally, I keep the assumption of φy = 0 and,

furthermore, assume that the shocks wt are iid. Adaptive learners therefore only forecast
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the mean values of the state variables, i.e. they engage in steady-state learning. This does

not change the stability properties of the system but simplifies the analysis. As before,

I first consider the steady state in an environment without the zero lower bound before

reintroducing it.

4.2.1. Away from the ZLB

Substituting the monetary policy rule (18) as well as the perceived laws of motion (23) &

(20) into the system of equations (14) and rearranging yields the ALM

yt = (1− nt)[ay + by,aat + by,ξξt + by,mmt + cy,p̂p̂t−1] + ntyt−1 −
1

σ
(π̄ + φπ(πt − π̄ + p̂t−1)

+mt − (1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt + cπ,p̂p̂t−1]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt + cπ,p̂p̂t−1] + ntπt−1] + κ(yt − ϑat)

p̂t = πt − π̄ + p̂t−1

(49)

Or in matrix notation:

zt = A[(1− nt)(a + bwt + czt−1) + ntzt−1] + Dzt−1 + Bwt + Cz̄ (50)

where c = [03×2 c̃]. Substituting this into the ODE associated with the updating equations

(22) yields16

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)(a + bwt + czt−2)] + Anzt−2 + Bwt + Cz̄)−Ψxt−2)′ (51)

To characterise the fixed points of the adaptive forecasting heuristic, I start with the fixed

point of c since this determines the other two fixed points. The associated mapping

∂c′

∂τ
= Σ−1

p Σ−1
pt−2,pt−1

(A(1− n)c:,3 + D:,3 + nA:,3) + Σ−1
p Σpt−2,(yt−1,πt−1)(D1:2 + nA1:2) (52)

can be solved numerically for c̄. Having pinned down c̄, we can write (holding (Ψ, n) fixed)

limt→∞Ezt as

zt(Ψ, n) =
(
(I−A(1− n)c− nA−D)−1 (A [(1− n)a] + Cz̄)

)′
(53)

16where c:,3 denotes the third column of c, i.e. c:,3 = c̃.
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as long as the ALM in Equation (50) is asymptotically stationary, i.e.

λ < 1 ∀λ ∈ Λ = {Λ : |I−A(1− n)c− nA−D−ΛI| = 0} (54)

The fixed point ā then becomes

vec(ā′) =
[
(I + (A(1− n)c̄ + nA + D)(I − (A(1− n)c̄− nA−D)−1 −A(1− n)

]−1
vec

(
(Cz̄)′

)
(55)

Finally, the fixed point b̄ is then given by

vec(b̄′) = [I − (A(1− n)c̄ + D + nA)⊗ I A(1− n)⊗ I]−1 (A(1−n)c̄ + D +nA)⊗ I vec(B)′ (56)

Holding n fixed, the mapping T̃ from the perceived to the actual law of motion for the PLM

coefficients at the ZLB is now given by

T (Ψ′, n) =

 ((I + (A(1− n)c̄ + n ∗A + D)(I−A(1− n)c̄ + n ∗A + D)−1)A(1− n))′

((A(1− n)c̄ + D + nA)⊗ I A(1− n)⊗ I)′

Σ−1p Σ−1pt−2,pt−1
(A(1− n)c:,3 + D:,3 + nA:,3)′ + Σ−1p Σpt−2,(yt−1,πt−1)(D:,1:2 + nA:,1:2)′

 (57)

For the mapping T̃ to have a fixed point, all eigenvalues of I−nA−D need to have positive

real parts (this is equivalent to eigenvalues of nA+D within the unit circle). Unfortunately,

a full characterisation of these eigenvalues is cumbersome and provides few general insights.

Importantly, Figure 4 demonstrates that these eigenvalues eigenvalues turn negative as the

share of naive forecasters approaches 100% under the estimated parameters (see Section 5).

Figure 4: Stationarity under Price Level Targeting

Note: This figure shows the stationary properties of the model under Price
Level Targeting (i.e. the smallest real part of the eigenvalues of I−nA−D)
as a function of the (constant) share of naive forecasters. For the model to
be stationary all eigenvalues need to have positive real parts.
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Therefore, as under inflation targeting at the zero lower bound, there exists a threshold

level of naive forecasters n̄, above which the model is not stationary anymore and the mapping

T̃ does not have a fixed point. To demonstrate how this instability property relates to the

parameterization of the model, Figure 5 plots the minimum eigenvalue of I − A − D (i.e.

when the share of naive forecasters is at 100%) as a function of different combinations of

κ and φπ. Except for the limit case of a completely flat NKPC (i.e. κ=0), expectations

de-anchoring leads to explosive dynamics if the NKPC slope is relatively flat unless the

central bank is extremely responsive to deviations from the price level target (e.g. a κ = 0.1

would require φπ > 3.5). To put it differently, the smaller the slope of the Philips curve, the

stronger the central bank has to react to deviations from the price level target to prevent

expectations de-anchoring from causing explosive dynamics. Furthermore, a larger φπ is

necessary to make sure that n̄ > 0.5, which in turn is necessary for an equilibrium to exist.

Figure 5: Stationarity under Price Level Targeting for n = 1

Note: This figure shows the stationary properties of the model under Price
Level Targeting (i.e. the smallest real part of the eigenvalues of I −A−D)
under the limit case of 100% naive forecasters (i.e. n = 1) as a function of
the NKPC slope κ and the central bank’s responsiveness φπ to price level
gaps. For the model to be stationary all eigenvalues need to have positive
real parts.

If the model is indeed stationary and a fixed point exists, then the fixed point ā itself is

independent of n and equivalent to the steady state under rational expectations:

ā = (I−A)−1Cz̄ =

0 1−β
κ

0

0 1 0

0 0 0


ȳπ̄
p̄

 (58)
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On the other hand, b̄ and c̄ are non-linear functions of the share of naive forecasters. Again,

if nt is allowed to vary over time, only nt = 0.5 is consistent with a steady state in which

neither heuristic makes any forecast error, so if the fixed point exists, it implies a second

steady state. In fact, as Figure 6 shows, under the estimated parameters (see next Section),

n̄ ≈ 0.95, so that for n = 0.5 a fixed point indeed exists.

Proposition 7. If n̄ > 0.5, the dynamic system (49) has a unique steady state with π∗ = π̄,

y∗ = 1−β
κ
π̄, r∗ = π̄, p̂∗ = 0 and n∗ = 0.5

Proof. See Appendix C.7.

E-stability then requires that the eigenvalues of

DTΨ(Ψ′, n))− I (59)

need to have negative real parts to ensure that the perceived law of motion converges to its

fixed point and the steady state is learnable. Figure 6 shows that this is indeed the case

under the estimated parameters (see next Section) for n = 0.5.

Figure 6: E-Stability under Price Level Targeting

Note: This figure shows the E-stability properties of the model under Price Level
Targeting as a function of the (constant) share of naive forecasters. For the model
to be E-stable, the maximum eigenvalue needs be negative for E-stability.
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4.2.2. At the ZLB

At the ZLB the ALM becomes

yt = (1− nt)[ay + by,aat + by,ξξt + by,mmt + cy,p̂p̂t−1] + ntyt−1

− 1

σ
(0− (1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt + cπ,p̂p̂t−1]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,aat + bπ,ξξt + bπ,mmt + cπ,p̂p̂t−1] + ntπt−1] + κ(yt − ϑat)

p̂t = πt − π̄ + p̂t−1

(60)

or in matrix form

zt = Ã [(1− nt)(a + bwt + czt−1) + ntzt−1] + D̃zt−1 + B̃wt + C̃z̄ (61)

where the matrices containing the coefficients of the ZLB ALM are denoted with a tilde. In

this case no steady state can exist: the price level gap at the zero lower bound follows a unit

root because no deviation of inflation from target can be offset by the central bank.

Proposition 8. Under Price Level Targeting no steady state exists at the zero lower bound

Proof. See Appendix C.8.

To summarise, under Price Level Targeting the model features only the steady state away

from the zero lower bound. However, this steady state is not stable for all n ∈ [0, 1] but

only for n ∈ [0, n̄). The question remains whether this threshold will ever be crossed so that

Price Level Targeting could lead to unstable dynamics. I will address this questions using

simulation methods in Section 6.

5. Estimation and Model Dynamics

5.1. Estimation

To assign numerical values to the model parameters, in particular to the non-standard pa-

rameters ϕ, γ, θ, I estimate the model using Bayesian methods. Besides estimating the

relevant parameters, this also allows me to extract an estimate of the unobserved degree of

de-anchoring over time. Furthermore, Bayesian estimation provides a coherent framework

to compare the data fit of the heuristic switching model with the standard rational expec-

tations model. Due to the non-linear elements of the heuristic switching model, I compute

the model likelihood ln p(Y | ΩHSM) of observing the data Y given the parameter vector

ΩHSM using the bootstrap particle filter with 20,000 particles. The likelihood of the rational

25



expectations model, on the other hand, can be computed using the Kalman filter because

the model is fully linear.

The sample period runs from 1982Q1 to 2007Q4. I exclude the zero lower bound period

because this would add yet another source of non-linearity to an already computationally

complex estimation process. I estimate the model using observable data on quarter-on-

quarter real GDP growth, the quarter-on-quarter growth of the implied GDP price deflator,

the Federal Funds Rate (adjusted to quarterly frequency), median 1Q ahead real GDP

growth expectations (SPF), and the median 1Q ahead expectations of the change of the

implied GDP price deflator (SPF). As in Carvalho et al. (2020), I do not use observed long-

term expectations in the estimation due to limited data before 1990. Instead, I will back

out the model-implied long-term expectations in the next section and compare them to the

available data. The measurement equation, therefore, is

Yt = Γ0 + Γ1Zt + Hεt (62)

where the vector Yt includes the five observable data series; Γ0 contains the means of real

GDP growth, the quarterly Federal Funds Rate, the expected real GDP growth, and zeros

for (expected) inflation; and the observation matrix Γ1 selects the corresponding variables

from the state vector Zt. Since the particle filter requires some measurement error εt to

avoid degeneracy, the variance H′H of the measurement error is set to 50% of the variance

of Yt.
17

To estimate the posterior distribution of the rational expectations model, I first maximise

the posterior likelihood and take the resulting posterior mode ΩRE as the starting point for

the Metropolis-Hastings algorithm. To estimate the posterior distribution of the heuristic

switching model I follow a two-step procedure: I first use the linear Kalman filter to maximise

the posterior of the model and take the resulting posterior mode as starting point for the

Metropolis-Hastings algorithm (using the identity matrix as proposal distribution). In a

second step, I use the results as starting points for the estimation that uses the particle filter

to compute the model likelihood. In each case, I use the Metropolis-Hastings algorithm with

10,000 draws and 4 separate chains to compute the full distribution.18 I scale the proposal

distribution to target an overall acceptance rate of roughly 30%. Finally, I discard the first

17For comparability, I use the same assumption when estimating the RE model using the Kalman Filter.
18The particle filter generates random numbers at several steps of the computation so I reset the seed of

the random number generator every time the likelihood is evaluated to avoid injecting randomness in the
calculation of the likelihood (see e.g. Fernández-Villaverde and Rubio-Ramı́rez, 2007; Carvalho et al., 2020).
I thereby fix the random initial conditions for the nonlinear state variables; the random draws to compute
shocks in the nonlinear prediction step; and random draws in the resampling step so that the particle filter
uses the same particles for every new parameter evaluation. The MCMC sampler draws from a different
random number generator so that resetting the seed does not affect the parameter draws of the sampler.
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20% of draws as burn-in, keep every 5th remaining draw to compute the relevant moments,

and then average over the four chains.

Table 1: Prior Distributions and Posterior Estimates

Parameter Prior Posterior (RE) Posterior (HSM)

Prior Dist. Mean Std. Mean Std. Mean Std.

Discount factor β B 0.99 0.005 0.992 0.004 0.991 0.004

Inv. IES σ N 2 0.75 2.058 0.099 2.531 0.212

Inv. Frisch Elast. 1
η

N 3 0.3 3.000 0.032 2.928 0.034

Elast. Demand ε
ε−1

Γ 1.35 0.2 1.431 0.141 1.521 0.250

Rotemberg Adj. Cost φ U(0, 1000) - - 51.865 0.234 121.301 0.548

AR(1) Demand Shock ρζ B 0.5 0.2 0.882 0.032 0.854 0.062

AR(1) TFP shock ρa B 0.5 0.2 0.631 0.046 0.511 0.124

AR(1) MP shock ρm B 0.5 0.2 0.642 0.097 0.910 0.039

Std. Demand Shock σζ Γ−1 1 0.5 0.283 0.027 0.446 0.058

Std. TFP Shock σa Γ−1 1 0.5 0.408 0.054 0.559 0.094

Std. MP Shock σm Γ−1 1 0.5 0.389 0.053 0.374 0.047

Feedback Output φy N 0.25 0.125 0.422 0.097 0.329 0.108

Feedback Inflation φπ N 1.5 0.5 2.807 0.146 1.937 0.141

Inflation Target π̄ B 0.5 0.1 0.854 0.036 0.571 0.093

Constant Gain γ B 0.03 0.01 - - 0.034 0.005

Switching Intensity θ U(0, 1000) - - - - 78.586 0.194

Initial De-anchoring n0 N 0.75 0.125 - - 0.694 0.099

NKPC slope (implied) κ - 0.059 - 0.241 - 0.125 -

Posterior Likelihood ln p(Y | Ω∗) - - - -122.631 -92.053

Marginal Likelihood (τ = 0.5) ln p(Y ) - - - -59.910 -33.388

Note: The marginal likelihood is estimated using Geweke’s Harmonic Mean Estimator with a
tuning parameter of τ = 0.5. The estimates do not change significantly for different values of τ .

The independent prior distributions are described in Table 1. The discount factor β fol-

lows a Beta distribution. The intertemporal elasticity of substitution and the Frisch elasticity

are centred around 2 & 3, respectively. The elasticity of demand is centred around an equi-

librium markup of 35%, approximately the midpoint of the aggregate mark-ups estimated

by De Loecker et al. (2020). All the autoregressive parameters follow a Beta distribution

centred around 0.5, with the variances following an inverse Gamma distribution centred

around 1. The coefficients of the Taylor rule are centred around the standard values used

in the literature and the prior inflation target is set to an annualised value of 2%. For the

constant gain parameter, the literature on adaptive learning suggests a range of 0.01 (see

Milani, 2007) to 0.06 (see Branch and Evans, 2006). I pick an intermediate value of 0.03 as

prior for γ, which follows a Beta distribution with a standard deviation of 0.01. For the non-

standard parameters ϕ, θ I impose a very loose prior in the form of a uniform distribution
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reflecting the lack of prior knowledge about these parameters. Both are initialised at a value

of 100. I calibrate the steady-state labour to 1/3 of the available time so that the composite

parameters such as κ or χ (omitted) are pinned down by the respective underlying prior

(posterior) values. I also estimate the initial share of naive forecasters n0 and build on the

estimation results of Section 2: Given that inflation forecasts were not perfectly anchored

during the 1980s, I assume that n0 lies above its steady-state value and assume a normal

distributed prior centred at 0.75. This initial share in turn pins down the initial values for

Ψ and yields values for the initial forecast errors ei0.

Table 1 also presents the posterior means and standard deviations for both models.

Relative to the RE model, the HSM suggests a higher real interest rate over the sample

period (3.7% vs 3.2%). This is offset by a much lower implied inflation target so that the

HSM suggests a lower equilibrium nominal interest rate (6% vs 6.7%). The HSM model

suggests a lower intertemporal elasticity of substitution (0.40 vs 0.49) but yields very similar

estimates of the inverse Frisch elasticity. The estimates of the autoregressive components

differ a lot, with the HSM suggesting a (slightly) lower degree of autocorrelation for the

discount factor and productivity shock processes, but a higher degree of autocorrelation

for the monetary policy shocks. This is somewhat surprising since previous literature (e.g.

Milani, 2007) has observed that adding adaptive learning to a standard NK model diminishes

the need for mechanical sources of persistence. It appears that forecast switching still requires

mechanical sources of persistence to match the data, although along different dimensions than

under RE. The estimated standard deviations of the exogenous processes for demand & TFP

shocks are larger under HSM than under RE, but the opposite is the case of the standard

deviations of the monetary policy shocks. The rational expectations model implies a much

more aggressive monetary policy reaction. The posterior estimate of γ = 0.034 implies that

firms and households rely on the last ∼ 71/2 years of data. Finally, the implied NKPC slope

estimate under rational expectations is much larger than under forecast switching.

At the posterior mean, the HSM model fits the observed data better than the RE model

with a log-likelihood of ln p(Ω∗HSM | Y ) = −92.053 vs. ln p(Ω∗RE | Y ) = −122.631 (where Ω∗i

denotes the posterior mean of the respective model). For an overall measure of the model fit

(by marginalising out the influence of the parameters Ω) I compute the marginal Likelihood

ln p(Y | M) using the Modified Harmonic Mean Estimator of Geweke (1999). The resulting

estimates of the marginal density in the lower panel of Table 1 suggest that the heuristic

switching model fits the data much better than the standard rational expectations model,

which is a common feature of models with non-rational expectations (Milani, 2007).
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5.2. Model Predictions

I back out the model-implied states using the non-linear smoother of Godsill et al. (2004).

As an extension, I compute the out-of-sample model forecasts up until 2019Q4. That is, I

estimate the model on the sample from 1982Q1:2007Q4 (when the ZLB is not binding) and

use the resulting parameter estimates with an extended set of observables to compute the

out-of-sample model predictions until 2019Q4. To circumvent the problem of the ZLB and

to account for the fact that central banks have more tools than just the interest rate, I use

the shadow interest rate of Wu and Xia (2016) starting from 2008Q1 instead of the realised

Federal Funds Rate. The resulting smoothed state estimates are plotted (in blue) alongside

the data (in black) and the RE states (in red) in Figures 7 & 8. Grey-shaded areas indicate

95% confidence intervals of the heuristic switching model and the blue-shaded area indicates

the out-of-sample forecast period. In general, neither model captures the high-frequency

fluctuations of the observable data as they are attributed to measurement error. Instead,

both models track the apparent underlying low-frequency movements quite well.

In terms of root mean squared error (RMSE) the heuristic switching model significantly

outperforms the rational expectations model when it comes to matching the interest rate and

expectations for the whole period between 1982 and 2019 (see Table 2). It performs slightly

worse when it comes to matching inflation and output growth. This result does not change

when considering only the in-sample years 1982 - 2007. However, in the out-of-sample period

2008-2019, the HSM model outperforms the RE model in all series except the shadow interest

rate. That is, the heuristic model achieves its purpose of modelling the joint evolution of

real variables and expectations, even though the RE model might have a small edge in terms

of forecasting output and inflation depending on the period. Finally, there does not seem to

be any significant difference in model fit between the in- and out-of-sample forecasts.

Table 2: Individual Data Series Fit (Root Mean Squared Error)

∆yt πt rt Et(∆yt+1) Et(πt+1)

RE (1982-2019) 1.940 0.577 1.374 0.527 0.539

1982-2007 1.995 0.514 1.608 0.543 0.581

2008-2019 1.815 0.694 0.613 0.490 0.433

HSM (1982-2019) 1.947 0.580 0.641 0.373 0.392

1982-2007 2.059 0.527 0.638 0.418 0.443

2008-2019 1.679 0.681 0.649 0.251 0.251

The predicted share of naive forecasters – the gauge of expectations de-anchoring – lies at

(or close to) 100% in the 1980s and early 1990s, suggesting that even professional forecasters
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Figure 7: Model Predictions - Real Variables

Note: The panels show model predictions for real GDP growth (top), inflation (middle)
and the (shadow) federal fund rates (bottom). The black solid line denotes the data; the
blue dashed line depicts the median model prediction of the heuristic switching model
along with 95% confidence intervals in grey; the red dotted line depicts the median
model prediction under rational expectations (RE). The blue-shaded area denotes the
out-of-sample forecast period.
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Figure 8: Model Predictions - Expectations

Note: The panels show model predictions for 1q ahead expected real GDP growth
(top), 1q ahead expected inflation (middle) and the share of naive forecasters (bottom).
The black solid line denotes the data; the blue dashed line depicts the median model
prediction of the heuristic switching model along with 95% confidence intervals in grey;
the red dotted line depicts the median model prediction under rational expectations
(RE). The blue-shaded area denotes the out-of-sample forecast period.
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adopted a near unit root forecasting function in a period characterised by a high degree of

inflation persistence. In the mid-1990s, expectations began to re-anchor until the Global

Financial Crisis led to another increase in the share of naive forecasters. However, this

uptick in de-anchoring was small and short-lived. This pattern of gradual re-anchoring in the

1990s as well as the short uptick in de-anchoring around the Global Financial Crisis (GFC)

is consistent with the existing empirical literature, e.g. Ball and Mazumder (2012) and

Strohsal et al. (2016). Again, it is important to note that model households do not forecast

observed inflation directly. Instead, due to the presence of the measurement error, they

forecast the underlying inflation trend. As a result, the correlation between model-implied

forecasts and realised lagged headline inflation is less than one and tracks the correlation

between observed inflation expectations and the realised lagged headline inflation quite well

(see Figure 9).19 As in the data, the model-implied sensitivity of short- and long-term

expectations to forecast errors and lagged realised inflation displays the familiar process of

re-anchoring before 2000 and a short-lived uptick in 2009. However, the insensitivity of

long-term expectations suggests that the GFC led to some degree of de-anchoring, but that

this process did not feed through to long-term expectations.

Figure 9: Sensitivity of Implied Expectations to Inflation Surprises and Inflation

Note: The panels show the estimated time-varying sensitivity of short-run (upper row) and long-
run (lower row) inflation expectations to inflation surprises (left column) and realised inflation
(right column). Solid black lines depict the time-varying sensitivity of model-implied inflation
expectations with 95% credible intervals shaded in grey. Finally, blue dashed lines depict the
time-varying sensitivity of median observed inflation expectations from the SPF.

Despite not using long-run expectations as observable data in the estimation, I can back

19The sensitivity of the smoothed inflation expectations to the model-implied forecast error as well as
lagged, observed, inflation realisations is estimated using a rolling regression model as in Section 2. Differ-
ences in the estimated sensitivity of the observed inflation expectations arise because here I use quarterly
GDP price inflation and its corresponding median forecasts as measure of inflation without exploiting the
panel structure to keep the estimates comparable.
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out the long-run inflation expectations (see Section 3.3). Figure 10 plots the evolution of

these implied long-run inflation expectations together with the observed median 10y ahead

CPI inflation expectations obtained from the SPF (the longest continuously available long-

run forecast available in the SPF). The model-implied long-run inflation expectations appear

to match an underlying trend present in the SPF forecasts. They follow the steady downward

trend in the first half of the sample but miss the (almost) discrete drop in the late 1990s. Fur-

thermore, when observed inflation expectations become increasingly volatile again following

the GFC, the model implies a decrease in long-run expectations which slightly under-predicts

observed expectations. Despite this, the sensitivity of model-implied inflation forecasts is

quite close to the sensitivity present in the SPF forecasts, as discussed earlier. Finally,

the model-implied IRF of long-term inflation expectations to a 1pp monetary policy shock

matches the IRF estimated on observed expectations rather well (see Figure D.1).

Figure 10: Model-implied and Observed 10-year Inflation Expectations

Note: This figure shows the model-implied 10y inflation expectations as the
dashed blue line with 95% confidence bands shaded in grey. The continuous black
line depicts the median 10y ahead CPI forecast from the Survey of Professional
Forecasters. The circled data points are obtained by combining the 10y ahead
forecasts from the Livingston Survey and the Blue Chip Economic Indicators.
The blue-shaded area indicates out-of-sample forecasts.

The implied moments of the estimated model as a function of the share of naive agents

are displayed in Figures D.3 & D.4. The variance of output and inflation is increasing in

the degree of de-anchoring, just like the autocorrelation of the two variables. The contem-

poraneous impact of the exogenous processes on output and inflation is highly non-linear:

output reacts least (most) in an absolute sense to discount factor and monetary policy shocks

(productivity shocks) for intermediate values of n. Inflation, on the other hand, reacts most

in an absolute sense to each shock for intermediate values of n.
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5.3. De-anchoring in the Model

To illustrate the process of de-anchoring I simulate the response of the estimated model to

four consecutive σζ discount factor shocks when the zero lower bound is potentially binding

(see Figure 11). This series of shocks decreases demand enough to force the central bank

to the zero lower bound for a prolonged period and leads to significant drops in output and

inflation.20 As the lower right panel illustrates, the share of naive forecasters initially drops

but, instead of reverting to its steady state value, it quickly increases up to 100%. Upon

impact of the initial contractionary shocks, the adaptive learning rule initially predicts the

resulting contraction better than the naive forecasters as the latter adjust their expectations

only with a lag. As the shocks start to level off, however, the adaptive heuristic yields worse

forecasts. This is the case because, coming out of steady state, it misjudges the relation

between the exogenous processes and the endogenous realisations. That is, because the

adaptive forecasting heuristic starts with Ψ̄0 at its steady state value where n = 0.5 and

where monetary policy can mediate the effect of exogenous shocks, it fails to accurately

reflect the new environment where the share of adaptive learners is higher and the ZLB is

binding. Therefore, the share of naive forecasters gradually increases and ultimately pushes

the economy into a deflationary spiral.

Note that, upon impact, the HSM model yields the same response as the rational expec-

tations model (plotted in red).21 The key difference is that forecast switching can generate

endogenous, belief-driven deflationary spirals at the zero lower bound. The rational expecta-

tions model, on the other hand, returns to the steady state once the initial shocks disappear

and the central bank leaves the zero lower bound after 8 quarters.

The deflationary spiral is driven by the forecast switching behaviour. In fact, without

forecast switching (i.e. keeping n = 0.5 constant), the economy would very slowly return to

its pre-crisis level as the counterfactual analysis in Figure D.5 shows. Note that this scenario

occurs only when the central bank is constrained by the zero lower bound. If monetary

policy is unconstrained, the system remains stable even if the share of naive forecasters

approaches 100%. This is why the estimated process remains stable throughout the 1980s

& 1990s. However, even when monetary policy remains unconstrained and can prevent

deflationary spirals, the economy still experiences elevated volatility of output and inflation.

Therefore, the potential downside posed by de-anchoring is highly asymmetric with regard

to the proximity to the ZLB, i.e. depends on the level of the equilibrium interest rate.

20I plot the IRFs for 10 quarters only. For a longer period the rational-expectations response becomes
hard to discern due to the deflationary spiral.

21The rational expectations IRF is computed using the parameters of the HSM posterior for better com-
parability.
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Figure 11: De-anchoring at the ZLB

Note: IRF to four consecutive σζ shocks to the discount factor ζt. The solid
blue line shows the IRFs of the heuristic switching model (HSM); the dotted
red line shows the IRFs of the rational expectations model (RE).

6. Policy Comparison

As discussed in the previous section, sequences of adverse shocks can push the economy to

the zero lower bound and lead to deflationary spirals by triggering expectations de-anchoring.

How can monetary policy prevent this scenario? And how do the two previously discussed

monetary rules compare in terms of their welfare implications? In this section, I address these

questions with stochastic simulations. Due to the asymmetric risk posed by de-anchoring (i.e.

the risk of deflationary spirals at the ZLB), I also consider a version of Inflation Targeting

that features an asymmetric response to below-target inflation (Bianchi et al., 2021)

rt = max
[
0, π̄ + 1πt<π̄φπ(πt − π̄) + (1− 1πt<π̄)φ̄π(πt − π̄) + φyŷt

]
with φ

π
= π+0.5 & φ̄π = π−0.5. I evaluate the performance of the three policy frameworks

using the welfare22 function W

W = −
T∑
t=0

βt
[
(πt − π̄)2 +

κ

ε
ŷ2
t

]
22This welfare function can be motivated by a second-order approximation to the household’s preferences.
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I simulate the model economy using the estimated parameters over 2,000 periods, discarding

the first 20% of them. However, instead of simulating the linearised model of Section 4.1.1,

I simulate the non-linear model described in Section 3.1. The model is solved with the time

iteration approach of Richter et al. (2014), which is a version of policy function iteration.

This approach solves for the labour and inflation policy functions that set the error of the two

inter-temporal conditions (5) & (12) to zero given the predetermined subjective expectations.

I maintain the assumption that households use linear predictors to forecast the deviations

of output and inflation from steady state but translate these expectations back into levels of

output and inflation to solve the non-linear model.23 For simplicity, I impose market clearing

to derive the consumption forecast for the Euler equation (5). I simulate the economy under

two different environments. The first environment features a discount factor β equal to the

estimated parameters presented in Table 1 so that, along with an inflation target of 2%,

the equilibrium nominal interest rate is ∼ 6%. In the second environment, I increase the

discount rate to β = 0.9975 so that the equilibrium nominal interest rate decreases to ∼ 3%

(annualised). Importantly, I simulate the model assuming that the zero lower bound on

interest rates can be binding and do not account for the many other tools central banks have

at their disposal at the ZLB such as QE, forward guidance etc. These instruments, however,

potentially bear risks for financial stability as well as central bank independence and, finally,

might face decreasing returns. Thus, even if central banks are not completely constrained by

the ZLB (e.g. Wu and Xia, 2016), it is in their interest to optimise their operating procedure

in normal times to minimise the frequency and severity of those ZLB episodes.

Table 3 presents the simulation results. In a high nominal interest rate world, the risk of a

binding zero lower bound is relatively small and the risk of deflationary spirals is (unsurpris-

ingly) almost non-existent. Among the three policy rules, Price Level Targeting minimises

the volatility of output and inflation. The asymmetric Inflation Targeting framework is the

second best in terms of welfare, improving over the basic symmetric Inflation Targeting.

However, in a low nominal interest rate environment, Price Level Targeting leads to a large

degree of macroeconomic instability and is associated with an almost 21% probability of defla-

tionary spirals.24 The threshold level of de-anchoring (see Section 4.2) appears to be crossed

repeatedly in a low nominal interest rate environment. In this environment, the asymmetric

Inflation Targeting framework still outperforms the symmetric one and leads to the highest

welfare of the three policy rules. In Appendix E I also investigate the performance of an

23I initialise the simulation at the fixed point of the adaptive forecasting function. In the case of Price
Level Targeting, the fixed point is derived under the assumption of no autocorrelation in the shock processes.
Therefore, I simulate the linearised model first to obtain the starting values for the nonlinear simulation.

24A deflationary spiral is defined as a quarter with inflation of less than -20%. If a deflationary spiral
occurs, I reset all the relevant learning parameters and continue the simulation.
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Table 3: Simulation Results

R∗ = 6% R∗ = 3%

IT PLT asym. IT IT PLT asym. IT

σ(π) 0.011 0.001 0.007 0.012 0.019 0.007

σ(y) 0.039 0.007 0.014 0.041 0.128 0.024

ZLB Frequency (%) 8.188 2.250 7.688 35.750 92.750 28.500

ZLB Length 6.700 4.966 5.528 12.344 82.364 9.486

Welfare W -0.138 -0.001 -0.025 -0.172 -0.546 -0.048

Risk of Defl. Spiral (%) 0.063 0.000 0.000 0.063 21.375 0.063

Note: This table shows the simulation results under inflation targeting (IT), price level
targeting (PLT), and asymmetric inflation targeting (asym. IT) á la Bianchi et al.
(2021) under a high nominal interest rate environment (i.e. R∗ ∼ 6%) and under a low
nominal interest rate environment (i.e. R∗ ∼ 3%).

Average Inflation Targeting rule and show that it does not lead to higher welfare than the

asymmetric Inflation Targeting framework. Therefore, the asymmetric Inflation Targeting

framework dominates the symmetric Inflation Targeting framework in terms of welfare and

is more robust than Price Level Targeting across different levels of the equilibrium nominal

interest rate.

7. Conclusion

Central bankers frequently voice concerns about the possibility of de-anchored inflation ex-

pectations, that is, the risk that households perceive temporary inflation shocks as being

permanent so that short-term developments in inflation feed into long-term inflation expec-

tations. The contribution of this paper is to study the anchoring of inflation expectations.

For this purpose, I build a model in which agents hold competing forecasting heuristics –

a naive forecasting rule and an adaptive learning rule. The time-varying share of agents

holding the naive forecasting heuristic determines the sensitivity of short- and long-run ex-

pectations to short-run conditions. The model has the same steady states as under rational

expectations but features complex dynamics away from the steady state that are non-linear

in the degree of anchoring: when expectations de-anchor, the volatility of output growth and

inflation increases. Monetary policy can prevent expectations de-anchoring from causing in-

flationary or deflationary spirals if the Taylor principle is satisfied and the zero lower bound

is not binding. At the zero lower bound, however, de-anchoring can lead to a self-fulfilling

deflationary spiral. Thus, the potential welfare loss of de-anchoring is asymmetric and bigger
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in a low interest rate environment. I estimate the model using the non-linear particle filter

on U.S. data and use the estimated model to explore the implications for monetary policy, in

both a high and a low nominal interest rate environment. A striking result is that price level

targeting can have serious de-stabilising effects when employed near the zero lower bound,

due to its more restrictive stability requirements. However, in a high nominal interest rate

environment, it successfully stabilises the economy. An asymmetric inflation targeting regime

that responds more aggressively to below-target inflation, on the other hand, is particularly

well suited to prevent the risk of deflationary spirals and improves over a symmetric inflation

targeting framework in terms of welfare.
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Appendix A. De-anchoring in Practice

A.1. Alternative measures of inflation expectations

Figure A.1: Sensitivity of Household Expectations to Realised Inflation & Forecast Errors

Note: The panels show the estimated time-varying sensitivity of the median short-run (upper
row) and median long-run (lower row) inflation expectations from the Michigan Fed’s Survey of
Consumers to inflation surprises (left column) and realised inflation (right column). Forecast errors
are computed as the difference between realised CPI and the corresponding median forecast for the
same period. Solid blue lines depict the estimated time-varying coefficient with 95% confidence
intervals shaded in grey.

A.2. De-anchoring in the euro area

Inflation expectations of professional forecasters in the ECB’s SPF display a similar pattern of

time-varying sensitivity to short term news (see Figure A.2). 1-year and 5-year expectations

do not react significantly to short term news in the pre-crisis sample, but they exhibit signs

of de-anchoring, first during the euro crisis and later during 2015-17. This latter period

coincided with the ECB’s large scale asset purchase programmes that were explicitly started

due to worries about de-anchoring and deflation.
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Figure A.2: Sensitivity of Expectations to Forecast Errors and Inflation Realisations (euro
area)

Note: The panels show the estimated time-varying sensitivity of short-run (upper row) and long-
run (lower row) inflation expectations from the ECB’s Survey of Professional Forecasters to in-
flation surprises (left column) and realised inflation (right column). Solid blue lines depict the
estimated time-varying coefficient with 95% confidence intervals shaded in grey.

Appendix B. Derivation of the Fixed Point

Take the ODE

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)Ψxt−1)] + Anzt−2 + Bwt + Cz̄)−Ψxt−2)′ (63)

and work separately with a,b. Given that limt→∞Extxt′ = Σx = R = diag(1,Σw), it is

possible to write the ODE as

∂a′

∂τ
= (A [(1− n)a] + nAzt−2 + Cz̄)′ − a′ (64)

∂b′

∂τ
=Σw

−1Σwt−2,wt−1(A [(1− n)b)] + B)′ + Σ−1
w Σwt−2,zt−2(An)′ − b′ (65)

As long as the ALM in Equation (30) is asymptotically stationary, i.e.

λ < 1 ∀λ ∈ Λ = {Λ : |I− nA−ΛI| = 0} (66)

we can write, holding (Ψ′, n) fixed, limt→∞Ezt as

zt(Ψ, n) =
(
(I− nA)−1 (A [(1− n)a] + Cz̄)

)′
(67)
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so that the ODE for a becomes

∂a′

∂τ
=
(
A
[
(1− n)a + n(I− nA)−1 (A(1− n)a + Cz̄)

]
+ Cz̄

)′ − a′ (68)

yielding the fixed point

vec(ā′) = (I −A)−1vec ((Cz̄)′) (69)

Turning our attention to the ODE for b, we note that Σwt−2,wt−1 = FΣw = ΣwF (because

both are diagonal) and that Σwt−2,zt−2 = Σwt,zt is endogenously determined:

Σwt,zt =E(wt)(A [(1− n)Ψxt−1)] + Anzt−2 + Bwt−1 + Cz̄)′ (70)

⇔ Σwt,zt =Σwb′(A(1− n))′ + ΣwB′ + Σwt,zt−1(An)′ (71)

where Σwt,zt−1 again is endogenous

Σwt,zt−1 =E(Fwt−1)(A [(1− n)Ψxt−1)] + Anzt−2 + Bwt−1 + Cz̄)′ (72)

⇔ Σwt,zt−1 =FΣw(A(1− n)b + B)′ + FΣwt−1,zt−2(An)′ (73)

⇒ vec(Σwt,zt−1) =(I−An⊗ F)−1 (A(1− n)⊗ FΣwvec(b
′) + vec(FΣwB′)) (74)

Substituting this into vec (Σwt,zt) and then into vec(∂b′/∂τ) yields the fixed point

vec(b̄′) = (I −G1)−1 G2vec(B
′) (75)

where

G1 =A(1− n)⊗ F + An⊗Σw
−1A(1− n)⊗Σw (76)

+ An⊗Σw
−1An⊗ I [I− nA⊗ F]−1 [A(1− n)⊗ FΣw] (77)

G2 =I⊗ F + An⊗Σw
−1I⊗Σw (78)

+ An⊗Σw
−1An⊗ I [I −An⊗ F]−1 FΣw ⊗ I (79)

The mapping T from the perceived to the actual law of motion for the PLM coefficients for

a given n can therefore be characterised as

T (Ψ′, n) =

(
T (a′, n)

T (b′, n)

)
=

(
((I −An)−1A(1− n))

′

G1

)
(80)
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Appendix C. Proofs

C.1. Proof of Proposition I

Proof. A fixed point exists if the process zt is asymptotically stationary. Since the eigenvalues

of (nA) are increasing in n, a fixed point exists if the eigenvalues of A lie within the unit

circle. Bullard and Mitra (2002) show that a necessary and sufficient condition for the

eigenvalues of A to lie within the unit circle for a bivariate Taylor rule is

κ (φπ − 1) + (1− β)φy > 0

Strict inflation targeting is the limit case with φy = 0, thus reducing the requirement to

φπ > 1 (81)

i.e. the standard Taylor principle.

C.2. Proof of Proposition II

Proof. I guess that z∗ = ā = (1−β
κ
π̄, π̄)′ (i.e. the rational expectations steady state) is

a steady state. In the absence of structural shocks and given zt = zt−1, neither forecast

heuristic makes prediction errors so that nt = n = 0.5 and the system becomes

y∗ = (1− n)y∗ + ny∗ − 1

σ
(π̄ + φπ(π∗ − π̄)− (1− n)π̄ − nπ∗)

π∗ = β[(1− n)π̄ + nπ∗] + κy∗

It is clear that π∗ = π̄ and y∗ = 1−β
κ
π̄ is a solution, thus confirming the initial guess. This

is the case even if we were to fix the share of naive forecasters at any value nt = n ∈ (0, 1).

However, due to the decay of past prediction errors and the forecast selection mechanism,

only nt = n∗ = 0.5 can be a steady state.

C.3. Proof of Proposition III

Proof. When all households are adaptive learners (i.e. nt = 0), DTa(a
′, n) reduces to [A].

Given that the eigenvalues of A are smaller than one in absolute value, the eigenvalues of [A−
I] will be negative since we subtract 1 from each of the eigenvalues of A. Similarly, DTb(b

′, n)

reduces to [A ⊗ F], so that the eigenvalues of [A ⊗ F − I] will be negative as well. When

all households are naive forecasters (i.e. nt = 1), both DTa(a
′, n) and DTb(b

′, n) reduce
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to zero so that the associated eigenvalues are of course −1. Any combination in between

for n ∈ (0, 1) is a non-linear combination of the two preceding cases whose eigenvalues are

decreasing in n and therefore still features negative eigenvalues, as Figure 3 illustrates.

C.4. Proof of Proposition IV

Proof. The eigenvalues of Ã are given by

λ1,2 =
1

2

(
1 + β +

κ

σ
±
√(

1 + β +
κ

σ

)2

− 4β

)

which implies for all positive values of β, κ, and σ that |λ1| < 1 and λ2 > 1. Since the

eigenvalues of nÃ are increasing in n, there exists n̄ = 2

(1+β+κ
σ

+
√

(1+β+κ
σ

)2−4β)
∈ (0, 1) such

that only for n < n̄ all eigenvalues of nÃ fall within the unit circle, the process zt is

asymptotically stationary, and the mapping T̃ has a fixed point. For n ≥ n̄ the process is

not stationary and no fixed point exists.

C.5. Proof of Proposition V

Proof. I again guess that z̃∗ = ˜̄a = (0, 0)′ and assume that n̄ > 0.5. In the absence of

structural shocks and given zt = zt−1, neither forecast heuristic makes prediction errors so

that nt = n = 0.5 and the system becomes

ỹ = (1− n)ỹ + ntỹ −
1

σ
(−((1− n)π̃ + nπ̃))

π̃ = β((1− n)π̃ + nπ̃) + κỹ

which is solved by π̃∗ = ỹ∗ = 0, confirming the initial guess. However, if n̄ ≤ 0.5, there exists

no fixed point ˜̄a so that the ZLB steady state does not exist.

C.6. Proof of Proposition VI

Proof. I again first consider the extreme cases: when all households are adaptive learners

(i.e. nt = 0), DT̃a(a
′, n) reduces to [Ã]. Given that one eigenvalue of Ã is bigger than one,

not all eigenvalues of [Ã−I] will be negative. The magnitude of eigenvalues of DT̃b(b
′, n) on

the other hand depends on the correlation matrix F and might be bigger or smaller than one

in absolute value. When all households are naive forecasters (i.e. nt = 1), both DT̃a(a
′, n)

and DT̃b(b
′, n) reduce to zero so that the associated eigenvalues are of course −1. Since the
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relevant eigenvalues switch signs I need to consider the steady state case n = 0.5 explicitly.

In that case, the mapping becomes:

DT̃a(a
′, 0.5) =

[
(I− 1/2Ã)−11/2Ã

]
= (2A−1 − I)−1 (82)

E-stability requires that

eig((2Ã−1 − I)−1 − I) < 0

Where eig(A) denotes the vector of eigenvalues λ associated with any matrix A. The above

is equivalent to

⇔ eig((2Ã−1 − I)−1)− 1 < 0

⇔ 1� eig((2Ã−1 − I))− 1 < 0

where � denotes the Hadamard division, i.e. elementwise division. Note further

⇔ 1� (eig(2Ã−1)− 1)− 1 < 0

⇔ 1� (2� eig(Ã)− 1)− 1 < 0

⇔ eig(Ã)� (2− eig(Ã))− 1 < 0

however, since one of the eigenvalues of Ã is larger than one, this condition cannot be

satisfied.

C.7. Proof of Proposition VII

Proof. I guess that z∗ = ā = (1−β
κ
π̄, π̄, 0)′ (i.e. the rational expectations steady state) is a

steady state. In the absence of structural shocks and given that zt = zt−1, neither forecast

heuristic makes prediction errors so that nt = n = 0.5 and the system becomes

y∗ = (1−n)y∗+(1−n)cy,pp̂
∗+ny∗− 1

σ
(π̄ + φπ(πt − π̄ + p̂∗)− (1− n)π∗ − (1− n)cπ,pp̂

∗ − nπ∗)

π∗ = β[(1− n)π∗ + (1− n)cπ,pp̂
∗ + nπ∗] + κy∗

p̂∗ = π∗ − π̄ + p̂∗

It is clear that π∗ = π̄, y∗ = 1−β
κ
π̄, and p̂∗ = 0 is a solution, thus confirming the initial guess.

This is the case even if we were to fix the share of naive forecasters at any value nt = n < n̄.

However, due to the decay of past prediction errors and the forecast selection mechanism,

only nt = n∗ = 0.5 can be a steady state. However, if n̄ ≤ 0.5, there exists no fixed point ˜̄a
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so that the steady state does not exist.

C.8. Proof of Proposition VIII

Proof. Suppose the coefficient c̄[3,3] on the lagged price level gap converged to its true value

one. Then the system is not stationary because at least one eigenvalue of A(1−n)c̄+nA+D

lies outside the unit circle. For values of c̄[3,3] < 1 the ALM might be stationary, but this

cannot be a fixed point of c̄.
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Appendix D. Model Dynamics

D.1. Long-run Inflation Expectations & Monetary Policy

Note: This figure plots the estimated IRF of (log) 10y inflation expectations to a
1pp monetary policy shock along with the equivalent model IRF. The data IRF is
estimated using a local projection on a sample from 1990Q1:2007Q4 and uses Romer
and Romer (2004) shocks to identify exogenous movements in monetary policy, which
are used to instrument the 1y Treasury Rate. The model further includes lagged values
of real GDP, CPI, the 1y Treasury Rate, and the dependent variable. Standard errors
are heteroskedastic and autocorrelation consistent with 12 lags. IRF is robust to 1)
including the monetary policy shock directly instead of using it as an instrument; 2)
using the combined data on long-run inflation expectations as in Figure 10; 3) using the
high frequency identified shocks of Gürkaynak et al. (2005) and extending the sample
to 1982Q1:2007Q4.

Figure D.1: IRF of 10y Inflation Expectations to a 1pp Monetary Policy Shock
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D.2. Forecast Errors

Angeletos et al. (2020) document two stylised facts of aggregate expectations: They initially

under-react but later over-shoot the actual outcomes. I test whether my model of expectation

formation fits these facts. I estimate the impulse response functions of average 1q ahead

inflation forecast errors (i.e. πt+1− Êtπt+1) to a monetary policy shock. The left (right) panel

of Figure D.2 shows the IRF of the forecast error after a positive (negative) monetary policy

shock that decreases (increases) inflation. In both cases, we see an initial under-reaction of

expectations. That is, after a positive (negative) monetary policy shock, households initially

expect higher (lower) inflation than eventually realises. However, after 5 periods, the forecast

errors flip signs, i.e. they over-react. Thus, my model with heuristic switching forecasts fits

the stylised facts of Angeletos et al. (2020). As a comparison, I also plot the forecast errors of

the model if it was populated by adaptive learners only (i.e. nt = 0∀t). In this case forecast

errors are negative only upon the impact of the shock, but then immediately over-shoot,

thus not quite fitting the findings of Angeletos et al. (2020).

Figure D.2: IRF of Forecast Errors

Note: This figure plots the IRF of the average inflation forecast errors to positive (right) and
negative (left) 1pp monetary policy shock which occurs in period 1. The solid blue line depicts
the forecast errors of the heuristic switching model, whereas the dotted blue line depicts the
counterfactual forecast errors if the model contained adaptive learners only.
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D.3. Model Moments

Figure D.3: Model Variances & Autocorrelation

Figure D.4: Model Correlations with Exogenous Processes
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D.4. Counterfactual IRFs

Figure D.5: Counterfactual IRF Shutting Down one Updating Mechanism at a Time

Note: This figure plots the IRF of output (left) and inflation (right) to four consecutive σζ shocks
to the discount factor under different assumptions about the expectation formation. The solid
blue line shows the response of the full model (i.e. the same response as in Figure 11); the dashed
lined shows the IRF of the model with a constant share of naive forecasters (i.e. n = 0); the
dotted lined shows the IRF of the model with a constant share of naive forecasters (i.e. n = 0.5)
and no learning on the side of the adaptive forecasters (i.e. Ψt = Ψ). The dash-dotted lined
shows the IRF of the model with a time varying share of naive forecasters but no learning on the
side of the adaptive forecasters (i.e. Ψt = Ψ).
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Appendix E. Extension: Average Inflation Targeting

In this section I investigate the performance of Average Inflation Target (AIT) as an al-

ternative policy rule under endogenously anchored expectations. In particular, I evaluate

the performance of a Taylor-type rule as described by Reifschneider and Wilcox (2019) that

features an additional term for past inflation deviations:

rt = max

[
0, π̄ + φπ(πt − π̄) + φAIT

(
1

h
ΣH
h=1(πt−h − π̄)

)
+ φyŷt +mt

]
(83)

That is, the central bank does not only react to current deviations of inflation from target,

but also to the average deviation of inflation from target over the past H quarters. As in

Reifschneider and Wilcox (2019), I set φAIT = 0.5 and H = 20, implying that the central

bank reacts to the average inflation deviation of the past 5 years. I evaluate the performance

of this rule in the same way as in Section 6.25

Table 4: Extended Simulation Results including Average Inflation Targeting

R*=6% R*=3%

IT PLT asym. IT AIT IT PLT asym. IT AIT

σ(π) 0.011 0.001 0.007 0.009 0.012 0.020 0.007 0.013

σ(y) 0.039 0.007 0.014 0.033 0.041 0.134 0.024 0.050

ZLB frequency (%) 8.188 2.125 7.688 10.438 35.750 90.313 28.500 22.813

ZLB length 6.700 4.040 5.528 7.633 12.344 55.167 9.486 9.370

Welfare W -0.138 -0.001 -0.025 -0.009 -0.172 -0.570 -0.048 -0.072

Risk of defl. Spiral (%) 0.004 0.000 0.000 0.004 0.004 1.129 0.004 0.012

Note: This table shows the simulation results under inflation targeting (IT), price level targeting (PLT),
asymmetric inflation targeting (asym. IT) á la Bianchi et al. (2021), and Average Inflation Targeting á la
Reifschneider and Wilcox (2019) under a high nominal interest rate environment (i.e. R∗ ∼ 6%) and under
a low nominal interest rate environment (i.e. R∗ ∼ 3%).

The simulation results in Table 4 show that AIT closely approximates the performance of

price level targeting in a high nominal interest rate world and outperforms Inflation Targeting

in terms of welfare, both symmetric and asymmetric. In a low nominal interest rate world its

performance deteriorates and, in terms of welfare, asymmetric Inflation Targeting is a better

alternative. However, AIT does not suffer from the same instability problems as price level

25Unfortunately, an analytical solution of the PLM of the adaptive forecasters under AIT is not available.
Therefore, I start the simulation at the fixed point of the PLM under price level targeting and do not update
the share of naive forecasters during the burn-in period so that the adaptive forecasters can learn the ALM
under fixed shares.
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targeting even though it increases the degree of history dependence in the system. This is

because each deviation of inflation from target receives only weight 1/h whereas under PLT

each deviation of inflation from target receives weight 1. Nonetheless, its history dependence

leads to a worse performance compared to the asymmetric Inflation Targeting rule in a low

nominal interest rate environment.
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