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Abstract 
 

We implement a novel nonlinear structural model featuring an empirically-successful frequency-
dependent and asymmetric Phillips curve; unemployment frequency components interact with 
three components of core PCE – core goods, housing, and core services ex-housing – and a variable 
capturing supply shocks. Forecast tests verify model’s accuracy in its unemployment-inflation 
tradeoffs, crucial for monetary policy. Using this model, we assess the plausibility of the December 
2022 Summary of Economic Projections (SEP). By 2025Q4, the SEP projects 2.1 percent inflation; 
however, conditional on the SEP unemployment path, we project inflation of 2.9 percent. A fairly 
deep recession delivers the SEP inflation path, but a simple welfare analysis rejects this outcome. 
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“…you can break inflation down into three sorts of buckets. The first is goods inflation, 
and we see now… goods inflation coming down ... Then you go to housing services …that 
inflation will come down sometime next year. The third piece, which is something like 55 
percent of the … PCE core inflation index, is non-housing-related core services. And that's 
really a function of the labor market … And we do see a very, very strong labor market, 
one where we haven't seen much softening, where job growth is very high, where wages 
are very high. Vacancies are quite elevated and … there's an imbalance in the labor market 
between supply and demand. So that part of it, which is the biggest part, is likely to take a 
substantial period to get down. The other … the goods inflation has turned pretty quickly 
now after not turning at all for a year and a half. Now it seems to be turning. But there's an 
expectation … that the services inflation will not move down so quickly, so that we'll have 
to stay at it so that we may have to raise rates higher to get to where we want to go. And 
that's really why we are writing down those high rates and why we're expecting that they'll 
have to remain high for a time.” 

 
FOMC Chair Jerome Powell, Press Conference, Dec. 14, 2022 

1. Introduction  
 

In his December 14, 2022, press conference, Jerome Powell, chair of the Federal Open Market 

Committee (FOMC), used a tripartite decomposition of core PCE inflation to explain why the 

FOMC expects that the federal funds rate will “have to remain high for a time.” This 

decomposition consists of core goods inflation, housing services inflation, and core services ex-

housing inflation. In the December 2022 Survey of Economic Projections (SEP), the median 

projection for four-quarter core PCE inflation in the fourth quarter of 2025 is 2.1 percent; this same 

SEP has unemployment rising to peak at 4.6 percent by the end of 2023.  

In this paper, we assess the plausibility of this projection, exploring the path of inflation 

going forward, using the aforementioned tripartite decomposition of core PCE inflation.1 

Importantly, we carefully model the relationship between unemployment and these inflation 

components. Recent research (Ashley and Verbrugge, 2023; Verbrugge and Zaman, 2023a) has 

 
1 The idea of forecasting aggregate inflation by separately modeling and forecasting its underlying disaggregated 
components has a long tradition; see Tallman and Zaman (2017) and references therein.    
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demonstrated benefits to specifying the relationship between aggregate inflation and the 

unemployment rate as frequency-dependent – that is, to using a specification which allows 

inflation to respond differently to business-cycle movements in the unemployment rate than it does 

to low-frequency movements or to transient movements.2 This previous work has established that 

the response of aggregate inflation to the various frequency components of the unemployment rate 

gap (i.e., to the persistent, moderately persistent, and transient components) varies not only by 

persistence component, but also by the sign of these components. Specifically, the moderately 

persistent component of the unemployment gap plays an influential role in determining inflation 

dynamics, but only when the component is positive – which typically occurs during a recession 

and for a few months into the beginning of the expansion). On the other hand, the persistent 

component also exerts a strong influence on inflation, but only when that component is negative – 

which occurs when the persistent component is below the natural rate, i.e., when the economy is 

overheating.3 A failure to recognize these features of the unemployment-inflation relationship 

leads to several unreliable inferences, such as that the post-1985 Phillips curve is unstable and has 

weakened since 2006. 

In this paper, we construct a nonlinear structural vector autoregression (SVAR), specified 

in terms of the tripartite core PCE decomposition noted by Chair Powell; this SVAR includes a 

both a variable reflecting supply-shocks, to capture recent dynamics associated with supply 

disruptions and their relaxation, and also the frequency components of the unemployment rate. 

This model is well-suited for “disciplined scenario analysis,” i.e., to explore counterfactual 

 
2 King and Watson (1994) were perhaps the first to suggest that the Phillips curve varies with frequency; see also 
Stock and Watson (2010, 2020). A recent analysis using wavelets is given in Aguiar-Conraria et al. (2023). 
3 See also Forbes, Gagnon and Collins (2022). There are numerous antecedents to this finding in the nonlinear 
Phillips curve literature, which typically finds that the Phillips curve is “convex;” these are reviewed in Ashley and 
Verbrugge (2023). 
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conditional inflation forecasts that are at the heart of policy deliberations at present. In particular, 

given a proposed path for the unemployment rate, the SVAR projects the corresponding inflation 

path. We estimate our model over the 1985-2019 period and identify it using the data-determined 

method of Swanson and Granger (1997), which substantially reduces the role of subjective 

elements. We examine the dynamic interactions between the model variables by examining the 

impulse response functions (IRFs) to identified shocks; the estimated responses reveal interesting 

nonlinearities. For instance, housing inflation responds strongly both to the “recessionary force” 

associated with positive fluctuation in the moderately persistent component of the unemployment 

gap, and to the “overheating force” associated with a negative fluctuation in the persistent 

unemployment gap component. Conversely, median core services ex-housing inflation responds 

only modestly to the aforementioned recessionary force, but responds fairly strongly to the 

overheating force. We also examine the model’s historical forecast performance (both conditional 

on the evolution of the unemployment rate, and unconditional) compared to some standard 

benchmarks. We find competitive forecasting properties of our model, which lends credibility to 

our model’s conditional projections that we discuss next. 

When we condition our model’s forecast for 2023-2025 on the December SEP’s projected 

path for the unemployment rate (which has unemployment increasing by a total of 0.9 percentage 

points), we get a notably higher path for core PCE inflation than the SEP path. The SEP path has 

core PCE inflation moderating to 2.1 percent by the end of 2025. But according to this model, 

inflation is going to remain higher for longer: by the end of 2025, our model projects that it will 

still be at 2.85 percent, with the 70 percent confidence interval spanning 2.16 to 3.59 percent. A 

key to this result is the fact that inflation is more persistent than commonly believed. We conclude 
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that it would take a fairly deep recession to reduce inflation at the SEP’s projected pace.4 We 

investigate the claim of former Treasury Secretary Lawrence Summers (reported in Aldrick, 2022) 

and the supporting assessment of Ball, Leigh, and Mishra (2022) that it will require two years of 

7.5 percent unemployment – a notable jump from its current low level of 3.6 to 3.7 percent – to 

bring inflation down to its 2 percent target. Our point estimates suggest that one year of 6.7 percent 

unemployment would accomplish this task, though there is considerable uncertainty surrounding 

this estimate. 

 But would such a recession be ideal? As a first pass at addressing this question, we perform 

a simple reduced-form welfare analysis using a quadratic loss function that equally penalizes 

quarterly deviations of inflation from 2 percent (the FOMC target level of inflation), and deviations 

of unemployment from 4 percent (the FOMC’s estimate of the longer-run level of unemployment). 

In addition to producing inflation forecasts corresponding to the deep recession noted above and 

to the December SEP, we produce inflation forecasts corresponding to a moderate recession 

(defined by the path of unemployment taken in the 2001 recession) and to a soft landing for 

unemployment (which we define as the path of unemployment reported in the June SEP).5 The 

conclusions are somewhat sensitive to the relative weight of inflation versus unemployment in the 

loss function. For equal weights, the analysis prefers the December SEP path for unemployment. 

If the weight on inflation is low, it prefers the soft landing; and if the weight on inflation is quite 

high, it prefers the moderate recession. (Only for very high weight on inflation does it prefer the 

more severe recession.) Importantly, this baseline analysis abstracts from any danger of the de-

 
4 Our conclusions are similar to those of Cecchetti et al. (2023), who state: “…our analysis casts doubt on the ability 
of the Fed to engineer a soft landing in which inflation returns to the 2 percent target by the end of 2025 without a 
mild recession.” The paper computes the sacrifice ratio for 17 large disinflationary episodes in the US and three 
other large economies since 1950; the paper’s findings are similar to those of Ball (1994) and Tetlow (2022). 
5 Figura and Waller (2022) argue that a soft landing in the labor market is a plausible scenario. 



6 
 

anchoring of inflation expectations that might be associated with inflation still being quite elevated 

three years from now. 

 

2. Data, Methods and Model  
 

2.1 Data 

We use quarterly data spanning from 1985:Q1 through 2022:Q4, though we estimate the model 

using pre-COVID data.6 Most of the series are available at a monthly frequency, and we aggregate 

them up to a quarterly frequency. Following much precedent in the literature, we focus attention 

on the post-1984 period because inflation dynamics are thought to have changed markedly 

beginning in the mid-1980s onward, and because this is the period associated with anchored 

inflation expectations. 

Our model consists of six variables. Four of these are inflation variables, and each enters 

as a four-quarter growth rate. The first is the PPI for core intermediate goods, denoted PPI. This 

variable captures supply price pressures, in that its innovations are generally driven by supply 

shocks; see discussion below, and see Appendix G for more details. The next three variables are 

also inflation-specific, corresponding to the tripartite decomposition of Chair Powell. The first two 

of these are core goods and housing services; we denote inflation in these variables by CoreG
tπ  and 

Hous
tπ , respectively. 

 
6 At the time of this writing, we do not have complete 2022Q4 data. We use available monthly data to construct Q4 
nowcasts for all variables. Our model is estimated using 1985-2019 data. 
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But rather than using core services ex-housing, we instead construct, and use, median core 

services ex-housing (whose inflation is denoted MServXH
tπ ).7 We do this because core services ex-

housing are quite sensitive to outliers, particularly in non-market services. Verbrugge (2022) 

demonstrates that such sensitivity renders core inflation measures less reliable as indicators of 

medium-term trend inflation. Accordingly, we view median core services ex-housing inflation as 

a more accurate estimate of the medium-term trend in core services ex-housing, helping to more 

reliably capture both the persistence of this series, and its sensitivity to labor market pressures.8  

The method used to construct the (weighted) median core services ex-housing series is 

similar to that of Carroll and Verbrugge (2019), who use all the available 190+ disaggregated 

price categories of the monthly PCE to construct the (weighted) median PCE series. We use 

information about the price changes in the 82 disaggregated price categories of the PCE that are 

part of “PCE services excluding energy, food, and housing,” along with their respective nominal 

expenditure shares at a monthly frequency. Since we estimate the model with quarterly data, we 

aggregate up the monthly data to a quarterly frequency. 

Figure 1 plots core services ex-housing inflation alongside its median counterpart. As 

expected, the median series is smoother than the original series, and abstracts from the wild non-

market-price-driven swings in core services ex-housing experienced as the Financial Collapse was 

unfolding. Over the sample period displayed, the bias, defined as the gap between their respective 

inflation rates, is zero. However, over specific periods, there can be notable divergence, with more 

 
7Our choice of “median” variable is partly motivated by the successful track record of median CPI and median PCE 
variables constructed by the Federal Reserve Bank of Cleveland in tracking the trend in CPI and PCE inflation, 
respectively.  
8 As with core services ex-housing inflation, we find that median core services ex-housing inflation has a 
statistically significant Phillips curve. Its relationship to wage inflation (as measured by the Employment Cost Index 
(ECI) depends upon the sample period. For model parsimony, we do not include any wage variables in our model. 
Preliminary analysis indicates that median core services ex-housing performs well as a medium-term predictor of 
core services ex-housing. 
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recent periods appearing as a prominent example. Accordingly, in computing current forecasts of 

core services ex-housing inflation, we apply bias adjustment to the forecasts of the median 

variable.9 

[Figure 1 about here] 

2.2 Methods 

2.2.1 (One-sided) frequency decomposition of unemployment rate 

Following Ashley and Verbrugge (2023), the final two variables are two “components” of the 

unemployment rate: a persistent (or low-frequency) gap component and a moderately persistent 

(or medium-frequency) component.10 The approach to filtering, which must be done in a one-

sided in order to avoid inconsistent parameter estimates (see Ashley and Verbrugge, 2022a), is 

described in Appendix A. These components of the unemployment rate are derived from the 

jobless unemployment rate of Hall and Kudlyak (2022).11 The jobless unemployment rate is 

constructed by removing the temporary layoffs from overall unemployment. We relate inflation 

to the jobless unemployment rate rather than the overall unemployment rate, since during the 

pandemic collapse, temporary unemployment experienced a 20-standard-deviation shock. Such 

an extreme movement severely distorts coefficient estimates and frequency partitions. We 

 
9 The bias-adjustment procedure is informed by estimating an AR(1) process on the historical wedge (i.e., the gap 
between the two series) and using the estimated processes to compute the estimates of the time-varying wedge over 
the forecast period. Forecasts of the median variable are then bias-adjusted using this forecast of the wedge, so as to 
obtain an unbiased forecast of core services ex-housing.   
10 Specifically, the unemployment rate is split into “transient,” “moderately persistent,” and “persistent” 
components. But since the transient fluctuations were found to be unimportant predictors, to keep our model 
parsimonious, we abstract from these fluctuations. “Moderately persistent” refers to fluctuations that take 1-4 years 
to complete; “persistent” fluctuations last longer than that. King and Watson (1994) were perhaps the first to suggest 
that the Phillips curve varies with frequency. However, to obtain valid inferences, frequency filtering must be done 
in a one-sided manner (see Ashley and Verbrugge 2022a and Doppelt (2021)). Hamilton (2018) recently introduced 
an alternative to HP filtering, but Ashley and Verbrugge (2022b) demonstrate that, for properly decomposing a time 
series into its lower-frequency and higher-frequency components, this procedure is inferior to the procedure used in 
Ashley and Verbrugge (2023) and Ashley, Tsang, and Verbrugge (2020); see Appendix A for more details. We form 
a low-frequency gap by subtracting the Zaman (2022) Ut

* estimate from the low-frequency component. Our model 
forecasts even slower deceleration in inflation if we instead use the CBO natural rate estimate. The U* estimates 
from Zaman’s model are available to download from https://github.com/zamansaeed/macrostars. 
11 The data necessary to construct the jobless unemployment rate are available from the Bureau of Labor Statistics.  
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sidestep pandemic-related distortions by a) focusing on the relationship of inflation to the jobless 

unemployment rate, since the jobless unemployment rate experienced fairly typical dynamics 

during the COVID recession, and b) by estimating the model over the 1985-2019 period.  

These two components of the jobless unemployment rate are depicted in Figure 2. Our 

partitioning of the jobless unemployment rate into varying persistence components is motivated 

by the aforementioned previous findings of persistence-dependence in the Phillips curve 

relationship and by an emerging literature that is re-exploring the frequency domain to obtain clues 

about business cycle drivers and dynamics.12 In contrast to the previous work, which modeled the 

relationship between aggregate inflation (i.e., trimmed-mean PCE inflation), this paper separately 

models the nonlinear Phillips curve relationship for each of the inflation components using the two 

components of the unemployment rate. Accordingly, in our inflation equations, we admit sign 

asymmetry on the unemployment components. As we discuss below, each of the core PCE 

inflation variables is related only to the negative part of the persistent unemployment gap (i.e., 

when the persistent unemployment rate is below the natural rate of unemployment), and to the 

positive part of the moderately persistent unemployment component; these findings are generally 

consistent with the previous work focusing on aggregate inflation. Historically, these portions of 

the two components align closely with overheating and recession, respectively.13 As we explain 

below, this simple partition allows us to uncover very insightful nonlinear Phillips curve 

relationships in all of our inflation variables.  

[Figure 2 about here] 

 
12 See, e.g., Angeletos et al. (2020) and Beaudry et al. (2020). 
13 Notice that the positive medium-frequency component peaks shortly after the NBER recession trough. This 
positive component bears a striking resemblance to the (inverse of the) output gap estimated in Morley and Piger 
(2012). Asymmetry is an inherent feature of the business cycle. 
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Because we are specifying a structural model, we accordingly specify and estimate an 

equation for each of these unemployment components separately.  

2.2.2 Identification: Swanson and Granger (1997).  

Let us consider, for the moment, a linear structural vector autoregression (SVAR). Letting 

( ), , , , ,PPI CoreG MServXH Hous medfreq lowgap
t t t t t t tM u uπ π π π ′= , and ignoring the constant for simplicity, we 

consider SVAR models of the following form: 
  ( )t t tAM B L M V= +          (1) 

where A is a square matrix that denotes the “impact” matrix (indicating all contemporaneous 

causal influences), ( )B L  is a matrix lag polynomial, and tV  is the vector of structural residuals, 

assumed to be distributed normally with a diagonal variance-covariance matrix. The 

corresponding reduced-form model is given by 

( ) ( )1 1
t t t t tM A B L M A V L M E− −= + ≡ Φ +  

where ( )LΦ  is a matrix lag polynomial, and tE  is the vector of reduced-form residuals.  

Identification of Equation (1) based upon reduced-form parameter estimates implies 

obtaining estimates of A and B(L), along with the diagonal variance-covariance matrix of the 

structural shocks. In the typical case, the data alone do not provide enough information to fully 

identify the system; one must impose identifying assumptions, which in this case involve 

restrictions on the form of the A matrix. Thus, identification amounts to determining the pattern 

of contemporaneous causation amongst the variables. A common approach is to assume a 

Cholesky ordering, whereby the vector M is rearranged and the A matrix is assumed to be lower 

triangular. In such cases, the assumption is that first variable is not contemporaneously caused by 

any of the other variables; the second variable is only contemporaneously caused by the first 

variable; and so on. In a system with just four variables, there are 24 different Cholesky 
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orderings. However, Cholesky orderings represent but a small fraction of the set of possible 

models. 

We adopt the Swanson and Granger (1997) (SG) approach to identification, described in 

Appendix B (along with a simple example).14 This method is built upon the fact that most 

structural models, whether linear or nonlinear, imply overidentifying constraints. In particular, a 

given structural model implies correlation and partial correlation constraints on reduced-form 

regression residuals. (A partial correlation is the conditional correlation between two variables, 

conditioned on one or more other variables.) Under fairly weak assumptions, such 

overidentifying constraints may be tested using ordinary linear regressions and standard t-

statistics. However, a rejection of a given constraint implies a rejection of all models that share 

this constraint. Thus, such tests may be used to reject entire classes of models that are 

inconsistent with the data. This turns out to have a lot of bite, in practice. 

The method reduces the role of subjective elements typically required to identify a model 

(such as the imposition of a particular Cholesky ordering), because in our experience (and in the 

experience of Granger and Swanson), parsimonious models appear to agree with the data in most 

cases. (Effectively, the A matrix has many zeroes.) Accordingly, economic theory need only play 

a minor role in the selection of the final model. For instance, in a VAR with just four variables, 

there are over 100 potential models (24 of which correspond to Cholesky orderings). In the 

present case, as explained below, the data reject all but a handful of models. 

 

  

 
14 This causal discovery method builds upon work in causal modeling (e.g., Glymour and Spirtes, 1988) and is 
extended in Demiralp and Hoover (2003) and Demiralp, Hoover and Perez (2008); see also Moneta (2008). The 
method originated in Blalock (1961). 
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2.2.3 Nonlinear Impulse Response Functions, Forecasts, and Error Bands 

In a nonlinear model, the impulse response functions (IRFs) will generally depend upon the size 

of the shock, its sign, and on the initial conditions. Hence, theory should dictate which of these 

numerous IRFs to investigate/estimate, for any given variable X.  

The key nonlinearities in our model relate to how fluctuations in the two components of 

unemployment translate into forces on inflation. As discussed above, the core PCE inflation 

components have asymmetric relationships to both of the unemployment components: loosely 

speaking, the Phillips curve relationship consists of two relationships: a recession relationship, 

and overheating relationship. Conversely, a positive unemployment gap per se has no 

relationship to inflation. These facts explain why conventional Phillips curve specifications find 

missing disinflation and/or a weakening of the Phillips curve in the aftermath of the Great 

Recession – and why analysts are recently asserting that the Phillips curve has strengthened. 

The asymmetries in the Phillips curve relationships suggest that the most interesting IRFs 

are the following. First, what happens when the medium-frequency component gets bigger, when 

it is already positive? (And to highlight the nonlinearity, it is interesting to contrast this IRF to its 

“mirror image:” what happens when the medium-frequency component falls further, either when 

the low-frequency component is still positive, or when it is already negative?) And second, what 

happens when the low-frequency gap becomes more negative, when it is already negative? (And 

again, to highlight the nonlinearity, it is interesting to contrast this IRF to its “mirror image,” the 

IRF of a positive shock, occurring when the medium-frequency component is still positive.) 

Most of the remaining IRFs turn out to be more-or-less linear. 

We describe our method for computing nonlinear IRFs (and the accompanying error 

bands) in Appendix H. Following Kilian and Lütkepohl (2017), we make use of the notion that 
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an IRF is the difference between a forecast with a particular shock, and the forecast without one. 

In particular, given the model’s nonlinear nature, we construct impulse response functions 

(IRFs), forecasts, and error bands via counterfactual simulations: first, for each bootstrap draw, 

generating a baseline simulation with shocks randomly-drawn from the model’s structural 

residuals, and then replacing only the first-period shock (of a given variable) with the particular 

impulse we wish to study. To obtain accurate error band estimates, we augment the bootstrap 

procedure outlined in Kilian and Lütkepohl (2017) in two ways. First, we use the method of 

Kilian (1998) to correct for bias in estimates of parameters in the ( )B L  matrix; Kilian (1998) 

and Ashley and Verbrugge (2009) have demonstrated the importance of this correction. Second, 

we take into account parameter estimation uncertainty via a bootstrap-upon-bootstrap method, 

along the lines of Potter (2000) and Pérez Forero and Vega (2016). Third, we apply a small-

sample bootstrap variance correction motivated by the work of Phillips and Spencer (2011). 

Baseline forecasts and their error bands are computed similarly, although the “initial conditions” 

are chosen a priori, rather than drawn randomly. The forecast of core PCE inflation at time t for 

h quarters ahead is simply the composite forecast of the core goods inflation forecast, housing 

services inflation forecast, and the bias-adjusted median core services ex-housing inflation 

forecast (which, as noted above, is our proxy for the core services ex-housing forecast), 

combined using the share weights available as of time t. The weights reflect the relative shares of 

core goods inflation, housing services inflation, and core services ex. housing inflation in the 

overall core PCE inflation. Specifically, the weight for core goods inflation is computed as a 
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nominal share of the personal consumption expenditures of core goods over the nominal PCE 

excluding energy and food, and similarly for the other two components.15  

To enhance accuracy, we condition upon structural shocks that allow us to impose near-

term information about core goods inflation and housing services inflation. As has been long-

established in the forecasting literature, overall forecast accuracy can be enhanced by 

conditioning upon near-term information (see, e.g., Faust and Wright, 2013; Tallman and Zaman, 

2020). We also form conditional forecasts by constructing nonlinear system forecasts that 

condition upon the evolution of labor market variables. 

 

2.2.4 Approach to specification of reduced-form model.  

Given our aims in the present paper, and the fact that we use quarterly rather than monthly data, 

we use a modification of the baseline inflation equation of Ashley/Verbrugge (2023). We are 

ultimately interested in reliable forecasts, so model parsimony was a chief consideration. We 

used step-down testing, equation by equation, removing variable lags to obtain parsimonious 

equations. We allowed for sign asymmetry in the two unemployment rate components, but did 

not impose it. In each equation, we allow up to 5 quarterly lags in the dependent variable, and up 

to 4 quarterly lags in each of the other variables. (Allowing for the fifth lag is quite important for 

accurately assessing the persistence of each series, as demonstrated in Verbrugge and Zaman, 

2023a). . The equations below reflect our final preferred specifications for each equation. 

 
15 An “alternative” core PCE series could be constructed by directly using the unadjusted/unbiased median core 
services ex housing in the aggregation. In appendix E, we plot this “core PCE alternative” alongside the actual core 
PCE.  
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3. Results 

3.1 Specification of reduced-form model 

In the PPI equation, the inclusion of all other inflation series was rejected. However, PPI has a 

significant Phillips curve relationship. The data reject sign asymmetry in both unemployment 

rate components. Subsequently, both components appeared to enter as first differences. We thus 

entered both as first differences, and this yielded an equation that fit the data almost equally well; 

furthermore, lowgapu was no longer statistically significant. Dropping this term yielded a more 

parsimonious equation with almost no decline in fit, and so was favored by the BIC. 

 
4

11
PPI PPI PPI PPI medfreq PPI
t j t j t tj

u eπ α β π δ− −=
= + + ∆ +∑  (2) 

Labor market variables are denoted as follows: medfreq
tu∆  refers to the 1-quarter change in the 

medium-frequency component, medfreq
tu+  refers to the positive portion of the medium-frequency 

component, and lowgap
tu−  refers to the negative portion of the low-frequency gap.  

 The core PCE component inflation rate equations are specified as 

 1 1 2 4 5 5
1995

1 3 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG medfreq CoreG
t t tu I e

π α φ π φ π φ π

β π λ ψ
− − −

+
− −

= + + + +

+ + + +
 (3) 

 1 1 2 2 5 5

1 1

MServXH MServXH MServXH MServXH MServXH MServXH MServXH MServXH
t t t t

MServXH medfreq MServXH lowgap MServXH
t t tu u e

π α γ π γ π γ π

λ µ
− − −

+ −
− −

= + + + +

+ + +
 (4) 

 
5

1 41
Hous Hous Hous Hous Hous medfreq Hous lowgap Hous
t j t j t t tj

u u eπ α η π λ µ+ −
− − −=

= + + + +∑  (5) 

where 1995I  is a dummy variable that is 1 prior to 1995Q1. This variable allows us to capture an 

evident mean shift in core goods inflation in the mid-1990s; see Clark (2004). As noted above, in 

keeping with previous work, symmetry in the unemployment components was clearly rejected by 
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the data in each equation. As noted above, negative realizations of medfreq
tu , and positive 

realizations of lowgap
tu , were found to be statistically insignificant determinants of inflation.16 As 

previous work has established, movements in the variable medfreq
tu+  apply downward 

(“recessionary”) force on inflation; movements in the variable lowgap
tu−  apply upward 

(“overheating”) force on inflation. 

Finally, our medfrequ  equation was specified as 

 
2 4

11 1
medfreq med medfreq med lowgap med PPI medfreq
t j t j j t j t tj j

u u u eλ µ β π− − −= =
= + + +∑ ∑  (6) 

and our lowgapu  equation was specified as 

 
2 4 3

1 1 1
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u eα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (7) 

 
3.2 Identification of structural model 

The variant of the SG approach that we use begins by estimating all pairwise correlations 

amongst the regression residuals. Our variant relies upon a “faithfulness” assumption (see 

Appendix 1), which assumes that if variable X causes variable Y contemporaneously, then the 

regression residuals from the X equation and the Y equation have a non-zero correlation.  

We found a significant correlation between PPI residuals and core goods residuals, 

between PPI residuals and median core services ex-housing residuals, and between lowgapu  and 

medfrequ  residuals; we also found a borderline-significant correlation between median core 

 
16 The work of Kilian and Vigfusson (2011) suggests that one must exercise care in choosing to include asymmetric 
terms, since one can easily estimate misleading IRFs and draw incorrect inferences. To guard against this, we 
checked whether our final specification should include the “full” unemployment components. But these terms 
entered the equation with fairly small coefficient estimates, and p-values at 0.3 and greater. Thus in the present case, 
the data quite clearly supports our specification, and the estimated IRFs are reliable. 
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services ex-housing residuals and housing residuals. All other correlations were insignificant. 

Thus, as explained in Appendix B, no further testing of partial correlation constraints was 

necessary. If variables X and Y are contemporaneously correlated, we must assign a direction of 

causality. On the basis of economic theory and a priori timing grounds, we assume that 

contemporaneously, PPI causes core goods, PPI causes median core services ex-housing, 

median core services ex-housing causes housing, and medfrequ  causes lowgapu . Our assumptions 

lead to the following loading matrix A (only nonzero entries are indicated): 
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Maximum likelihood estimation of A, based on the variance-covariance matrix from the 

equation residuals and the zeroes of the loading matrix A, verified that all nonzero entries were 

statistically significant.17 

Under the assumption that the structural model is correct, then the sparsity of the A 

matrix and the assumption that structural residuals are mutually uncorrelated imply that the 

structural model can be estimated by simply including the relevant contemporaneous terms into 

the reduced-form equations (3), (4), (5), and (7) (see Kilian and Vigfusson, 2011).  

Thus, the four respecified equations are 

 

 
17 There is some abuse of notation. Our full structural model has 11 equations, 5 of which are identities, as explained 
below. But what matters for identification is determining the contemporaneous causation structure among the 
variables. 
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 1 1 2 4 5 5
1995

0 1 3 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG PPI CoreG medfreq CoreG
t t t tu I v

π α φ π φ π φ π

β π β π λ ψ
− − −

+
− −

= + + + +

+ + + + +
 (8) 

 1 1 2 2 5 5

0 1 1

MServXH MServXH MServXH MServXH MServXH MServXH MServXH MServXH
t t t t

MServXH PPI MServXH medfreq MServXH lowgap MServXH
t t t tu u v

π α γ π γ π γ π

β π λ µ
− − −

+ −
− −

= + + + +

+ + + +
 (9) 

 
5

0 1 41
Hous Hous Hous Hous Hous MServXH Hous medfreq Hous lowgap Hous
t j t j t t t tj

u u vπ α η π β π λ µ+ −
− − −=

= + + + + +∑  (10) 

 
2 4 4

1 0 1
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u vα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (11) 

Further, in equations (2) and (6), the reduced-form residuals e are relabeled as structural 

residuals v. Coefficient estimates are reported in Appendix C.  

 The PPI is highly correlated with transportation prices. Furthermore, inasmuch as 

unemployment captures the influence of demand on PPI, the structural residuals of the PPI 

equation may be interpreted as supply shocks. In Appendix G, we provide some additional 

evidence that suggests that on net, PPI shocks mostly reflect supply shocks, with demand shocks 

being much less important. However, during some periods – such as during 2020 – demand has 

played a notable role in driving PPI.  

For simulating the system – necessary for estimation of forecasts and their error bands – 

we must augment these 4 equations with 5 additional equations: 4 equations that split each 

unemployment rate component projection into positive and negative parts, and a final one that 

defines the first difference of medfrequ . 

 ( )max 0,lowgap lowgap
t tu u+ ≡  (12) 

 ( )min 0,lowgap lowgap
t tu u− ≡  (13) 

 ( )max 0,medfreq medfreq
t tu u+ ≡  (14) 

 ( )min 0,medfreq medfreq
t tu u− ≡  (15) 

 1
medfreq medfreq medfreq
t t tu u u −∆ ≡ −  (16) 



19 
 

The full structural model consists of equations (2),and (6) (with residuals v), and equations (8) 

through (16). 

 We estimate our model using ordinary least squares, but then bias-correct these estimates 

using the method of Kilian (1998), as discussed in Section 2.2.3 above.  

 

3.2 Impulse Response Functions 

In a nonlinear model, the IRFs will generally depend upon the size of the shock, its sign, and on 

the initial conditions. Hence, theory should dictate which of these numerous IRFs to 

investigate/estimate, for any given variable X. Several types of nonlinear IRFs exist in the 

literature. Given that the nonlinearity in the present model relates to the different impacts of 

fluctuations in unemployment by frequency and sign, of most interest is a particular subset of 

IRFs:  

• IRFs to positive shocks to the medium-frequency component, conditioned on this 

component starting in a positive initial condition; and the “mirror image,” IRFs to 

negative shocks in this component, conditioned either on the low-frequency gap being 

initially somewhat positive (i.e., greater than 0.25 ppts), or initially negative. 

• IRFs to positive shocks to the low-frequency (highly-persistent) gap component, 

conditioned on medium frequency component being positive; and IRFs to negative 

shocks to the low frequency gap component, when the it is already negative. 

• IRFs to shocks to PPI, drawing uniformly from all initial conditions. 

Our estimates indicate that many of the IRFs are essentially linear. The chief exceptions are the 

the IRFs of the three core PCE inflation components to shocks in the two unemployment 

components. In keeping with their nonlinear Phillips curve specifications, these variables display 

differential responses to positive versus negative shocks in medfrequ  and lowgapu . 

 To better display the nonlinearity, all IRFs to negative shocks are reflected about the x 

(time) axis. Thus for example, in Figure 4, panel (a), we depict the IRF of core goods inflation to 
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a positive shock of size 0.20 to lowgapu  (in black), and we also depict the inverse of the IRF to a 

negative shock of size 0.20 to lowgapu  (in yellow). However, in all IRF figures, when the IRF to a 

positive shock is virtually indistinguishable from the inverse of the IRF to a negative shock, we 

depict only the IRF to a positive shock. 

 We first consider a positive shock to medfrequ , depicted in Figure 3, in black. A shock to this 

component is amplified in the subsequent two quarters (partly via induced movements to other 

variables), and then declines to 0 about three years quarters later, with a subsequent bit of 

overshooting. Recall that a positive movement in this component induces a “recessionary” 

downward force on inflation. PPI falls notably in response to this increase in this component, 

providing some additional downward force on the other variables; later it overshoots, before 

slowly decelerating back to 0. As is well known, housing inflation has a strong Phillips curve 

relationship; this component responds quite strongly (dropping more than 0.6 ppts after two years). 

But both core goods inflation and median core services ex-housing drop are also responsive to 

recessionary pressure, each dropping by about 0.2 ppts after two years. The lowgapu variable rises 

in response, reaching its peak 10 quarters after the shock; but (aside from feedback influences on 

medfrequ ), positive movements in this component do not further influence dynamics of the other 

variables. 

 We next consider the impact of a negative shock to medfrequ , also depicted in Figure 3, in 

yellow and green, in panels (a) – (c). (Recall that these IRFs are reflected about the x axis, to 

highlight the nonlinearity. The other IRFs are essentially linear, and thus we only depict the IRFs 

to a positive shock.) While this movement directly influences PPI (causing it to rise), it does not 

directly influence the other inflation variables. However, the fall in medfrequ  induces a fall in lowgapu

, and this induced movement then provides “overheating” (upward) force on inflation. But if the 
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low frequency gap component is initially positive (yellow IRFs), then its influence is muted, and 

delayed, relative to the case when the low frequency gap component is initially negative (green 

IRFs). In the latter case, median core services ex-housing rises by over 0.4 ppts after three years, 

while housing inflation rises by almost a full ppts after three years. (Core goods rises by about 0.15 

ppts at about the 2½ year mark.) 

 

[Figure 3 about here] 

 

We next consider shocks to lowgapu , depicted in Figure 4. The subsequent dynamics closely 

parallel those discussed above. A shock to this component is amplified, quite notably, in the 

subsequent six or seven quarters (partly via induced movements to other variables), and then 

slowly declines, reflecting its low-frequency (persistent) nature. We first consider a positive shock 

(of size 0.2) in lowgapu . Positive movements in lowgapu  do not directly influence the other inflation 

variables. However, the rise in lowgapu  induces a rise in medfrequ , and this induced movement then 

provides recessionary (downward) force on inflation (though the recessionary force is smaller, 

since this component returns to zero more rapidly). The subsequent dynamics are similar to those 

experienced after a positive shock to medfrequ  As in that case, PPI falls notably in response to this 

increase in this component, providing additional force on the other variables; later it overshoots, 

before slowly decelerating back to 0. Housing inflation also responds quite strongly (dropping 0.4 

ppts by quarter 7). Core goods inflation responds less (dropping by about 0.15 ppts after two years); 

median core services ex-housing inflation drops about 0.1 ppts.  

 We next consider the impact of a negative shock to lowgapu , which induces overheating 

force. Induced reductions in medfrequ  cause PPI to rise (PPI does not respond directly to lowgapu ). 
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Core goods inflation rises by about 0.1 ppts. Median core services ex-housing inflation responds 

strongly to this overheating force; it rises to peak at nearly +0.3 ppts, about 3 years later. Housing 

also responds strongly to this force, rising to a peak response of +0.4 ppts, about 2½ years later.  

 

[Figure 4 about here] 

 

 In Figure 5, we consider positive and negative shocks of size 2.0 to PPI. As is now evident, 

a key to understanding the subsequent dynamics is to determine how such a shock influences the 

unemployment components. Interestingly, in this case, the IRFs are nearly linear: the impact of 

PPI on core goods is dominated by the direct impact. The induced upward movements in medfrequ  

on the other two components of inflation (from a positive PPI shock) turns out to be nearly 

identical to the impact of induced downward movements on lowgapu  (from a negative PPI shock); 

and uncertainty is quite large, so most of these changes are not statistically significant.  

 

[Figure 5 about here] 

 

 Finally, in Figure 6, we display the median IRFs of the three core PCE inflation 

components to their own shocks (of size 0.1). (We don’t display IRFs of other variables to these 

shocks since inflation in these components does not feed back into other variables to any 

appreciable extent.) This figure demonstrates the differential persistence levels and dynamics 

exhibited by these three components. Goods inflation accelerates a bit for a year, then decelerates 

rapidly, followed by a “rebound” that brings it back to 0.4 ppts, three years after the shock. Housing 

inflation accelerates for a year. After that, it falls fairly rapidly. By quarter 7, about half of the 

shock has dissipated; but then housing inflation remains roughly at that level for the next two 
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years, before slowly decelerating. Finally, median core services ex housing is the most persistent. 

After quarter 2, it decelerates over the next three quarters to reach 0.06 ppts. But then its downward 

progress stalls out. Its half-life is about 18 quarters.18 

 

[Figure 6 about here] 

 

 

3.3 Forecasts 

 

3.3.1 Forecasting Performance 

 

We now compare the point forecast accuracy of our VAR model with those of standard univariate 

benchmark models. We perform a pseudo recursive out-of-sample forecast comparison spanning 

the period 2007Q1 through 2019Q3. The forecasts are evaluated using an expanding window of 

data. Specifically, the first recursive run uses data from 1985Q1 through 2006Q4 for estimation, 

and generates forecasts up to eight quarters out, corresponding to 2007Q1 through 2008Q4. The 

second run uses data from 1985Q1 through 2007Q1 for estimation, and produces forecasts for 

periods 2007Q2 through 2009Q1, and so on. The last recursive run uses data for estimation 

spanning 1985Q1 through 2018Q3, but for this last run, only forecasts up to four quarters out (with 

four-quarter ahead corresponding to 2019Q3) are evaluated. We focus on the evaluation sample 

period 2007 to 2019 for several reasons. First, this period is associated with numerous inflation 

puzzles, such as missing disinflation, and the Phillips curve is widely thought to have weakened 

over this period. Our goal is to be able to provide accurate forecasts conditioned on the path of 

unemployment, and this is a period with a full business cycle – and in particular, a very large 

 
18 For this variable, the sum of the autoregressive coefficients is 0.98. 
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recession, a long recovery, and also a period of overheating. Success in forecasting inflation over 

this period provides strong support to our claim that we have accurately captured the 

unemployment-inflation relationship. Second, since we are using a nonlinear model, we start in 

2007 because wish to have a sufficiently long estimation period so that coefficient estimates have 

approximately converged. Third, we end our evaluation in 2019 because we do not wish our results 

to be driven by the atypical dynamics associated with the COVID pandemic.19  

Table 1 reports the results of the point forecast evaluation comparing forecasts of the 

unemployment rate and core PCE inflation from our model (denoted “VZ VAR”) to “hard-to-beat” 

benchmarks.20 The panel (a) reports results for core PCE inflation, and panel (b) for the 

unemployment rate. In each panel, the numbers reported in the first row are the mean squared 

errors from the respective benchmark univariate models: a Random Walk (RW) model, in the case 

of core inflation, and an autoregressive model with four lags (AR4), in the case of the 

unemployment rate. The remaining rows below the first row are ratios that report relative MSEs, 

i.e., relative to MSEs from the univariate benchmarks. Hence, a ratio more than 1 indicates that 

the univariate benchmark is more accurate on average than the model being compared. Since we 

are working with four-quarter growth rates, the inflation forecast from the RW model is the latest 

value of the four-quarter core PCE inflation. We report results for two forecast horizons, four and 

eight quarters ahead.  

 As is evident looking at the relative MSEs, our VAR model forecasts for both the 

unemployment rate and core PCE inflation are competitive to the univariate benchmarks. In fact, 

eight quarters out, our VAR model forecasts are notably more accurate (and statistically 

 
19 The forecasts from our model are competitive with most alternatives post-2019; given the unusual shocks over 
this period, few models performed well. An exception is Verbrugge and Zaman (2023a). 
20 For unemployment, there is no standard alternative benchmark, so we also report the forecast accuracy of an 
AR(1) model. 
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significant) for core PCE inflation, partly driven by large gains in a handful of periods, mainly 

when the economy is in a recession.21 As expected, the short-term forecasts of core inflation from 

our VAR model when we condition on the evolution of the unemployment rate are more accurate 

than the unconditional forecasts (four quarters ahead, relative MSE of 0.84 vs. 0.96); but are 

comparable eight quarters ahead. The unemployment results also indicate that AR4 model 

produces somewhat more accurate forecasts than the AR1 model, though the gains are not 

statistically significant.     

As a second exercise, we compute a historical 10-year forecast from our model, starting in 

2007, and compare this to the forecast from a counterpart bivariate VAR model specification that 

relies upon a conventionally-specified linear Phillips curve.22 These forecasts are recursive, in that 

the forecast does not rely upon any inflation data from 2007Q1 onwards, but are conditional, in 

that they rely upon the evolution of the unemployment rate over the forecast period. To conserve 

space, we report this exercise in Appendix D. The inflation forecast from the conventional model 

is notably inferior to that from our nonlinear VAR model. Overall, our forecasting results lend 

credibility to our nonlinear VAR model forecasts.  

 

[Table 1 about here] 

 

3.3.2 Looking Ahead: Conditional Forecasts for 2023-2025 

In this subsection, we provide a number of forecasts for inflation, all of which conditional on 

various assumed paths for the unemployment rate. This exercise allows us to assess whether the 

 
21 Our findings – forecast improvements are mainly episodic – are in line with the literature (e.g., Stock and Watson 
2010 and Ashley and Verbrugge 2023), and not surprising, since our unemployment terms only influence forecasts 
during two portions of the business cycle. 
22 For this type of comparison, the UCSV model and the RW model would perform poorly.  
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inflation projection in the December SEP is consistent with the unemployment projection, and to 

determine the inflation implications of alternative unemployment projections. These results 

provide policymakers with the information necessary to understand the tradeoffs they face going 

forward. 

As has been long-established in the inflation forecasting literature, overall forecast 

accuracy can be enhanced by conditioning upon near-term information (see, e.g., Faust and 

Wright, 2013).23 The variables where such information is most useful for our purposes are core 

goods inflation (where monthly inflation has decelerated sharply) and housing inflation (where 

models relying on short-term information, discussed below, suggest that we will have at least one 

more quarter of inflation growth).  

 We incorporate the recent deceleration in core goods inflation by conditioning a path for 

quarterly core goods inflation over the next four quarters that leaves it at 0.7 ppt in 2023Q4.24 If 

anything, doing so imposes a strong downward bias on our forecasts, since the model by itself (i.e., 

unconditionally) predicts a slower deceleration in core goods inflation.  

 We incorporate short-term information in housing services by use of a short-term housing 

services forecasting model, informed by Adams et al. (2022). This paper uses confidential CPI rent 

microdata to demonstrate that new-tenant rents lead official CPI rents (the ultimate source of the 

housing services inflation information in the core PCE) by about 4 quarters, and that the CoreLogic 

Single-Family Rent Index (SFRI) has historically tracked a CPI-microdata-based new-tenant rent 

 
23 More recently, it has been established that forecast accuracy, particularly over the medium-term, can be enhanced 
by conditioning on longer-term information (see, e.g., Tallman and Zaman, 2020). In the present context, we do this 
by ensuring that our bias-corrected and bootstrapped median conditional forecasts converge to their in-sample 
means via (minor) adjustments to the estimated constants in our structural equations.  
24 Following the nowcasting inflation work of Knotek and Zaman (2017), who found superior accuracy of core PCE 
nowcasts and short-term forecasts using simple models including AR processes, we construct the short-term forecast 
path for monthly core goods inflation using a simple AR(2) model estimated over our sample. 
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index fairly well. We use a simple model for monthly housing services inflation25 using lags of 

both housing services inflation and SFRI rent inflation to produce a forecast for housing services 

inflation for January, February, and March of 2023. This yields a 2023Q1 estimate of 8.0 percent 

(quarterly annualized or 8.0 percent 4Q-trailing basis), which we use as a starting condition for 

housing services inflation. 

 We first present the model projection for core PCE inflation through 2025, along with 70 

percent confidence intervals, and the SEP projection in Figure 7. To reiterate, our model 

projections are conditional on the December SEP path for unemployment. (For interpretive ease, 

we have interpolated between the SEP projected values for core PCE inflation, which are provided 

only for 2023Q4, 2024Q4, and 2025Q4.) 

 

[Figure 7 about here] 

 

Both inflation projections begin at 4.5 percent, and both decelerate briskly for the next 

three quarters. In our model, inflation initially decelerates briskly because the 2023 increase in the 

unemployment rate that is a feature of the SEP projection is rapid enough that it induces a notable 

uptick in medfrequ , which in turn puts downward pressure on all of the inflation variables. But medfrequ  

returns to zero fairly rapidly, thereby removing this downward pressure. Thereafter, the persistence 

of inflation reflected in our model estimates becomes evident, and progress toward the 2 percent 

target slows through mid-2024, and slows further after that. Conversely, the SEP projection 

continues on a very strongly decelerating path in 2024, so that by the end of 2024, this moves the 

SEP projection outside of the confidence interval. It remains outside of the confidence interval 

 
25 We thank Mark Bognanni and Katia Peneva for advice in constructing this model. 
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throughout all of 2025. Hence, from late 2024 onward, the SEP projection is assessed as too 

optimistic relative to our model’s assessment. Conditional on the SEP unemployment projection, 

our model forecast is at 2.85 percent by the end of 2025; it does not reach 2.1 percent inflation 

until several years later. 

 Figure 8 presents our model projections for our three components: core goods inflation, 

core services ex-housing inflation, and housing inflation, conditional on their respective short-term 

conditions (as discussed above) and the SEP path for unemployment over the 2023-2025 period. 

We condition on 4Q core goods inflation decelerating to 0.6 percent by the end of 2023, then the 

model implies that 4Q core goods inflation rebounds somewhat before falling gradually to 0.2 ppts 

by the end of 2025.. Core services ex-housing inflation is projected to steadily decelerate from 4.4 

percent to 3. percent by the end of 2025. Housing services inflation is projected to decline at a 

steady rate through mid 2024, but then its downward progress stalls out, likely reflecting the 

sluggish dynamics of rent (see Adams et al., 2023 and Gallin and Verbrugge, 2019). During 2025, 

it settles in at a 5.3 percent pace. Outside of the forecast horizon, all variables continue to 

decelerate.  

[Figure 8 about here] 

But what sort of unemployment path would be consistent with the SEP’s inflation 

projection? And, for example, what would be the inflation implications associated with the June 

SEP unemployment projection? To answer such questions, we next provide a number of additional 

inflation projections, conditional on three alternative unemployment rate scenarios: a soft landing 

scenario, a moderate recession scenario, and a severe recession scenario. The soft landing scenario, 

which conditions on the projected unemployment path from the June SEP, has unemployment 
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peaking at 4.1 percent by the end of 2024.26 The moderate recession scenario conditions on a path 

for unemployment from 2023Q1 onward that mimics the 2001 recession. For this path, 

unemployment tops out at 5.0 percent in 2025Q3. Finally, the severe recession scenario (inspired 

by the Summers/Ball/Leigh/Mishra assertions) conditions on a path for unemployment that peaks 

at 6.9 percent in 2025Q3.27 Unemployment rates in all scenarios, with the exception of the severe 

recession, are assumed, after 2025Q4, to descend linearly to hit 4 percent by the end of 2029 or 

earlier. All of these scenario paths are plotted below in Figure 9. In our specification, because 

inflationary pressure ceases once the low-frequency gap becomes positive, and disinflationary 

pressure ceases once the medium frequency unemployment rate becomes negative, the exact path 

of unemployment taken after 2024 in its descent toward 4 percent is essentially immaterial for 

inflation. However, these paths will impact the simple welfare analysis conducted below. The 

implied forecasts for core PCE inflation are shown in Figure 10. 

[Figures 9 and 10 about here] 

Our model sees rapid deceleration of inflation over 2023, for all of these scenarios, driven 

by rapid deceleration in core goods prices and by initial movement of the inflation variables back 

towards their long-run trends. Recessionary downward force, i.e., the deceleration pressure 

associated with the positive portion of the medium-frequency component of unemployment, 

notably amplifies this descent for all scenarios except the soft landing. The Phillips curve is alive 

 
26 The SEP projection reports the forecast of the overall unemployment rate. To back out the implied projection of 
the underlying jobless unemployment rate, we take the temporary-layoff rate reported by the BLS for the month of 
December 2022 and assume that it will persist into the future.  
27 For disinflation, what matters in a recession is not the peak unemployment rate, but rather the amount of (positive) 
area under the medium frequency unemployment rate path. The ratio of the area under the medium frequency 
component relative to the trough-to-peak change in the unemployment rate varies from 1.1 to 2 over recessions from 
1970-2019. For our more severe recession scenario, we scale up the movements in the low-frequency gap in the 
early 2000s recession by 2.7, and (to be conservative) the movement in the medium-frequency component by 0.7 of 
that, since the early 2000s ratio was on the high side, at 1.6. This brings the more severe recession’s ratio to 0.95, 
below the median of 1.2 over the post-1970 average. 
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and well (and stable), a fact that is quite important for policymakers. This disinflationary pressure 

eases in early 2024 for the December SEP path and the moderate recession path, but continues 

through 2025 in the severe recession scenario. And once the deceleration pressures ease, progress 

toward 2 percent slows markedly. Inflation is more persistent than is commonly believed.  

Regarding that persistence, allowing for (though not imposing) the fifth lag in each of the 

three core PCE component inflation variables is quite important. An autoregressive process with 

a weight of (say) 0.8 on the first lag, 0.1 on the fifth lag, and 0 on all other lags, is more persistent 

than an autoregressive process with a weight on 0.9 on the first lag and 0 on all other lags (see 

appendix of Verbrugge and Zaman, 2023a). The model forecasts imply that it takes a very long 

time for inflation to return to trend. This lengthy return to the inflation target is consistent with the 

inflation experience over the 2012-2019 period, when trend inflation moved a mere 0.5 percentage 

point. We further note that our core PCE projections are very similar to those of the model in 

Verbrugge and Zaman (2023a), which is built upon trimmed-mean PCE inflation, and also to those 

from the headline PCE forecasts of the model in Verbrugge and Zaman (2023b). 

 

3.3 A Simple Welfare Analysis 

Despite its higher inflation path, is a soft landing preferable? We conduct a simple welfare 

analysis, using a standard (though ad hoc) quadratic loss function. In some contexts, such loss 

functions are a second-order Taylor series approximation to the expected utility of the 

economy’s representative household (Woodford, 2002), specified as 

{ } ( )( ) ( )2 12
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Guided by the December SEP and the FOMC’s inflation target, we set * 4.0tu =  and * 2.0π = . 

We examine losses from 1t =  2023Q1 to 2t =2029Q4. We compare the soft landing, moderate 
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recession, severe recession, and December SEP scenarios. We report the losses in Table 1, for 

{ }0.1,0.19,0.25,0.5,0.75,0.81,0.9w = . 

[Table 2 about here] 

In Table 2 the minimum-loss scenario for each value of w appears in red font. The 

preferred outcome depends on the value of w. For a low weight on inflation (0-0.18), the soft 

landing is preferred. For values of w between 0.19 and 0.80, the SEP path results in the smallest 

welfare loss. For values of w between 0.81 and about 0.89, the moderate recession results in 

smallest welfare loss. Finally, for very high values of w, the more severe recession is preferred.  

It is important to keep in mind that this welfare analysis abstracts from any danger of the 

de-anchoring of inflation expectations that might be associated with core PCE inflation still 

being near 3 percent, three years from now.  

4. Conclusion 
This paper implements a nonlinear structural VAR model to jointly estimate the dynamics of 

inflation, as measured by three components of core PCE inflation, a variable that is a good signal 

of supply-chain pressures, and two components of the jobless unemployment rate: a persistent 

component and moderately persistent component.  

The model is estimated with post-1985 quarterly data and identification of structural 

shocks is achieved using the data-determined method of Swanson and Granger (1997), which 

substantially reduces the role of subjectivity.  

Looking ahead, our model projects that inflation only very gradually falls back to 2 

percent. Progress toward target is very much influenced by the path that unemployment will take 

over the next several years. Conditional on the December SEP median unemployment rate 

projections, inflation is projected to still be 2.8 percent by the end of 2025, far above the SEP’s 
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median projection of 2.1 percent. A moderate recession (roughly equal to the recession of 2001) 

would put inflation at 2.5 percent by the end of 2025; conversely, a soft landing (which we 

define as the path of unemployment in the June SEP projection) would put inflation a touch 

above 3 percent by the end of 2025. What kind of recession would it take to hit the SEP 

projection for inflation, according to the model developed in this paper? We investigate the claim 

of former Treasury Secretary Lawrence Summers (reported in Aldrick, 2022) and the supporting 

assessment of Ball, Leigh, and Mishra (2022) that it will take two years of 7.5 percent 

unemployment from its current low level to bring inflation down to its 2 percent target. In 

keeping with the firm and stable Phillips curve relationship we uncover, our model implies that 

that one year of 5.9 percent unemployment would accomplish this task – although there is 

considerable uncertainty around this estimate. 

A simple welfare analysis based on a standard quadratic loss function favors, for equal 

weights on inflation and unemployment, the December SEP unemployment rate path. However, 

this welfare analysis abstracts from any danger of the de-anchoring of inflation expectations that 

would be associated with core PCE inflation still being 2.8 percent three years from now.  

Ashley and Verbrugge (2023) summarize a large number of extant theoretical works whose 

predictions are consistent with their (and our) empirical results regarding the nonlinearity of the 

Phillips curve. We hope that the present paper provides further impetus for the development of 

structural models that are consistent with, and provide a theoretical explanation for, our findings. 
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Figure 1: Core services ex. housing inflation indicators. 
 

 
Figure 2: Two most persistent components of the jobless unemployment rate. 
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   (a)        (b) 

   
   (c)       (d)  

   
   (e)       (f) 
Figure 3: 20-quarter IRFs of each variable to a +/-0.075 shock to medium-frequency unemployment rate. 
Initial conditions for + shocks: medium-frequency component positive; for – shocks, low-frequency gap 
either positive (LG > 0, yellow) or negative (LG < 0, green). Responses to negative shocks are reflected 
about the x axis. IRF nonlinearity is negligible except for component inflation variables, so only the IRF to 
a + shock is displayed for unemployment components and PPI-IG. 
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(a)        (b) 

   
(c)       (d)  

   
(e)       (f) 

Figure 4: 20-quarter IRFs to +/- shock of size 0.20 to lowgapu . Responses to negative shocks (yellow) 
are reflected about the x axis. IRF nonlinearity is negligible except for component inflation variables, so 
only the IRF to a + shock is displayed for those variables. 
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(a)        (b) 

   
(c)       (d) 

   
(e)       (f) 

Figure 5: 20-quarter IRFs to a +/- shock of 2.0 to PPI. Responses to negative shocks (yellow) are 
reflected about the x axis. Nonlinearity is generally negligible. 
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Figure 6: IRFs to core PCE components. 
 

 
Figure 7: Projection of core PCE inflation, conditional on the December SEP projected path of 
unemployment. 
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(a) 

 
(b) 

 
(c) 

Figure 8: Projections of the components of core PCE inflation, conditional on the December 
December SEP projected path of unemployment. The core services ex-housing projection is the 
gap-adjusted projection of median core services ex-housing. 
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Figure 9: Alternative projections of the unemployment rate. 
 

  
Figure 10: Model-implied alternative projections of core PCE inflation, conditional on the 
corresponding unemployment rate path. 
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Table 1: Point Forecast Accuracy Comparison  

 

Mean Squared Error (MSE): Sample 2007-2019Q3 
(a) Core PCE Inflation (4Q-trailing rate, %) 

Models 
Horizon 

One-year out (h=4Q) Two-years out (h=8Q) 
MSE of Random Walk (RW) 0.23 0.39 

Relative MSE, relative to RW  
VZ VAR (conditional on UR) 0.84 0.68** 

VZ VAR (unconditional) 0.96 0.60** 
UCSV (Stock and Watson) 1.17 0.92 

 
(b) Unemployment rate (%) 

MSE of AR4 model 1.14 4.20 
Relative MSE, relative to AR4   

VZ VAR (unconditional) 0.94 0.94 
AR1 model 1.52* 1.32 

 
Notes: The numbers reported in the first row of each panel are the mean squared error (MSE) from the benchmark model, RW in 
the case of core inflation, and AR4 in the case of the unemployment rate. The rows below the first row are ratios that report 
relative MSEs (relative to the benchmark model). Thus, a ratio of more than one indicates that the benchmark model is more 
accurate on average than the model being compared. The forecast evaluation is based on an expanding window of estimation 
spanning the period 2007Q1 through 2019Q3. The estimation start period is 1985Q1. A * indicates statistical significance up to 
10% level, and a * indicates statistical significance at the 5% level,based on Diebold-Mariano-West test.  

 

Table 2: Welfare losses 

w Soft 
landing 

December 
SEP 

Mild 
recession 

More severe 
recession 

0.10 7.35 8.05 25.74 78.32 
0.19 10.36 10.09 25.53 72.09 
0.25 12.36 11.46 25.39 67.93 
0.50 20.71 17.14 24.79 50.62 
0.75 29.06 22.82 24.20 33.31 
0.81 31.07 24.18 24.06 29.16 
0.90 34.07 26.23 23.84 22.93 

Notes: These are losses from a quadratic loss function that penalizes squared deviations of inflation rate from 2 percent 
(multiplied by w), and squared deviations of the unemployment rate from 4 percent (multiplied by (1-w)). For each value of w, 
the minimum loss is depicted in red font. 
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