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Decentralized Exchanges

Preliminary and incomplete

Abstract

Uniswap is one of the largest decentralized exchanges with a liquidity balance of over 3
billion USD and daily trading volume of over 700 million USD. It is designed as a system
of smart contracts on the Ethereum blockchain, and is a new model of liquidity provision,
so called automated market making. We collect and analyze data on all 19 million Uniswap
interactions from 2018 to the current time. For this new market, we analyze returns to
liquidity provision and returns. We document return chasing in liquidity provision and
cross-sectional heterogeneity in returns to liquidity.



1 Introduction

Uniswap is a decentralized exchange that launched in November 2018. Currently, it has a
liquidity balance of over 3 billion USD in various cryptocurrencies and facilitates transactions
worth over 700 million USD per day. One of the striking features of this successful exchange is
that instead of a centralized limit order book, it uses a different model of liquidity provision. In
this paper, we provide a detailed empirical analysis of UniSwap and analyze the way in which
“automated market making” provides liquidity and what this new protocol informs us about
centralized order limit order markets.

Briefly, an automated market maker (AMM) is a mechanical protocol for supplying and demand-
ing liquidity. In a limit order book, potentially strategic traders submit quantities at price at
which they are willing to trade. In an AMM, agents supply liquidity to a pool, which comprises
two distinct sets of assets. An agent supplying liquidity adds both assets in proportion to the
two existing pools. An agent demanding liquidity supplies one of the assets, and removes the
other one according to a predetermined downward sloping, convex relationship. The convexity
implies that larger orders have a larger price impact. In addition, all liquidity demanders pay
a proportional fee. At any point of time, the terms of trade are defined by the ratio of the two
assets in the pool. If these terms of trade differ from “market price,” then it is assumed that
arbitraguers will enter the market and adjust the size of the pool until it is in equilibrium.

The design of automated market making arose from computer science. The most striking feature
of the protocol is that it unbundles liquidity supply from price formation. There are various
other differences between liquidity supply in a limit order market and that by an AMM. In
both, passive liquidity is subject to adverse selection, that is a trade is more likely if an asset
is mispriced. Thus, for any pair of tokens that she supplies to the market, she is more likely
to retain the one that has become worth less. Different from a limit order book is that the
returns to liquidity provision are shared pro-rata. There is therefore no time or price priority.
In a traditional limit order book, liquidity is replenished by competing liquidity suppliers. Under
automated market making, liquidity is replenished by arbitrageurs and the benefits accrue to the
original liquidity providers. Finally, as liquidity suppliers all share in the rewards to liquidity,
these markets allow us to observe latent liquidity.

We have assembled a very detailed data set of 43,349,198 interactions with the Uniswap smart
contract. These allow us to identify all flows into and out of 36,958 liquidity pools as well as
all the trades of tokens. The preponderance of liquidity provision is for wrapped Ether and
US dollar stable coin pools. We can trace how liquidity is both supplied and demanded at this
market. Similar to most financial networks Uniswap displays a core-periphery structure.

Our detailed data set also allows us to calculate the returns to liquidity provision for a range of
crypto-assets. We find that returns are on average positive over our sample and are positively
related to the risk that liquidity holders face. Returns vary widely by pool and over time. We
conclude that there are time varying returns to liquidity provision. These returns are higher
when there is more liquidity provided consistency with a liquidity externality. Our data is
consistent with an equilibrium pool size – for large pools an increase in liquidity flows leads to
future liquidity withdrawals, while for smaller pools growth in pool size lead to more liquidity
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additions. Similar to mutual fund flows we document that there appears to be “yield chasing”
in liquidity pools. High past returns lead to future inflows while low past returns lead to future
outflows. Liquidity use is also persistent.

We compare prices and volume for tokens listed on both Uniswap and Binance and find that
prices are remarkably close. Pricing error is smaller when trading volume is somewhat evenly
distributed between exchanges, when token price volatility is small, trading volume in general is
high, transaction costs on the Ethereum blockchain are low, and when price impact is low. We
find that in general price impact on Uniswap is low and stady, while price impact on Binance is
generally higher and varies a lot over time.

A few papers have analyzed the theoretical properties of constant function market makers. In a
general framework, Guillermo Angeris & Tarun Chitra (2020) show how this class of mechanisms
can reflect “true” prices. They also provide a bound on the minimum value of assets held by such
an automated system. These two concepts are related because of the increasing price impact
faced by a potential arbitrageur. Further, Guillermo Angeris, Hsien-Tang Kao, Rei Chiang &
Charlie Noyes (2019) presents a more specific analysis of Uniswap. Similarly, Jun Aoyagi (2020)
characterizes the effect of information asymmetry on these types of markets and shows that the
equilibrium liquidity supply size is stable.

2 Automated Market Making

A general analysis of constant function market makers appears in Angeris & Chitra (2020);
while Angeris et al. (2019) examine the Uniswap protocol specifically. To provide a context
for our empirical results, we first describe how agents provide liquidity to the system, and are
remunerated, and then describe how trades occur.

Providing Liquidity: Each swap pool comprises a pair of cryptocurrencies. Most frequently,
as we document below, one of the currencies is Eth, the native cryptocurrency on the Ethereum
Blockchain. We will typically use Eth as the numeraire, and refer to the other generic coin as
the ‘token.’ An agent wishing to provide liquidity to their preferred pool deposits both Eth and
the token into the pool. The deposit ratio of Eth to token is determined by the existing ratio
in the pool. An agent who makes such a deposit receives a proportional amount of a liquidity
token. This third token is specific to the pool and represent an individual liquidity provider’s
share of the total liquidity pool. As the pool trades with users the value of the liquidity pool
may rise or fall in value. Liquidity providers can redeem their liquidity tokens at any time and
get their share of the liquidity pool paid out in equal value of ETH and tokens.. Providing
liquidity is potentially profitable because each trade faces a tax of 30bps which is redeposited
into the pool. Of course, in keeping with any form of passive liquidity there is the possibility of
being adversely selected.

Consummating Trade: Suppose a trader wishes to buy the token. In this case, he will deposit
Eth into the pool, and withdraw the token. The amount that he has to deposit or withdraw
depends on the bonding curve which is illustrated in Figure 1. At any time, the implied price
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quoted by the pool is given by the ratio of the amounts of the two coins. In this case, someone
who is interested in buying an arbitrarily small amount of the Token, would pay or receive E0.
To trade a larger quantity, consider someone who wishes to sell some of the Token. This would
mean that the trader deposits some amount T1 − T0 of the token into the pool. In return, he
would receive E1 − E0, and the amount of Eth in the pool drops.

Eth

Token

E0

T0 T1

E1

Figure 1. A bonding curve

In this way, the terms of trade are mechanically determined by the bonding curve algorithm.
So, if T is the amount of tokens and E the amount of ETH in the contract’s liquidity pool, then
the terms of trade are set such that for any post trade quantities before any fee revenue T ′, E′

k := T ′ · E′ = T · E. (1)

In other words, the product of the Token and ETH quantities is always on the bonding curve.
For each pool, k, depends on the amount of liquidity that has been deposited in the pool.

The previous clarifies the terms of trade absent the liquidity fee. Of course, this remuneration
is important for the liquidity providers. To see how the fee affects trades and prices, suppose
that an agent wants to trade e ETH in exchange for tokens. The exchange collects a fee κ,
which benefits liquidity holders.1 Thus the effective amount of ETH that gets traded is (1−κ)e.
This leads to a post trade, but before fee revenue liquidity pool balance of E′ = E + (1 − κ)e.
Following the logic of the bonding curve (1), the post trade token balance must be

T ′ =
T · E
E′

=
T · E

E + (1− κ)e
. (2)

The smart contract which executes the trade accepts the e ETH and returns the difference
between the pre and post trade token balances. Or, the amount of token t that the trader
receives is given by

t = T − T ′ = (1− κ)eT

(1− κ)e+ E
. (3)

1Recall, Uniswap collects a fee of 30bps per trade.
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Therefore, the terms of trade expressed in ETH/token is given by

ptot =
e

t
=
e

T
+

E

(1− κ)T
. (4)

To derive a measure of price impact later we define the zero quantity terms of trade of a pool,
p0, as the terms a pool would charge for an infinitesimal trade without fees (e→ 0, κ→ 0) which
is just the ratio of the ETH reserve over the token reserve,

p0 = E/T (5)

Notice that the liquidity fee generates what is essentially a tick size that is distinct from the
volume-induced that the trader pays when he moves long the bonding curve, then

lim
e→0

ptot

p0
=

ET

ET (1− κ)
=

1

1− κ
(6)

That is when buying tokens, traders have to pay a fixed spread of 1
1−κp

0. Similarly for token

sales traders have to pay a fixed spread of (1− κ)p0.

The price that a trader gets is determined by the bonding curve. Further, the price impact of
a marginal increase in the order is ∂p/∂e = 1/T . As the liquidity pool grows both token and
Ether have to be added in equal value, thus growing both T and E. The price impact is therefore
decreasing in the size of the liquidity pool. Figure 2 presents an example of an ‘orderbook’ that
an incoming trader might face. The blue line is for a small pool and the orange line for a large
pool. Because Uniswap has a unique mapping of trading quantity to price the graph shows the
exact amount that is traded at a certain price. The spread or fixed cost of trading is manifested
in the interval around the mid-price of 10 for which no quantities can be bought.

2.1 Numerical Examples

Assume that the fair exchange rate for a token is 10 ETH/token and a sole liquidity provider
contributed E = 100 ETH and T = 10 tokens to the liquidity pool for which he gets 100 liquidity
tokens in return. Suppose that the fee is κ = 0.003.

Example 1 A trader wants to buy tokens for e = 10 ETH. He gets 0.997eT
0.997e+E = 0.997·10·10

0.997·10+100 =
0.90661 tokens in return. The pool collects a fee of 0.003e = 0.003 · 10 = 0.03 ETH. The new
token balance post trade is 10− 0.90661 = 9.09339 tokens.

The post trade ETH balance equals the old balance plus what the trader gave for tokens plus the
fee revenue 100 + 0.997e + 0.003e = 100 + 9.97 + 0.03 = 110. The average price the trader got
is p = e

T + E
(1−κ)T = 10

10 + 100
(1−0.0003)10 = 11.0301

Note that the invariant k as defined in Equation 1 is the same pre and post trade only without
fees, i.e. 10 ·100 = 9.09339(100+0.997 ·10) = 1000. Because the fee gets credited to the liquidity
pool after the trade, the invariant increases to 9.09339 · 110 = 1000.27. The next trade will be
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Figure 2. Uniswap orderbook depth The graph shows how many Token B could be bought or sold
at a given price for a large (orange) and small (blue) liquidity pool, respectively. The parameters are:
κ = 0.003 and T = 20, E = 200 for the large pool, and T = 10, E = 100 for the small pool.

priced based on this new invariant. The new mid-price is p0 = 12.0967. In response to a buy
order, the mid-price moved up.

When redeeming her liquidity tokens, the liquidity provider would receive whatever is in the pool,
which is now 110 ETH and 9.09339 token.

Consider two cases:

(a) True price is 10 ETH/token Had she kept her initial investment of 100 ETH and 10
tokens in a private wallet it would now be worth 100 + 10 · 10 = 200 ETH.

When she redeems the liquidity token, she would obtain a total of 110 + 9.09339 · 10 =
200.9339 ETH and makes a profit of 0.9339 ETH. This is the sum of the trading fee
(κe = 0.003 · 10 = 0.03) and the gain from selling to the trader at an average price above
the true price.

(b) True price is 12.0967 ETH/token Had she kept her initial investment of 100 ETH and
10 tokens in a private wallet it would now be worth 100 + 10 · 12.0967 = 220.0967

When she redeems the liquidity token she gets 110 + 9.09339 · 12.0967 = 220. She loses
0.0967 ETH, in which the gain from the trading fee is more than offset by the loss from
the exchange selling tokens at stale prices.
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As with any passive liquidity provider, the Uniswap pools present a free option to the market.
That is if the quantities in the pool are such that the terms of trade differ from the true
value, arbitrageurs are more likely to pick off stale liquidity. This logic is reflected in the
previous example. However, liquidity demanding trades are always valuable. The liquidity
suppliers receive a fee for the liquidity demanding order and also receive a fee when equilibrium
is replenished by arbitrage traders. They only face potential losses if there has been a permanent
value change in the token.

If the price of a token moves away from the fundamental value because of a large order, an
arbitrageur will initiate an offsetting trade and bring the mid-price of the exchange back to
the fundamental value. Such short term deviations from the fundamental price of a token are
beneficial to liquidity holders. In a pool without fees liquidity-providers will gain zero on such a
trading pattern. Trades are always priced in such a way that the amount of ETH and tokens are
on the bonding curve before and after any trade (see Equation 1). Thus a move from (E, T ) to
(E′, T ′) and then back to (E, T ) will leave the liquidity providers at exactly the same point they
started from. Many crypto-traders refer to gains or losses while the pool is off equilibrium at
value (E′, T ′) as impermanent loss. With positive fees liquidity traders benefit from such short
term deviations as they collect a proportional fee for both trades. In our empirical analysis we
will estimate such short term deviations from a fundamental value as reversals.

Finally, even though arbitrageurs replenish the liquidity pool after a large, they pay a fee for
doing it. This differs from a traditional limit order book in which liquidity is replenished by
rivalrous liquidity suppliers.

Example 2 Continue Example 1, case (a) and suppose that an arbitrageur brings back the price
closer to the fundamental value. Assume that the arbitrageur can buy tokens at the fundamental
value of 10, sells them to the pool at price p(t), and chooses the optimum amount of tokens t
to sell to the pool to maximize profit, π = t(p(t) − 10). By sending t tokens to the pool he will

obtain e = (1−κ)tE′

T ′+t(1−κ) = 0.997·t·110
9.09339+0.997t ETH in return, resulting in a price p(t) = e/t. Solving for

the optimal t that maximizes the arbitrageur’s profit we find t = 0.895648 which is smaller then
the amount of token sold by the pool in Example 1 because (i) the invariant k has changed after
the first trade due to the fee revenue and (ii) fees make it optimal for the arbitrageur to sell a
smaller amount back to the pool. It is easy to verify that without fees, i.e. κ = 0, the invariant
does not change after the first trade and the arbitrageur would sell exactly the same amount of
tokens back to the pool that the pool sold in the previous trade, and the new mid-price of the pool
would exactly equal the fundamental value. With fees, however, the arbitrageur optimally sells
t = 0.895648 tokens to the pool for which he receives 9.836 ETH, leaving the pool with a new
balance of 100.164 ETH and 9.98904 token. The new pool mid-price is 10.0274, which deviates
slightly from the fundamental value of 10. Liquidity providers value their token holdings at the
fundamental value of 10 and hold a total of 100.164 + 99.8904 = 200.054 which is higher than
their initial investment of 200.
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3 Framework

Consider a market with one asset, with current value p0. With probability α there is an inno-
vation and the asset is equally likely to jump up or down to p0 + σ or p0 − σ respectively, else
the asset value remains p0. A potentially informed trader monitors the market and trades when
profitable, otherwise a passive trader, who trades a fixed quantity q, arrives. The passive trader
is equally likely to buy or sell. The passive trader is willing to trade his q shares at any price
p ∈ [p0 − σ, p0 + σ], else they will not trade.

There are two rational liquidity suppliers who potentially enter the market before the passive
trader and post a price that optimally trades off the surplus they can extract from him against
the possibility of being “picked off” by an informed trader. We focus on the case of two liquidity
suppliers as it is the minimum required for competition. To simplify the exposition, we only
detail the case where the informed trader buys. The case where the informed trader sells is
symmetric.

We envisage rational liquidity suppliers searching over profitable asset markets to supply liquid-
ity. Specifically, with probability γ a liquidity supplier arrives at the asset market and chooses
an order to post. To make search more efficient, rational liquidity suppliers can invest I > 0 in
a market monitoring technology. After this investment, they are more likely to identify liquidity
provision opportunities, specifically, they identify the market with probability γ̂ > γ, where we
denote the incremental improvement by ∆γ .

3.1 Limit order market

The sequence of events in the limit order market is as follows: First, nature determines the
number of limit order submitters, then the limit order submitters post their orders. Second,
nature determines the new asset value. If there is no information event, the liquidity trader
arrives and trades against the best quote or randomizes if indifferent. If there was an information
event, then, the informed trader trades against the best quote. The amount that the liquidity
trader trades is fixed, q, and so this is also the amount that the liquidity suppliers post. Notice,
that the informed trader will trade the maximum amount possible if is profitable, i.e., 2q.

Given that liquidity traders are searching for profitable trading opportunities, they may be alone
or competing in a market. If a liquidity supplier is alone in the market, then he will always post
a sell price of p0 + σ. Posting at this high price completely mitigates adverse selection, and at
the same time extracts maximal surplus from the passive trader.

Lemma 1 A sole liquidity supplier in the market, will post a price of sell price of p0 + σ and
obtain a profit of (1− α)σ.

By contrast, if two competing liquidity suppliers are in the market then a liquidity supplier who
charges the highest feasible price will always be undercut and lose out on the profitable trade
against the passive trader. In this way, rivalrous liquidity provision will make them aggressively
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undercut. However, the possibility of adverse selection means that they will not charge the
lowest possible price, but rather randomize.

Lemma 2 Consider two competing liquidity suppliers in the market. In symmetric, mixed strat-
egy equilibrium each will choose a distribution over prices F (·) over [pmin, pmax], where

F (p) =
(p− p0)(1− α

2 )− σα2
(p− p0)(1− α)

,

and

pmin = p0 + σ

( α
2

1− α
2

)
pmax = p0 + σ.

Consistent with standard intuition, there is a positive spread in this market, which is larger, the
larger the possibility of adverse selection, which increases in σ. Going forward, we define

pmin − p0 = σ

( α
2

1− α
2

)
= sσ,

which is the half spread that is increasing in the size and probability of an innovation.

Proposition 3 There are threshold investment costs I < Ī, so that if I ≤ I both liquidity traders
will pay to monitor the market, if I < I < Ī only one will pay to monitor the market, and if
I > Ī, none will pay to monitor the market.

To determine the cost to the liquidity trader, observe that he will execute against the best quote
when the enters the market, or c(q) = min[pi, pj ]. Let Fc(x) denote the cdf of the best price,
then

Lemma 4 The expected transaction price for the liquidity trader is

E(c) =

( α
2 (1− δ)
(1− α)

)2(
−sσ +

σ2

sσ
+ 2σ ln

sσ
σ

)

Similarly, we can calculate the expected profits to the informed trader from this competitive
supplied liquidity. We obtain:

πI =
α

2
{(1− δ)δ q + (1− δj)δiq + (1− δi)(1− δj)2q}Ep∗

= α q(1− δ)Ep∗
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Where, the expected price is given by

Ep∗ =

∫ p0+σ

pmin

[1−
(p− p0)(1− α

2 (1 + δi))− σα2 (1− δi)
(p− p0)(1− α)

]dp

=
α(1− δ)(−sσ − σ − σ ln(−sσ) + σ ln(−σ)

2(1− α)

Notice that the arbitrageur would be willing to trade an arbitrary amount up to the new price,
p0 + σ, but is unable to do so due. Liquidity providers restrict the amount that they post to
minimize the chance of trading with the informed trader.

3.2 Bonding curve market

In the bonding curve market, liquidity suppliers commit quantities of both Eth and Tokens.
Then, with probability α

2 there is an asset innovation and the informed trader removes tokens
from the pool and deposits Eth. (Recall, we are characterizing the case in which there is a
positive asset innovation.) With probability 1−α, a liquidity trader arrives and buys q Tokens.
As a result of this trade, the quoted Eth price of tokens is too high, and so the arbitrageur
enters the market and sells to the liquidity providers until the Eth price of tokens reverts to the
equilibrium amount.

Assume that investors have each committed E0 Eth and the equivalent total amount of tokens
T0. Two identities will be useful going forward, first, the ratio of Eth to tokens, in equilibrium,
is the Eth price of tokens, or

E0

T0
= p0. (7)

Second, any transactions must occur along the curve, defined by

E0T0 = k, (8)

where k is the constant of the bonding curve.

To facilitate comparison with the limit order market, observe that Eth is the numeraire, and
so the amount committed to trade is the number of tokens (T0). We seek to determine the
equilibrium provision of this quantity, which will also determine the costs to the liquidity trader
and profits of the informed trader. To proceed, we establish how the relative balance of Eth and
the token change in response to the various types of asset innovations and trader arrivals.

First suppose that a liquidity trader arrives. Recall, that this trader demands q tokens, and will
add in ∆`

E to the Eth pool. The Eth cost for doing this trade is determined by the bonding
curve, so

(E0 + ∆`
E)(T0 − q) = E0T0

∆`
E =

E0T0

T0 − q
− E0.
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∆`
E can be further decomposed into a price per token and a liquidity fee that accrues to the

liquidity suppliers. Specifically, ∆`
E = (1+ τ)ptrans, so the transaction price for q units is simply

ptrans =
∆`

E
(1+τ) . The payoff to the liquidity providers is therefore τ

(1+τ)∆`
E .

Given that ∆`
E > 0, the ratio

E0+∆`
E

T0−q > E0
T0

. The pool is now quoting an Eth price of the token
that is too high. This is an arbitrage opportunity, and therefore the arbitrageur will add tokens
and remove Eth so that the pool returns to equilibrium. The value of the pool before and after
the liquidity trader is the same. However, both the liquidity trader and arbitrageur have paid a
transaction fee of 2 τ

1+τ∆`
E . This is the payoff to liquidity provision.2

Now suppose that there was a positive innovation event so that an informed trader arrives. Since
the pricing is deterministic she will trade an amount that maximizes her profit. Specifically, the
informed trader will buy tokens until the new pool price is equal to p0 +σ, net of the transaction
costs. She implements the trade by sending ∆I

E Eth to the pool and removing ∆I
T tokens in

return so that,
(E0 + ∆I

E(1 + τ))

(T0 −∆I
T )

= p0 + σ. (9)

Pool balances post trade are again on the bonding curve, so,

(E0 + ∆I
E(1 + τ))(T0 −∆I

T ) = E0T0.

We can solve for the amount of the traded tokens, and the amount paid so

∆I
T = T0 −

√
k

p0 + σ
(10)

∆I
E =

√
k(p0 + σ)− E0

1 + τ
. (11)

Before the asset innovation, the liquidity supply was worth E0 + p0T0. After the innovation, the
liquidity supply is worth

E0 + ∆I
E(1 + τ) + (p0 + σ)(T0 −∆I

T )

=
√
k(p0 + σ) + (p0 + σ)

√
k

p0 + σ

= 2
√
k(p0 + σ)

Therefore, the change in value for liquidity suppliers after a change in the value of the asset is:

E0 + p0T0 −
(

2
√
k(p0 + σ)

)
(12)

= 2E0 −
(

2
√
k(p0 + σ)

)
(13)

2Technically, the arbitrageur faces a different size pool than the liquidity trader as the liquidity fee has been
paid into the pool. We do not consider this incremental effect.
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Thus, the overall payoff to liquidity provision (for the entire pool) is

(1− α)2∆`
E

τ

1 + τ
+
α

2

(
2
√
k(p0 + σ)− 2E0

)
(14)

= (1− α)2

(
k

T0 − q
− E0

)
τ

1 + τ
+
α

2

(
2
√
k(p0 + σ)− 2E0

)
(15)

The equilibrium size of the liquidity pool is implicitly defined by

(1− α)2

(
k

T0 − q

)
τ

1 + τ
+ α

(√
k(p0 + σ)

)
= T0p0

(
(1− α)

τ

1 + τ
+ α

)
which yields liquidity supply of

T0 = q +

√
2α2k(p0 + σ) + 4p0

(
(1− α) τ

1+τ + α
)

(1− α)2 τ
1+τ − 2qp0α

(√
k(p0 + σ)

)(
(1− α) τ

1+τ + α
)

2p0

(
(1− α) τ

1+τ + α
)

= q +

√
2α2k(p0 + σ) +

(
(1− α) τ

1+τ + α
) [

4p0(1− α)2 τ
1+τ − 2qp0α

√
k(p0 + σ)

]
2p0

(
(1− α) τ

1+τ + α
)

There are a few things to notice about this. First, the liquidity supply is not constrained by the
strategic considerations of the the liquidity suppliers. Specifically, because of adverse selection
liquidity suppliers collectively post a maximum of 2q. By contrast as the predetermined price
impact is shared across all liquidity suppliers, more liquidity may be posted on the DEX.

The profits to the informed trader are

πI = ∆I
T (p0 + σ)−∆I

E

=

(
T0 −

√
k

p0 + σ

)
(p0 + σ)−

(√
k(p0 + σ)− E0

1 + τ

)

= T0(p0 + σ) +
E0

1 + τ
−
√
k(p0 + σ)

2 + τ

1 + τ

Notice, this differs in the payoff to the informed trader in the limit order market.

In the limit order market, liquidity provision is rivalrous, and the liquidity suppliers trade off
the benefits of trading with the passive trader against the potential adverse selection costs. This
implies that there will be a positive spread even with continuous prices and there will be excess
volatility as orders. By contrast the automated market maker shares all benefits with liquidity
provision among all liquidity suppliers. Further the amount of adverse selection is restricted by
the bonding curve.

11



3.3 UniSwap

Decentralized exchanges (DEX) are smart contracts mostly deployed on the Ethereum blockchain.
By interacting with the smart contract users can exchange digital tokes and currencies in an
automated, trustless way. Users initiate an exchange by posting an Ethereum transaction that
sends token or cryptocurrency are to be sold to the contract and calls a function of the smart
contract to perform the exchange. The smart contract then sends other tokens or cryptocurrency
back. Since transactions on Ethereum are atomic, meaning that they either execute completely
or fail, there is no settlement risk and users do not have to hand over custody of their digital
assets to a third party at any time. The source code for many DEX is public and users can
verify that the code is not fraudulent and perfectly predict the smart contract’s behavior.

Uniswap which was launched in November 2018 at Devcon 4 and the first pool allowed swaps
between Eth and Mkr. Uniswap is open source, functions as a public good, and has no owner
or operator. Similar to other decentralized exchanges (“DEX”) it employs smart contracts.

In its first release, Uniswap V1, it allows the exchange of ERC20 tokens against Ether (ETH) by
interacting with a smart contract, which we will refer to as a liquidity pool.3 Each pool allows
the trading of exactly one token against ETH. In case that there no pool exists for a specific
token it can be created for free by anyone calling the Uniswap factory contract and specifying
the token for which a new pool should be created. The factory contract will then deploy a new
pool for that specific token on the Ethereum blockchain.

Uniswap V2 was launched on May 18, 2020 and allows the direct trading of ERC 20 token pairs.
It provides several benefits over V1 such as a broader set of permissible tokens (such as Thether
USDT for example), enhanced functionality, and better oracle functionality.4 Because Uniswap
has no owner V1 pools cannot be deleted from the blockchain and exist in parallel to V2 pools.
As we document below most V2 pools trade tokens against wrapped Ether (WETH), which
is a ERC 20 representation of Ether (ETH), the native currency on the Ethereum blockchain.
To simplify the exposition of the paper we illustrate the mechanics of liquidity provision and
trading in a pool which is trading a Token against ETH.

4 Data

Using a factory contract on Ethereum, anyone can create a UniSwap liquidity pool. First, we
obtained a list of all UniSwap V1 and V2 liquidity pools from factory contract transactions.
In our sample we have a total of 36,958 individual liquidity pools, consisting of 3,937 V1 pools

3Most digital tokens that are traded on Ethereum follow the ERC20 specification.
4Oracles provide information to other smart contracts that they need as input for their program. Many smart

contracts use Uniswap as price feed to obtain current token prices, pretty much in the same way that many traders
in mainstream financial markets use Bloomberg. There have been instances of price manipulation where traders
placed huge orders on Uniswap V1 exchanges to push the price in a certain way and then take advantage of other
smart contracts relying on this misleading information, for example to inflate the value of collateral against which
they borrow. Once prices revert to normal they default on the undercollateralized loan. Uniswap V2 improves its
oracle functionality by providing a moving average of past prices.
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and 33,021 V2 pools. We then matched transactions into and out of these liquidity pools with
block-by-block transactions on the Ethereum block chain. Our data thus comprises 43,349,198
transactions on Uniswap from its inception on November 2, 2018 until April 29, 2021.

We note that, in contrast to traditional exchanges on which there are listing requirements,
UniSwap liquidity pools are not certified. Indeed, some of the token pools are misleading. For
example five different tokens in our sample have the ticker symbol USDC. A naive user, who
does not verify the smart contract address could be tricked into buying a worthless coin with
the same ticker.5 While fake tokens exits, trading activity in these pools is limited and will not
affect our results. We provide detailed information on fake tokens in Appendix B.

Pools may differ in size but also in the volume of transactions. Figure 3 shows the size of all
uniswap liquidity pools in ETH. The volume is broken down in subgroups by volume. The 10
largest exchanges by total volume over the sample period are in the high volume group (blue),
the next 190 exchanges are in the mid volume group (green), and the remaining exchanges are in
the low volume group (orange). Most of the liquidity is concentrated in the high volume group.
These exchanges are mostly V2 exchanges and are responsible for most of Uniswap’s growth.

December-2018 February-2019 April-2019 June-2019 August-2019 October-2019 December-2019 February-2020 April-2020 June-2020 August-2020 October-2020
blockday

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

5,500,000

6,000,000

6,500,000

7,000,000

7,500,000

8,000,000

e
th
re
se
rv
e

High Volume
Low Volume
Mid Volume

series

Figure 3. Relative size of liquidity pools in ETH broken down by volume.

Table 1 provides an overview of the 10 largest Uniswap V1 and V2 pools by total aggregate
volume in ETH. V1 pools are smaller both in terms of volume as well as in number of trades,
mostly because the introduction of V2 coincided with a huge boom in Decentralized Finance and

5The ‘real’ USDC stable coin resides under address 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 and
has over 4 million token transactions on the Ethereum blockchain. A token with the same ticker is
0x0xEFb9326678757522Ae4711d7fB5Cf321D6B664e6. Somebody created a Uniswap liquidity pool for this copy-
cat token at the address 0x1bffb8a3fede9f83a3adc292ebf1716d40b220c1, which has a total of 10 trades and the
size of the pool never exceeded 50 ETH.
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Token 1 Token 2 Number Volume Volume Pool size
Transactions (ETH) (USD) (ETH)

Panel A: Uniswap V2
Wrapped Ether WETH Tether USD USDT 7,262.7 84,122 61,970,290 227,782
USD Coin USDC Wrapped Ether WETH 5,632.0 81,914 63,189,134 209,443
Dai Stablecoin DAI Wrapped Ether WETH 3,040.0 48,091 34,716,533 169,411
Uniswap UNI Wrapped Ether WETH 2,520.8 33,181 26,172,330 54,116
Wrapped BTC WBTC Wrapped Ether WETH 958.2 30,096 22,236,270 298,367
yearn.finance YFI Wrapped Ether WETH 924.5 21,389 9,733,820 27,646
Fei USD FEI Wrapped Ether WETH 285.6 19,248 41,958,876 512,350
Tendies Token TEND Wrapped Ether WETH 153.9 16,551 23,246,953 728
SushiToken SUSHI Wrapped Ether WETH 951.5 16,087 7,186,316 78,652
Wrapped Ether WETH Ampleforth AMPL 1,073.2 14,652 6,101,790 38,886

Panel B: Uniswap V1
Ether ETH Dai Stablecoin DAI 550.3 2,777 521,430 9,423
Ether ETH HEX HEX 224.4 1,874 399,122 22,701
Ether ETH Maker MKR 144.8 1,347 267,577 10,519
Ether ETH USD Coin USDC 255.6 1,297 277,424 7,086
Ether ETH LoopringCoin V2 LRC 21.1 1,012 376,052 800
Ether ETH Sai Stablecoin v1.0 SAI 202.3 985 223,721 5,047
Ether ETH Synthetix Network Token SNX 129.0 723 140,262 3,536
Ether ETH Synth sETH sETH 45.5 596 114,721 26,762
Ether ETH UniBright UBT 111.8 289 60,788 636
Ether ETH Pinakion PNK 41.9 202 61,761 1,537

Table 1. Ten largest exchanges for Uniswap V1 and V2, respectively, sorted by volume.
Number transactions is the daily average number of transactions, Volume (ETH) is the daily average
volume in Ether, Volume (USD) is the daily average volume in USD, and Pool size (ETH) is the daily
average pool size in Ether. We exclude pools with less than 5,000 total transactions. .

caused most traders and liquidity providers to converge on the new protocol. The largest pool
in terms of total volume traded is Tether (USCT) - Wrapped ETH with an aggregate volume
(over all days) of over 21.4 billion USD. This pool also has the highest number of total trades
in our sample over 2.5 million trades. The most liquid pool is FEI-WETH with an average size
of over 512 thousand ETH.

From the Ethereum blockchain we observe 1,027,802 liquidity injections into a pool, 551,796
withdrawals of liquidity from a pool, and 41,317,816 trades of tokens. The remaining 451,784
transactions are either complex transactions that combine liquidity additions or removals with
swaps or flash swaps. Briefly, flash swaps were introduced in Uniswap V2 and allow a user
to borrow any amount up to the total liquidity available in a pool, so long as the whole sum
gets returned in the same Ethereum transaction. Because an Ethereum transaction is atomic, –
i.e. it is either executed in its entirety or not at all – there is no credit risk for lenders as the
loan is both originated and repaid in the same transaction. Several other protocols also offer
such ‘flash loans’ but Uniswap is unique because the borrowed amount can be repaid in any
combination of pool tokens as long as the value repaid equals the value borrowed. Borrowers
pay a 0.3 percent fee on amounts borrowed.
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While some of the pools are very active, many are not: 29,953 pools in our sample have fewer
than 100 transactions. Figure 4 shows the number of trades. With the release of V2 trading
activity in V1 declined. We also observe that for V2 pools trading against WETH (orange)
dominates direct trading of other tokens (red).
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Figure 4. Number of transactions on Uniswap.

Figure 5 illustrates the trading volume per day. Trading volume varies more than the number
of trades. Again V2 pools trading to WETH dominate in terms of trading volume. The highest
volume in our sample is on March 31, 2021 with a volume of 18.33 billion USD. On that day
a trader moved 5.5. billion USD of a token back and forth between her own wallets. Another
spike, on October 26 with a volume of over 5.5 million ETH or USD 2.1 billion and is linked to
an attack on Harvest Finance using a flash swap. A more detailed discussion of this incident and
implications for Uniswap volume can be found in Appendix A. Usage of Flash Swaps varies a lot
in our sample. Out of the 359 days where V2 was deployed, flash swaps occurred on 330 days.
The median flash swap volume per day was 130,897 USD and the maximum was 17,1 billion
USD on March 30, 2021. The largest non-flash swap trade in our sample was on December 17,
2020 when a trader swapped 48,584,947.17 DAI for 342,252.89 WETH, worth about USD 220.4
million at the time as part of an attack on the platform Warp finance. Many large trades are part
of an explout that targets weaknesses in a platform’s code. On June 18, 2020, a trader swapped
100,000.39 WETH (about USD 23.2 million USD at the time) for 1,695,998.19 UniBomb tokens
as part of another exploit.6 The median trade size in our sample is 838.2 USD. 30.5% of trades
are below 0.5 ETH and 13.9% are below 100 USD. Computing volume is not straightforward

6See transaction 0x0x8492ce3b1ea8ec796471997731e557c057c2fb0a3ade7f9c0477450d53ad4791. Unibomb is de-
flationary token that burns 1% of the each transaction, thus increasing its value. Somebody seems to have borrowed
100.000 ETH from the lending platform dXdY and converted them to Unibomb. The transaction decreased token
supply and the user could reconvert the Unibomb tokens to ETH with a slight gain in price, leaving a profit after
the repayment of the loan.
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in Bonding curve markets as attackers often deliberately push markets out of equilibrium. We
provide details on our methodology in Appendix C.
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Figure 5. Trading volume on Uniswap The graph shows the daily volume of transactions including
flash loans in USD capped at 2.4 billion USD.

Users interact with the family of Uniswap smart contracts by posting transactions on the
Ethereum blockchain. Apart for limits on transaction size given by the Ethereum network
there is no theoretical limit on how many interactions with Uniswap liquidity pools can be done
in one transaction. In our sample 81.06% of Ethereum transactions only have one interaction
with one liquidity pool, another 15.92% have two interactions. 1615 transactions or 0.0061% if
the sample have 10 or more interactions with a liquidity pool. the most complex transaction in
our sample has 60 interactions with 6 different uniswap liquidity pools.7

Figure 6 presents the network of pools between all tokens that are part of the 50 largest pools
by volume. The thickness of the line corresponds to the trading volume between the tokens and
the color of the token-markers is proportional to the log of the depth of the liquidity pools for
that token with red marking the most liquid tokens. We can see that Wrapped Ether (WETH)
takes a central position in the Uniswap network. For our whole sample of 28,654 tokens we
find that 27,796 tokens, or 97%, trade directly against WETH. The second highest number of
tokens, 1,479, trade against USDT. The highest volume and the most connections are between
WETH and USD stable coins such as USDT, USDC, and DAI. 2,799 tokens or 9.76% of tokens

7see Ethereum transaction 0x2d732ab5aeb05eeb52eebb9a6086e77b15198fe61a827648b2e43a79fb1902ec.
Uniswap V2 introduced router contracts that can perform complex transactions with one function call. Assume
for example that a pool exists that trades tokens A and B, another pool trades tokens B and C, and there is no
pool to swap A and C. The router contract can then be instructed to swap A and C by trading through token B.
In our sample such a transaction would show up as two separate transactions, one for each of the two involved
pools.
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are trading directly against these three stablecoins. The Uniswap network has a core-periphery
structure similar to many other financial networks. 27,220 tokens or 95% of tokens trade only
against one other token.

Figure 6. Network graph of pools between all tokens that are part of the 50 largest pools
by volume.

5 Liquidity provision

Because the benefits to providing liquidity are shared pro rata, and the size of the liquidity
pool may increase or decease as we compute daily returns to liquidity providers similarly to
returns for mutual funds where in- and outflows of liquidity can occur. We assume that pools
are arbitrage free, i.e., the true market price of a token equals the mid-price of the pool.8 Under
this condition the value of the T tokens in the liquidity pool is Tp0 = TE/T = E, which is the
same as the value of the ETH balance. The total ETH value of the pool is then 2E.

Let λt be the the amount of liquidity added or removed in period t. Then the return for liquidity
providers in period t is

lt =
2Et − λt − 2Et−1

2Et−1
. (16)

8If the true market price would not equal to the mid-pool price and arbitrageur could make an instant profit
and would push the mid-pool price of the token to the true market price.
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Figure 7 exhibits profits accruing to liquidity providers. The blue line shows aggregate fee
revenue on Uniswap over time. As volume grows, especially after the introduction of V2, so
does fee revenue. The orange line shows the cumulative return for all liquidity providers across
all Uniswap pools. The graph at point T is computed as (

∏T
t=1(1 + lt))− 1.
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Figure 7. Aggregate Profit for liquidity providers in Uniswap across all Pools.

Figure 8 shows cumulative returns for liquidity providers broken down by average pool size.
Average pool size is very unevenly distributed. The largest 4 pools have on average the same
balance as all the other pools together. In total, 17, 018 pools have an average balance of less
than 100 ETH. To create somewhat even buckets we define tier 1 as the largest 5 pools, tier
2 as the next 5, tier 3 as the next 10, tier 4 as the next 30, tier 5 as the next 100, and tier 6
comprises all remaining pools. Interestingly, profitability is highest for liquidity providers of the
second tier, pools that are large but not at the very top. This stylized fact is consistent with a
setting where these pools are provide enough liquidity to attract traders but not too big so that
there is price impact and fee revenue per liquidity provided remains attractive.

To understand the cross section of expected returns for liquidity providers we collect daily
returns of all liquidity pools with a balance of at least 20 ETH with at least 50 observations.
Figure 9 plots average return over return volatility for large (orange), medium (blue), small
(green) pools. Pool returns are very noisy which is part driven by the very short sample period,
yet a positive relationship between risk and average return is visible. In Table 2 we regress
average returns for liquidity providers on the volatility of the returns for liquidity providers as
well as average pool volume and size. We compute the average return as the average of daily
returns for liquidity providers over the sample period. We drop pools with less than 50 days
of data and with an average pool balance of less than 50 ETH. The average sample size of the
remaining pools is 127 days, the median 89. Volatility liq providers is the standard deviation of
the daily returns, average volume is the average daily volume per pool over the whole sample
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Figure 8. Cumulative returns by average pool size
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Figure 9. Risk and average returnm of liquidity provision

period, and average pool size is the average daily pool size measured in ETH over the sample
period. Columns (1) and (2) include the whole sample. We can see that pools that are riskier
for liquidity providers pay a higher average return. Volume is positively related to return which
is intuitive as liquidity providers collect a fee that is proportionate to volume. Coulumn (1)
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shows the results for large pools with an average balance of more than 1,000 ETH, column (2)
for median pools, and column (3) for small pools with an average balance of less than 100 ETH.
Risk is a driving factor of returns for all subsamples.

(1) (2) (3) (4) (5)
Volatility liq. providers 0.0944∗∗∗ 0.0925∗∗∗ 0.195∗∗∗ 0.0881∗∗∗ 0.0553∗∗∗

(0.00833) (0.00832) (0.0232) (0.0146) (0.0139)
Average volume 0.000000387∗∗∗ 9.34e-08 0.00000374∗∗∗ -0.000000286

(9.58e-08) (7.97e-08) (0.000000897) (0.00000644)
Average pool size -6.24e-08∗∗ -1.23e-08 0.00000259 0.0000469∗∗

(2.64e-08) (2.16e-08) (0.00000207) (0.0000188)
R2 0.131 0.150 0.457 0.247 0.0820
Observations 853 853 102 369 382
height

Table 2. Regression explaining the crossection of average returns for liquidity providers.
One, two, and three stars indicate significance at the 10%, 5%, and 1% level, respectively.

Table 3 presents the results of a regression of the annualized percentage return for liquidity
providers on several contemporaneous variables. We understand that some relationships are
mechanical, driven by the design of the Uniswap contract, and therefore we use this simply to
understand the Uniswap contract. Since our sample is dominated by a huge number of very small
pools an analysis of the whole sample will merely be a reflection of that group. We therefore
divide the sample in four groups. Daily returns of large pools with ETH balance greater than
10,000 are in column (1), with a balance between 1,000 and 10,000 in column (2), returns in
column (3) are from pools with a balance between 100 and 1,000, and returns from all remaining
pools are analyzed in column (4).

(1) (2) (3) (4)
Pool size -0.0000500 0.00322∗ 0.00674 1.356∗∗∗

(0.0000438) (0.00194) (0.0124) (0.143)
FX-return 0.504∗∗∗ 0.500∗∗∗ 0.498∗∗∗ 0.493∗∗∗

(0.00289) (0.00111) (0.000617) (0.000520)
Std.Dev Fx Rate -3784.1 -2579.5∗∗∗ -1384.6∗∗∗ -696.3∗∗∗

(4294.5) (370.5) (142.0) (39.73)
Liquidity Flow 156.4∗∗∗ 84.29∗∗∗ 144.5∗∗∗ 111.7∗∗∗

(17.24) (12.16) (8.010) (6.558)
rel. Volume 37.11∗∗∗ 18.94∗∗∗ 6.775∗∗∗ -5.068∗∗∗

(11.18) (2.482) (1.226) (0.956)
Reversals -476.2∗∗ 320.9∗∗∗ 172.6∗∗∗ 268.3∗∗∗

(205.6) (49.13) (20.20) (16.33)
R2 0.929 0.943 0.936 0.892
Observations 2,408 12,511 45,369 110,292
height

Table 3. Regression explaining daily return for liquidity providers. One, two, and three
stars indicate significance at the 10%, 5%, and 1% level, respectively.

For all but the smallest pools, the poolsize is insignificant. This is consistent with the idea that
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those pools are close to their optimal size. In the subsample of smaller pools, the larger ones
are more profitable for liquidity providers, which is consistent with the idea that pools need
a certain minimum size to be operational. A key driver of returns is the FX rate. Liquidity
providers hold an equal amount of each token. Following the logic of Example 1, an increase
of the token relative to the numeraire causes the value of the pool to increase. Since half
of the pool consists of the numeraire token we expect a coefficient of 0.5. Volatility of the
exchange rate has a negative impact on liquidity holders’ returns because there is a greater
chance that arbitrageurs take advantage of stale prices that are quoted by the pool. This effect
is not statistically significant for large pools where such losses are spread among a larger group
of liquidity providers. Contemporaneous liquidity flow is associated with higher returns for
liquidity providers in for all pool sizes. This is a bit counter-intuitive as mechanically liquidity
inflows mean that the pool’s fee revenue has to shared among more liquidity providers. Think
this finding is due to some persistence in flows and profitability. When profitable pools attract
more liquidity and pools remain profitable for some period of time. We define relative volume
as trading volume over poolsize and find a positive relationship to profitability, which is to be
expected as fees are collected in proportion to volume.

Finally we examine reversals, which we define as a trade that is immediately followed by an
opposite trade of at least 50% of the size of the original trade. Reversals are often executed by
arbitrageurs who want to bring back the price to the fundamental value. In the regression we use
reversals as a fraction of total trades. We find that they are associated with higher returns for
liquidity providers, which is intuitive because they provide fee revenue without any fundamental
price change. For large pools we see a negative relationship, which is counter-intuitive. We
believe that is due to measurement problems. In large pools we observe 1705 trades on average
per trade compared to 7.31 trades for the other pools. With such a high frequency it is less likely
to observe reversals because during the time an arbitrageur composes a reversal trade another
trader might interject an order. consistent with this idea we observe only 10.7% of orders to be
reversals in large pools compared to 20.2% in all other pools. In lieu of the negative association
of reversals and profitability in large pools we see a larger coefficient on relative volume. One
explanation is that such interjected reversals do not count as reversal but still contribute to
volume.

Table 5 presents results explaining liquidity flow. Absent from the largest pools, who probably
have reached their optimal size, larger pools tend to attract more liquidity providers. Liquidity
flows into pools with higher token volatility and, except for the smallest pools, where more
reversal trades, which are more profitable for liquidity providers, occur. Lagged return for
liquidity providers is positively related to liquidity provision consistent with the commonly
observed practice of yield farming. Several websites post recent returns on liquidity pools in
various protocols including Uniswap and users seem to make their decisions based on these
rankings.
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(1) (2) (3) (4)
Pool size -4.33e-08 0.00000476∗∗∗ 0.0000354∗∗∗ 0.000189∗∗∗

(4.93e-08) (0.00000126) (0.00000583) (0.0000236)
Std.Dev Fx Rate 39.59∗∗∗ 1.270∗∗∗ 1.522∗∗∗ 0.130∗∗∗

(4.708) (0.240) (0.0680) (0.00702)
Lagged rel. Liquidity Flow -0.0513∗∗∗ -0.00134 0.00482∗ 0.00654∗∗∗

(0.0151) (0.00471) (0.00250) (0.000928)
Lagged rel. Volume -0.0112∗∗∗ -0.000964∗∗∗ -0.000711∗∗∗ -0.0000150∗∗∗

(0.00220) (0.000162) (0.0000650) (0.00000103)
Lagged Reversals 3.775∗∗∗ 0.555∗∗∗ 0.100∗∗∗ -0.00734∗∗∗

(0.299) (0.0420) (0.0132) (0.00236)
Lagged ret. liq. providers 0.126∗ 0.0353∗∗ 0.0347∗∗∗ 0.00631∗∗∗

(0.0690) (0.0164) (0.00734) (0.00213)
R2 0.106 0.0206 0.0152 0.00337
Observations 2,335 12,136 44,521 240,065
height

Table 4. Regression explaining liquidity flows. One, two, and three stars indicate signifi-
cance at the 10%, 5%, and 1% level, respectively.

6 Latent liquidity

Decentralized exchanges allow us to observe latent liquidity. Because of the mechanical way
prices are set as a function of trading and because liquidity providers cannot instantly withdraw
their funds a trader can anticipate the price they will get. To measure the relationship between
offered and used liquidity we compute for each liquidity pool the liquidity use by dividing the
daily trading volume by the average daily pool balance. Figure 10 plots average liquidity use
ratios for large, medium, and small pools as measured by overall average pool balance. Tier 1
comprises the largest 20 pools, tier 2 the next 80, and tier 3 all remaining pools. Liquidity use
is fairly correlated among the large pools. For the largest 20 pools two principal components
explain 69.5% of the variation in liquidity use.

In Table 5 we analyze liquidity use as a function of several lagged indicators. Liquidity use is
increasing in pool size for smaller pools, which makes sense as price impact decreases with the
size of a liquidity pool. For large pools price impact is already low and an increase in poolsize
will not affect the price traders can get by much. liquidity use increases in FX volatility. Many
crypto traders engage in margin trading where they, for example, post tokens as collateral on
platforms such as Maker in exchange for DAI (a USD stablecoin). They then convert the DAI
on Uniswap to buy more tokens and thus build a levered position in the token. Higher volatility
in crypto markets increases the risk of these levered positions and many traders go through
uniswap to reduce their leverage. Liquidity use increases in lagged liquidity flow for all but the
smallest pools. This is intuitive as additional liquidity reduces price impact and thus makes
it more attractive to trade in that pool. Finally liquidity use seems to be persistent. Lagged
liquidity use is positively related to current liquidity use.
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Figure 10. Liquidity use Uniswap. The graph shows the volume traded per day as a fraction of the
average poolsize on that day for three tiers of liquidity pools.

(1) (2) (3) (4)
Pool size -6.23e-08 0.00000617 0.000621∗∗∗ 0.00308∗∗∗

(5.71e-08) (0.00000514) (0.0000333) (0.0000560)
Std.Dev Fx Rate 51.18∗∗∗ 23.92∗∗∗ 20.38∗∗∗ 9.268∗∗∗

(5.413) (0.980) (0.383) (0.0171)
Lagged rel. Liquidity Flow 0.0540∗∗∗ 0.0772∗∗∗ 0.117∗∗∗ -0.0315∗∗∗

(0.0168) (0.0189) (0.0139) (0.00236)
Lagged liqidity use 0.0854∗∗∗ 0.0451∗∗∗ 0.0387∗∗∗ 0.000152∗∗∗

(0.00236) (0.000670) (0.000364) (0.00000187)
R2 0.400 0.310 0.278 0.189
Observations 2,347 12,262 45,803 1,396,910
height

Table 5. Regression explaining liquidity use defined as daily volume over average daily
poolsize. One, two, and three stars indicate significance at the 10%, 5%, and 1% level,
respectively.

7 Exchange competition

To compare Uniswap to traditional exchanges we collect minute by minute treading data from
Binance, one of the largest crypto exchanges by volume. Many of the 1,251 token pairs listed on
Binance trade against fiat currencies. We find 384 token pairs that trade on both, Uniswap and
Binance, however many of these pairs are very infrequently traded. We eliminate all pairs with
an average daily volume of less than 10 ETH on either market and an average daily Uniswap
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pool size of less than 10 ETH. We treat WETH and ETH as identically given the easy and cheap
conversion. We end up with 27 token pairs that are cross listed on Uniswap and Binance.

Arbitrage between the two markets is not instant. Binance, like all ‘traditional’ crypto exchanges
require to have custody of the traded assets. Any tokens that a user wants to trade on the
exchange need to be transferred out the users personal wallet into the exchange wallet and the
exchange ha to give the user credit for these assets in their own internal ledger before they can
be traded. Once they are in the system of the exchange tokens can be traded with minimal
delay and high frequency. Uniswap, in contrast, is non-custodial, meaning that the user initiate
a trade directly out of their personal wallet and keep custody of traded assets until they are
swapped in an atomic transaction. Since Uniswap is on-chain trading is tied to the transaction
processing of the Ethereum blockchain. Ethereum is designed to be faster than Bitcoin with
about 10-20 seconds between blocks, however, execution of trades on Uniswap can never be as
fast as on traditional exchanges.
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Figure 11. Pricing error and pool size Pricing difference for the USDC/ETH pair when comparing
Binance to Uniswap in percent of the Binance price (blue line, right axis) and pool size of the Uniswap
USDC/ETH pool (orange, log-scale, left axis).

Pricing differences between Uniswap and Binance are small except in the startup-phase of the
Uniswap pool when liquidity is scarce. Figure 11 shows the pricing in blue and pool size (in
orange) for the USDC/ETH pool. When the pool starts, as long as the poolsize is below 100
ETH, pricing errors are huge reaching over 40%. This is not surprising as a small invariant k
will cause a very steep bonding curve (see equation 1). Once the poolsize is above 700 ETH,
the pricing difference stays below 1% with an average of -0.026% for this pool.

We examine determinants of price differences between Binance and Uniswap for the broader
sample in Table 6. We examine the absolute percentage pricing error defined as the absolute
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value of the price differential between Binance and Uniswap divided by the price on Binance.
Pricing error is lower for large pools, which are the ones that have more liquidity and are also
the more commonly traded tokens. When fx-volatility is high, arbitrageurs find it harder to
keep keep up with price changes and we see prices diverging across markets. Higher volume,
measured here as volume on Binance is associated with smaller price differences. On Uniswap
liquidity is defined by the poolsize and independent of trading activity, on Binance, however,
higher liquidity is volume may be indicative of higher liquidity. Relative volume is defined as
volume on uniswap over combined volume. A negative coefficient on relative volume and a
positive coefficient on squared relative volume indicates that the pricing error is u-shaped in
relative volume, i.e. it is high when most trading activity is concentrated on one exchange and
lower when both exchanges have a somewhat even share of trading volume. Pricing errors are
larger for tokens with very low prices relative to ETH. We use the Binance Price as a reference
point. This might be similar to a penny stock effect, as some of the tokens trade at prices with
four or five leading zeros. Traders might not realize that a price difference of 0.00001 ETH
can be a huge percentage difference. Price differences also increase in gas prices. To trade on
Uniswap users must pay the miner to record the transaction on the Ethereum blockchain. When
mining costs, i.e. gas prices, are high small price differences are not profitable to arbitrage away.
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Figure 12. Price Impact of USDC/ETH on Uniswap (orange, green) and Binance (blue).
Price impact is computed as change in price over volume (green and blue lines) as well as analytically as
the price change for a marginal unit bought using the bonding curve formula (green line).

In columns (8) and (9) of Table 6 we examine price impact as explanatory variable. We de-
fine price impact as the absolute price change over trading volume computed over one minute
intervals. For the regression we average the price impact measures on a daily basis. We have
to control for pool size as price impact, i.e. the curvature of the bonding curve, is in Uniswap
mechanically related to pool size. We find that higher price impact is associated with higher
price differences between exchanges, which is intuitive as price impact reduces profits for arbi-
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trageurs. Figure 12 shows our measures for price impact for the USDC/ETH pair. We can see
that price impact on Binance almost always exceeds that on Uniswap. Binance’s price impact
also varies a lot over time while the price impact on Uniswap stays pretty much constant. We
also compute the theoretical price impact for Uniswap which we derive analytically from the
bonding curve in Equation (1) assuming zero fees. We find that our analytical measure of price
impact on Uniswap (green line) corresponds closely to our empirical measure (orange line).
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Figure 13. Trading volume of USDC/ETH on Uniswap (orange) and Binance (blue). The
graph shows the trading volume excluding flash loans in ETH. Trading volume is aggregated over rolling
eight hour intervals.

Figure 13 shows the trading volume of the USDC/ETH pair on Binance and Uniswap, respec-
tively. We can see that trading volume is remarkably correlated across the two markets, which
is surprising given that tokens have to be moved back and forth trough on-chain transactions
between the two markets. We can also see that Uniswap is gaining market share over time and
eventually more trading is happening on Uniswap relative to Binance.

Figure 14 shows intraday prices of the USDC/ETH pair on one day, October 21, 2020. The
patters is typical for most days in our sample. It seems that often Binance prices are leading
Uniswap prices. and that Binance prices are more volatile that the prices on Uniswap.

8 Conclusion

In 1971, Fischer Black two articles for the Financial Analyst’s Journal speculating on whether
computers or “automation” could ever replace human interaction in financial markets (Fisher
Black (1971a), Fisher Black (1971b)). In these papers, he argued that market liquidity was
constrained by the size of a market maker’s inventory and suggested that a solution would be
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Figure 14. Intraday prices for the USDC/ETH pair on October 21, 2020 The graph shows
minute-by-minute prices of the USDC/ETH pair on Binance and Uniswap.

to have more direct participation from other market participants. The rise of “yield farming”
and automated protocols such as Uniswap provide such opportunities.
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A Uniswap volume and the attack on Harvest Finance

On this day a hacker launched a large scale attack on Harvest finance, a yield farming coop-
erative. Users can deposit their tokens with Harvest finance in return for fAsset tokens (e.g.
depositors of USDC receive a fUSDC token). The underlying tokens are then invested in high
yielding liquidity pools and the revenues are shared with the holders of fAsset tokens.

On October 26 an attacker borrowed 18 million USDT and 50 million USDC on Uniswap and
converted over 17 million USDT to USDC on curve.fi (an automated market maker similar to
uniswap that specialized in trading stablecoins).9 This temporarily increased the price of USDC
in the curve.fi pool, which is used a price oracle (i.e. source of market information) for Harvest
finance. Since Harvest finance was misled by this market information it issued too many fUSDC
tokens to the attacker upon their deposit of USDC 50 million. Specifically the price manipulation
caused the price of fUSDC to temporarily drop to 0.9712 from 0.98 before the attack. Then the
attacker changed 17 million USDC back to USDT on curve.fi and sold his fUSDC tokens back
to Harvest finance at 0.9833 as Harvest finance’s smart contract updated the price based on the
new information from curve.fi. The net profit of this attack was 619,408 USDC. The hacker then
repeated the process 17 times and also attacked other harvest finance pools for a total profit of
USD 24 million.10

To be consistent with websites like uniswap.info we include flash swaps in volume computations
in this paper. Liquidity providers earn a fee identical to the one on regular token swaps that is
based on the gross amount of the flash loan regardless whether the repayment is the same token
that was borrowed or not. For liquidity providers flash swaps offer a risk free way to earn earn
higher fees.

B Fake tokens

Ticker symbols on Uniswap are not protected. Anyone can create a token and assign the ticker
symbol of a popular token like WETH or USDC. Tokens are uniquely identified by their address,
e.g. 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 for WETH, which is not easy to work with.
Most people therefore use tickers and are exposed to copycat tokens. Table 7 lists fraudulent
versions of popular tokens. We can see that, for example, Yearn Finance (YFI) has 17 copycat
tokens that use the same ticker symbol. A total of 328 transactions were done on Uniswap with
copycat tokens which is small compared to 257,728 transactions in the legitimate token. Overall
we find that there amount of trading in fake tokens is small and will not affect our findings.

9see transaction 0x35f8d2f572fceaac9288e5d462117850ef2694786992a8c3f6d02612277b0877.
10See ‘Harvest Flashloan Economic Attack Post-Mortem’, medium.com, Oct 26, 2020.

https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
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Ticker Number of fraudulent tokens Fraudulent transactions Nonfraudulent transactions
WETH 4 5 30,624,081
USDT 17 91 3,062,694
USDC 6 78 2,977,465
DAI 4 7 1,967,084
UNI 14 463 550,393
AMPL 3 15 380,315
WBTC 7 5 350,009
LINK 9 59 349,431
HEX 4 6 271,709
YFI 17 328 257,728
SNX 7 2,388 232,924
MKR 1 332 230,044
SUSHI 6 90 217,765
SAI 3 22 184,963
KP3R 18 227 184,644

Table 7. Fraudulent tokens

. The table shows the number of fraudulent tokens, i.e. tokens with the same ticker symbol as
popular tokens but with a different address. Number of fraudulent tokens is the number of fraud-
ulent tokens found as part of a Uniswap liquidity pool. Fraudulent transactions are the number
of transactions in liquiditypools with these fraudulent tokens. Nonfraudulent transactions is the
number of transactions in the original token in Uniswap pools.

C Measuring volume

Measuring volume on uniswap is not trivial fro two reasons. First, large trades, for example
oracle attacks can push prices out of equilibrium making it hard to measure volume. Second,
we observe transactions that trade large quantities back and forth artificially inflating volume.
We show examples for both distortions and then outline our process to compute volume.

Many other contracts such as lending platforms rely on decentralized exchanges as price feeds
or oracles to determine, for example, the value of the collateral in relation to the face value
of an outstanding loan. Attackers can exploit poorly written code of such lending platforms
for financial gain. Typically large trades are used to move prices in the bonding curve market
that the lending contract uses as oracle, making the smart contract believe that the collateral is
very valuable. Then the attacker borrows against the collateral, brings the price on the bonding
curve market back to equilibrium, and walks away from the, now under-collateralized, loan. One
such attack happened on Warp Finance on December 17, 2020.11 An attacker borrowed about
200 million USD in flash loans from Uniswap and dYdX to manipulate the DAI/ETH price by
trading 48,58 million DAI against 342,252 WETH. DAI is a USD stablecoin so one side of the
trade roughly corresponds to 40 million USD. One ETH was worth about USD 643 at the time,
making the WETH side of the trade worth about 220 million USD. The whole purpose of this
transaction is to cause a temporary difference in the true economic value of the two sides of the
trade for the oracle attack. Yet it is not clear how to measure volume in this case. Based on the

11See transaction 0x8bb8dc5c7c830bac85fa48acad2505e9300a91c3ff239c9517d0cae33b595090.
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fact that most of the trading in the Uniswap system is against WETH we use ETH as numeraire
for computing volume. We then use external data from Binance to convert the ETH to USD.
Thus in the example above we would measure the volume as 220 million USD. Our approach
does not systematically inflate volume because oracle attacks can happen in both directions and
all trades that push prices out of equilibrium alos have an opposing trade that brings prices
back to equilibrium.

We also observe some transactions that trade tokes back and forth without apparent reason. For
example in one transaction on March 30, 2021 somebody created a new Uniswap exchange for
a token named SCAMMY, borrowed WETH worth 220 million USD in a flash loan on dYdX,
injected half as liquidity to the pool, and then traded 50 times the other half of the funds back
and forth for a total volume of USD 5 billion.12 The trader then withdrew the liquidity and
repaid the flashloan. There is no obvious profit motive for this transaction. One possibility is
that the trader tried to generate high fee revenue to place the token in a leading position at
one of the yield farming websites in order to attract investment to this scam token (although
naming the token scammy is not helpful for this purpose). We include such events in graphs
and summary statistics. For our econometric analysis we windorize the data and thus eliminate
such outliers.

Most pools trade against WETH. To compute volume we take the WETH part of the trade and
convert it to USD using Binance minute by minute data. Most of the remaining pools trade
against a USD stablecoin. For those pools we convert the amount traded in the stablecoin to
USD. For all remaining pools we search for all pools where one of the tokens trades against
WETH and convert using the prices from the pool with the highest volume.

D Proofs

Proof of Lemma 1

If the liquidity supplier is alone in the market, and posts at a price p then

i. With probability (1 − α) a noise trader arrives. The order is filled with certainty and he
obtains a payoff of (p− p0)

ii. With probability α
2 δ there has been a relevant information event, and if he learns about

it, in which case he adjusts his quote to p0 + σ and obtains a payoff of zero.

iii. With probability α
2 (1 − δ) the limit order submitter is unaware that there has been an

information event. Trade with the informed trader for a payoff of (pi − p0 − σ) ≤ 0.

The expected profit for the liquidity provider upon posting an order with price pi is then

π(p) = (1− α)(p− p0) +
α

2
(1− δ)(p− p0 − σ).

12See transaction 0xa8c00a56cf2455241bbc4b5ef9e3f9e761cdbd7909847ab8274dcd9bd1dded6a.
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Clearly, he will post a sell order at price p0 + σ, to obtain a profit of (1− α)σ.

Proof of Lemma 2

A limit order submitter chooses a price pi to maximize his expected profits, which comprises
four elements:

i. With probability (1 − α) a noise trader arrives. The other market maker j is present as
well and limit order i gets his order filled with probability (1−Fj(pi)) and obtains a payoff
of (pi − p0)

ii. With probability α
2 δ there has been a relevant information event, and he learns about it,

in which case he adjusts his quote to p0 + σ and obtains a payoff of zero.

iii. With probability α
2 (1 − δ) the limit order submitter is unaware that there has been an

information event. Trader i will trade with the informed trader for a payoff of (pi−p0−σ) ≤
0.

The expected profit for the liquidity provider upon posting an order with price pi is then

πi(pi) = (1− α)(1− Fj(pi))(pi − p0) +
α

2
(1− δ)(pi − p0 − σ)

In equilibrium, it has to be that each price is offered with some probability and it is not optimal
to deviate from that price. This it has to be that

α

2
(1− δ) + (1− α)(1− Fj(p))− (p− p0)(1− F ′j(p)) = 0 ∀pi. (17)

We can solve the differential equation in (17) with the boundary condition F (p0 + σ) = 1, to
get the symmetric equilibrium schedule:

F (p) =
(p− p0)(1− α

2 (1 + δi))− σα2 (1− δ)
(p− p0)(1− α)

.

The minimum price pmin that the limit order submitters are willing to offer can be solved from
F (pmin) = 0, to obtain

pmin =
p0(1− α

2 (1 + δ)) + α
2σ(1− δ)

1− α
2 (1 + δ)

= p0 + σ

( α
2 (1− δ)

1− α
2 (1 + δ)

)
. (18)
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Proof of Proposition 3

Suppose that trader j invests monitoring technology, then trader i prefers to invest if

γ′(1− γ′)(1− α)σ − I ≥ γ(1− γ′)(1− α)σ,

∆γ(1− γ′)(1− α)σ ≥ I

whereas, if trader j does not invest the condition is

∆γ(1− γ)(1− α)σ ≥ I.

i. Suppose that I ∈ [0,∆γ(1− γ′)(1− α)σ] then both traders will invest.

ii. Suppose that I ∈ (∆γ(1− γ′)(1−α)σ,∆γ(1− γ)(1−α)σ], then either trader i or trader j
invests but not both.

iii. Suppose that I > ∆γ(1− γ)(1− α)σ then neither trader will invest.

Proof of Lemma 4

Fc(x) = 1− Pr(c > x)

= 1− Pr(pi > x, pj > x)

= 1− Pr(pi > x) Pr(pj > x)

= 1− [1− F ]2

Where the last two lines follow from the fact that the distributions are independent and identical
in symmetric equilibrium. Thus, the cumulative distribution of the minimum price is given by

Fc(x) = 1−
( α

2 (1− δi)(p− p0 − σ)

(p− p0)(1− α)

)2

To determine the expected transaction price note that

Ec(q) =

∫ p+σ

pmin

1− Fc(x)dx

=

∫ p+σ

pmin

( α
2 (1− δ)(p− p0 − σ)

(p− p0)(1− α)

)2

=

( α
2 (1− δ)
(1− α)

)2 ∫ p+σ

pmin

(
(p− p0 − σ)

(p− p0)

)2
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Ec(q) =

( α
2 (1− δ)
(1− α)

)2(
−pmin + p0 +

σ2

pmin − p0
+ 2σ ln(pmin − p0)− 2σ ln(σ)

)
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