Trade, Unemployment, and Monetary Policy

Matteo Cacciatore ¹ Fabio Ghironi ²

¹HEC Montréal

²University of Washington, EABCN, and NBER

Inflation Dynamics in a Post-Crisis Globalized Economy, Zurich, 2013.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- How does trade integration affect the conduct of monetary policy?
 - Incentives to cooperate across countries in monetary matters.
 - Desirability of alternative exchange rate arrangements.
- Increasing trade in the modern era of globalization likely to keep trade flows among the key determinants of international discussions on monetary matters.

Motivation

- Recent New Keynesian literature started to incorporate trade integration among the determinants of policy incentives.
 - Faia and Monacelli, 2008, Pappa, 2004, Lombardo and Ravenna, 2010, Coenen et al. 2007
- Limitations:
 - Exogenous trade structure and no trade-induced productivity gains.
 - Difficulties in reproducing cyclicality of trade flows (Engel and Wang, 2011) and business cycle implications of trade integration (Kose and Yi, 2001).

This Paper

- Two-country DSGE model combining workhorse frameworks in international trade and macro:
 - heterogeneous firms and endogenous producer entry (Melitz, 2003, Ghironi and Melitz, 2005);
 - equilibrium unemployment (Diamond, 1982, Mortensen and Pissarides, 1994);
 - sticky prices and wages.
- Trade integration captured by a reduction in "iceberg" trade costs.
- Model reproduces key empirical regularities about trade integration:
 - reallocation of market shares toward more efficient producers (Bernard, Eaton, Jensen, and Kortum, 2003);
 - more correlated business cycles among trading partners (Frankel and Rose, 1998, and many others).

Results

Optimal Monetary Policy

- 1. When trade linkages are weak:
- Optimal cooperative policy is inward-looking.
- Significant departures from price stability in the long run and over the business cycle.
 - Optimal policy uses inflation to narrow domestic inefficiency wedges.
 - Sub-optimal (historical Fed) policy is costly in terms of welfare.
- 2. Trade integration reduces optimal long-run inflation target:
 - Reallocation of market shares toward more productive firms increases efficiency.
 - Need of positive inflation to correct long-run distortions is reduced.

Results

Optimal Monetary Policy

- 3. Over the business cycle:
 - Optimal cooperative policy remains inward looking:
 - Trade-induced business cycle synchronization dampens the effects of international distortions: lack of risk sharing, incomplete exchange rate pass-through, terms-of-trade manipulation.
 - microfoundation for the findings in Benigno and Benigno (2003).
 - However, sub-optimal (historical) policy results in larger welfare costs when trade linkages are strong.

Literature

- Trade Integration and Monetary Policy
 - Coenen, Lombardo, Smets and Straub, 2007, Faia and Monacelli, 2008, Pappa, 2004, Lombardo and Ravenna, 2010.
- Price stability in open economies:
 - Benigno and Benigno, 2003 and 2006, Catão and Chang, 2012, Corsetti and Pesenti, 2005, Corsetti, Dedola and Leduc, 2010, Galí and Monacelli, 2005 (and many others).
- Optimal policy with endogenous entry and product variety:
 - Bilbiie, Fujiwara, and Ghironi (forthcoming), Cacciatore, Fiori, and Ghironi (2012).

The Model

- Two countries: Home and Foreign.
- Cashless economy as in Woodford (2003).
- Representative household with a continuum of members along the unit interval.
- In equilibrium, some family members are unemployed, while some others are employed.
- Perfect insurance within the household: no ex post heterogeneity across individual members (Andolfatto, 1996, and Merz, 1995).

Household Preferences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Representative Home household maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t [u(C_t) - I_t v(h_t)], \quad \beta \in (0, 1).$$

• *C_t* aggregates imperfectly substitutable Home and Foreign "sectoral" consumption outputs:

$$C_t = \left[\int_0^1 C_t(i)^{\frac{\phi-1}{\phi}} di\right]^{\frac{\phi}{\phi-1}}, \quad \phi > 1.$$

- $i \equiv (0, 1)$ denotes a sector.
- Consumption-based price index:

$$P_t = \left[\int_0^1 P_t(i)^{1-\phi} di
ight]^{rac{1}{1-\phi}}$$
 ,

where $P_t(i)$ is the price index for sector *i*.

Production

- Two vertically integrated production sectors in each country.
- Upstream sector: perfectly competitive firms use labor to produce a non-tradable intermediate input.
- Continuum (0, 1) of downstream sectors:
 - in each sector: representative monopolistically competitive multi-product firm;
 - purchases intermediate input and produces differentiated varieties of its sectoral output.
- This production structure greatly simplifies the introduction of labor market frictions and sticky prices.

Labor Market

- Each intermediate producer employs a continuum of workers.
- To hire new workers, firms need to post vacancies, incurring a per-vacancy cost of κ.
- Matching technology generates aggregate matches:

$$M_t = \chi U_t^{1-arepsilon} V_t^arepsilon, \quad \chi > 0, 0 < arepsilon < 1.$$

where U_t = aggregate unemployment and V_t = aggregate vacancies.

• Each firm meets unemployed workers at rate $q_t \equiv M_t / V_t$.

Intermediate Goods Production

• Law of motion of employment, *I_t* (those who are working at time *t*), in a given firm:

$$I_t = (1 - \lambda)I_{t-1} + q_{t-1}v_{t-1}.$$

• The representative intermediate firm produces:

$$y_t^I = Z_t I_t h_t,$$

$$\left[\begin{array}{c} \log Z_t \\ \log Z_t^* \end{array}\right] = \left[\begin{array}{c} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{array}\right] \left[\begin{array}{c} \log Z_{t-1} \\ \log Z_{t-1}^* \end{array}\right] + \left[\begin{array}{c} \epsilon_t \\ \epsilon_t^* \end{array}\right].$$

• Quadratic cost of adjusting the hourly nominal wage rate, *w_t* (Arseneau and Chugh, 2008):

$$artheta\pi^2_{w,t}/2$$
, $artheta\geq 0$,

where $\pi_{w,t} \equiv (w_t / w_{t-1}) - 1$.

Intermediate Goods Production

Job creation equation (FOC for *l_t* and *v_t*):

$$\frac{\kappa}{q_t} = E_t \left\{ \beta_{t,t+1} \left[(1-\lambda) \frac{\kappa}{q_{t+1}} + \varphi_{t+1} Z_{t+1} h_{t+1} - \frac{w_{t+1}}{P_{t+1}} h_{t+1} - \frac{\vartheta}{2} \pi_{w,t+1}^2 \right] \right\}.$$

Individual Nash wage bargaining:

$$\eta_t H_t + (1 - \eta_t) J_t = 0.$$

• $\eta_t = F\left(\frac{\partial H_t}{\partial w_t} / \frac{\partial J_t}{\partial w_t}, \eta\right)$ is the time-varying firm bargaining share.

•
$$\frac{w_t}{P_t}h_t = \eta_t \left(\frac{v(h_t)}{u_{C,t}} + b\right) + (1 - \eta_t) \left(\varphi_t Z_t h_t + E_t \beta_{t,t+1} \Omega_{t,t+1} J_{t+1}\right)$$

• Hours, h_t , determined by firms and workers in a privately efficient way: $v_{h,t}/u_{C,t} = \varphi_t Z_t$.

- Each sector *i* is populated by symmetric multi-product firms.
- Each firm produces a set of differentiated product varieties (or features), indexed by ω and defined over a continuum Ω :

$$Y_t = \left(\int_{\omega \in \Omega} y_t(\omega)^{\frac{\theta-1}{\theta}} d\omega\right)^{\frac{\theta}{\theta-1}}, \quad \theta > 1.$$

• The cost of the product bundle Y_t is:

$$extsf{P}_t^{\mathsf{y}} = \left(\int_{\omega\in\Omega}^\infty p_t^{\mathsf{y}}(\omega)^{1- heta}d\omega
ight)^{rac{1}{1- heta}}$$
 ,

where $p_t^y(\omega)$ is the nominal marginal cost of producing variety ω .

 The number of products created and commercialized by each producer is endogenous: Ω_t ⊂ Ω available to consumers.

- Product creation requires:
 - Sunk investment, $f_{e,t}$, in units of Y_t^I (R&D).
 - Creation of a new plant that will be producing the new variety.
- Plant characteristics:
 - Heterogeneous technologies indexed by constant relative productivity z.
 - ▶ *z* drawn from distribution G(z) with support on $[z_{\min}, \infty)$.
 - Use intermediate input to produce output, with real marginal cost:

$$\varphi_{z,t} \equiv \frac{p_t^y(z)}{P_t} = \frac{\varphi_t}{z}$$

• Exogenous end-of-period "death" shock with probability $\delta \in (0, 1)$.

- At time t, each final producer commercializes N_{d,t} varieties and creates N_{e,t} new products.
- Time to build as in Ghironi and Melitz (2005):

$$N_{d,t+1} = (1-\delta)(N_{d,t} + N_{e,t}).$$

- Exporting is costly: per-unit iceberg trade costs, τ_t > 1, and fixed export costs, f_{x,t} (in units of Y^I_t).
 - $f_{x,t}$ is paid for each exported product: $\overline{f}_{x,t} = N_{x,t}f_{x,t}$.
- Absent fixed export costs: $N_{d,t} = N_{x,t}$.
- Fixed export costs imply that only varieties produced by plants with sufficiently high productivity (above a cutoff level z_{x,t}) are exported:

$$N_{x,t} \equiv \left[1 - G(z_{x,t})\right] N_{d,t}$$

- In each period, the multi-product firm optimally determines:
 - Number of new products N_{e,t}.
 - Export productivity cutoff $z_{x,t}$.
 - Price of domestic and export bundles:

$$Y_{d,t} = \left[\int_{z_{\min}}^{\infty} y_{d,t}(z)^{\frac{\theta-1}{\theta}} dG(z) \right]^{\frac{\theta}{\theta-1}}$$
$$Y_{x,t} = \left[\int_{z_{x,t}}^{\infty} y_{x,t}(z)^{\frac{\theta-1}{\theta}} dG(z) \right]^{\frac{\theta}{\theta-1}}$$

,

• Foreign firms solve an analogous problem.

Product Creation

Product creation:

$$\varphi_t f_{e,t} = E_t \left\{ (1-\delta) \beta_{t,t+1} \left[\begin{array}{c} \varphi_{t+1} \left(f_{e,t+1} - \frac{N_{x,t+1}}{N_{d,t+1}} f_{x,t+1} \right) \\ + \frac{1}{\theta-1} \left(\frac{P_{d,t+1}^{y} Y_{d,t+1}}{P_{t+1} N_{t+1}} + \frac{P_{x,t+1}^{y} Y_{x,t+1}}{P_{t+1} N_{t+1}} \tau_{t+1} \right) \end{array} \right] \right\}.$$

Export decision:

$$\frac{P_{x,t}^{y}}{P_{t}}Y_{x,t}\tau_{t} = \frac{(\theta-1)k}{[k-(\theta-1)]}f_{x,t}N_{x,t}\varphi_{t}.$$

- Varieties produced by plants with productivity below *z_{x,t}* are distributed only in the domestic market.
- Endogenous time-varying composition of the traded bundle ($N_{x,t}$ fluctuates over time with changes in the profitability of export).

Price Setting

- Prices are sticky: quadratic price adjustment costs (Rotemberg, 1982).
- Producer currency pricing (PCP) as benchmark:
 - When f_{x,t} = 0, the law of one price (LOP) determine the export price: P_{x,t} = τ_tP_{d,t}/S_t.
 - When $f_{x,t} > 0$, LOP does not hold:

• Intuition: $f_{x,t} > 0$ results in a different composition of $Y_{d,t}$ and $Y_{x,t}$, with different marginal costs of producing these bundles:

$$P_{d,t}^{y}/P_{t} = \varphi_{t} \left[\int_{z_{\min}}^{\infty} z^{\theta-1} dG(z) \right]^{-\frac{1}{\theta-1}} = \varphi_{t}/\tilde{z}_{d}$$
$$P_{x,t}^{y}/P_{t} = \varphi_{t} \left[\int_{z_{x,t}}^{\infty} z^{\theta-1} \frac{dG(z)}{1-G(z_{x,t})} \right]^{-\frac{1}{\theta-1}} = \varphi_{t}/\tilde{z}_{x,t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Household Intertemporal Decisions

- Incomplete international assets markets: non-contingent bonds, traded domestically and internationally.
 - Costs of adjusting bond holdings (steady-state determinacy and stationarity of the model).
 - Standard Euler equations for bond holdings.
- Home net foreign assets:

$$a_{t+1} + Q_t a_{*,t+1} = \frac{1+i_t}{1+\pi_{C,t}} a_t + Q_t \frac{1+i_t^*}{1+\pi_{C,t}^*} a_{*,t} + TB_t,$$

where TB_t is the trade balance.

Monetary Policy

• The world Ramsey authority maximizes aggregate welfare:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{1}{2} \left[u(C_t) - l_t v(h_t) \right] + \frac{1}{2} \left[u(C_t^*) - l_t^* v(h_t^*) \right] \right\},\$$

under the constraints of the competitive economy.

- We compare the Ramsey-optimal, cooperative policy to:
 - Historical central bank behavior under a flexible ER:

$$1 + i_{t+1} = (1 + i_t)^{\varrho_i} \left[(1 + i) (1 + \tilde{\pi}_{C,t})^{\varrho_\pi} \left(\mathsf{Y}_{R,t}^{g} \right)^{\varrho_Y} \right]^{1 - \varrho_i}$$

- Non-cooperative, optimal policy.
- ER peg (historical behavior for the center).

OMP with Weak Trade Linkages

- Result: optimal π_C is 1.4% when Trade/GDP = 10% $(\pi_C = \pi_d = \pi_x = \pi_w)$.
- Symmetric long-run equilibrium features only two distortions:
 - firm monopoly power and positive unemployment benefits;
 - suboptimally low job-creation in steady state.
- Ramsey authority reduces the inefficiency wedge in job creation relative to π_w = 0:
 - π_w > 0 raises the firms' bargaining power η, favoring vacancy posting by firms.
- Tradeoff: resource costs of non-zero inflation and departure from the Hosios condition (since $\eta > \varepsilon$)

OMP with Weak Trade Linkages Business Cycle

- Aggregate shocks modify the policy tradeoffs facing the Ramsey authority.
 - Reintroduce distortions eliminated by symmetric steady state.
- Trade-offs over the business cycle:
 - Domestic markups stabilization vs. unemployment stabilization.
 - Domestic vs. export markups stabilization.
 - Beneficial effects of manipulating inflation vs. costs.

OMP with Weak Trade Linkages Business Cycle

- Optimal departures from price stability lower welfare costs of business cycles by approximately 20% relative to historical policy.
- Ramsey-optimal, cooperative policy is well approximated by an optimized inward-looking interest rate rule:

$$1 + i_{t+1} = (1 + i_t)^{\varrho_i} \left[(1 + i) \left(1 + \tilde{\pi}_{d,t} \right)^{\varrho_{\pi_d}} \left(1 + \tilde{\pi}_{w,t} \right)^{\varrho_{\pi_w}} \left(Y_{R,t}^g \right)^{\varrho_Y}
ight]^{1 - \varrho_i}$$

with ϱ_i = .60, ϱ_Y = 0, ϱ_{π_d} = 1.45, and ϱ_{π_w} = 3.75.

 Not surprising: Trade linkages are weak and no need to address international distortions.

OMP and Trade Integration

- Trade integration is a permanent symmetric reduction of iceberg trade costs.
- Lower trade costs reallocates market shares toward relatively more productive firms.
- Trade integration increases average productivity \tilde{z} :

$$\tilde{z} = \left\{ \left[\tilde{z}_d^{\theta-1} + \left(\frac{\tilde{z}_x}{\tau} \right)^{\theta-1} \frac{N_x}{N_d} \right] \right\}^{\frac{1}{\theta-1}}.$$

• This has implications for monetary policy.

OMP and Trade Integration

- Consider a symmetric steady state with $\pi_C = 0$.
- Trade integration reduces the negative effects of monopoly power and positive unemployment benefits:
 - Higher \tilde{z} increases the average marginal revenue of a match, $\varphi = (1/\mu_d) N_d^{\frac{1}{d-1}} \tilde{z}$, pushing employment toward its efficient level.
- Result: Trade integration reduces the need to resort to positive inflation to erode markups.
 - productivity gains make price stability relatively more desirable.

	Gain from Ramsey-Optimal Policy (Relative to $\pi^{C}=0$)	Optimal Inflation
$\frac{Trade}{GDP} = 0.1$	0.34%	1.40%
$\frac{Trade}{GDP} = 0.2$	0.22%	1.20%
$\frac{Trade}{GDP} = 0.35$	0.16%	1.05%

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

OMP and Trade Integration Business Cycle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Model correctly predicts that trade integration results in increased comovement.

	$corr(Y_{R,t}, Y_{R,t}^*)$ —PCP				
Historical Rule Ramsey Peg Nash	$\frac{Trade}{GDP} = 0.1 \\ 0.36 \\ 0.07 \\ 0.05 \\ 0.28$	$\frac{Trade}{GDP} = 0.2 \\ 0.45 \\ 0.29 \\ 0.19 \\ 0.35$	$\frac{Trade}{GDP} = 0.35$ 0.49 0.43 0.27 0.48		
(Vash	0.20	0.00	0.10		
	$corr(Y_{R,t}, Y_{R,t}^*)$ —LCP				
Historical Rule	0.33	0.42	0.47		
Ramsey	0.36	0.53	0.62		
Peg	0.05	0.20	0.27		
Nash	0.28	0.36	0.42		

	Welfare Loss Relative to Ramsey-Optimal Policy				
	Optimized Rule	Historical Policy			
$\frac{Trade}{GDP} = 0.1$	0.88%	18.62%			
$\frac{Trade}{GDP} = 0.2$	3.13%	25.36%			
$\frac{Trade}{GDP} = 0.35$	3.15%	29.69%			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

OMP and Trade Integration Business Cycle

- Characteristics of optimal policy do not change following trade integration.
- Appropriately designed, inward-looking interest rate rules still replicates the constrained efficient allocation.
- Benigno and Benigno (2003): Flexible exchange rates and domestic price stability are optimal when shocks are perfectly correlated across countries.
- Our model provides a structural microfoundation for their finding.
 - Business cycle correlation is an endogenous consequence of trade integration.
- As long as each central bank influences domestic distortions appropriately, increased synchronization dampens the effect of international distortions.

Sensitivity Analysis

- So far, one international distortion: lack of efficient risk sharing between Home and Foreign.
 - Consider other external distortions:
 - incomplete exchange rate pass-through;
 - strategic considerations in monetary policy setting.
- Physical capital accumulation.
- Other sources of business cycle fluctuations: inefficient shocks.

Local Currency Pricing

- Under LCP, firms set export prices in Foreign currency.
- Nominal exchange rate movements do not have expenditure switching effects.
- Benchmark two-country New Keynesian model:
 - Incomplete pass-through: impossible to jointly stabilize domestic and export markups (LOP does not hold).
 - Optimal-policy prescription: policymakers should pay attention to international relative price misalignments.
- In our model, LCP does not introduce new policy tradeoffs (but it modifies their nature): LOP does not hold also under PCP.

Unrestricted, Optimal Non-Cooperative Policy

- Two self-oriented central banks set monetary policy to maximize the welfare of domestic consumers.
- Home central bank maximizes:

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[u(C_t) - I_t v(h_t) \right].$$

- Strategic game as in Benigno and Benigno (2006):
 - Each policymaker's strategy is specified in terms of each country's consumer price inflation rate, π_{C,t}, as a function of the sequence of shocks.
 - Two-country, open-loop Nash equilibrium: $\left\{\pi_{C,t}^*\right\}_{t=0}^{\infty}$ taken as given.
- Foreign solves an analogous problem.

Welfare Loss Relative to Ramsey-Optimal Policy: PCP								
	Optimized Rule Historical Nash							
$\frac{Trade}{CDP} = 0.1$	0.88%	18.62%	0.0001%					
$\frac{dDT}{dDP} = 0.2$	3.13%	25.36%	0.001%					
$rac{Trade}{GDP}=0.1$ $rac{Trade}{GDP}=0.2$ $rac{Trade}{GDP}=0.35$	3.15%	29.69%	0.09%					

 Welfare Loss Relative to Ramsey-Optimal Policy: LCP

 Optimized Rule
 Historical
 Nash

$\frac{Trade}{GDP} = 0.1$	2.17%	20.91%	0.10%
$\frac{Trade}{GDP} = 0.2$	2.66%	29.09%	0.90%
$\frac{\frac{Trade}{GDP}}{\frac{Trade}{GDP}} = 0.1$ $\frac{\frac{Trade}{GDP}}{\frac{Trade}{GDP}} = 0.35$	3.16%	36.16%	2.42%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Exchange Rate Peg

Wenale Loss Relative to Ramsey-Optimal Folicy. FCF					
	Flexible ER	Peg			
		Leader	Follower		
$\frac{Trade}{GDP} = 0.1$	18.62%	18.81%	43.45%		
$\frac{Trade}{GDP} = 0.2$	25.36%	26.90%	45.40%		
$rac{Trade}{GDP}=0.1$ $rac{Trade}{GDP}=0.2$ $rac{Trade}{GDP}=0.35$	29.69%	32.31%	48.39%		

Welfare Loss Relative to Ramsey-Optimal Policy: PCP

Welfare Loss Relative to Ramsey-Optimal Policy: LCP

	Flexible ER	Peg	
		Leader	Follower
$\frac{Trade}{GDP} = 0.1$	20.91%	20.89%	44.90%
$\frac{Trade}{GDP} = 0.2$	29.09%	29.49%	47.34%
$rac{Trade}{GDP}=0.1$ $rac{Trade}{GDP}=0.2$ $rac{Trade}{GDP}=0.35$	36.16%	37.00%	51.97%

Conclusions

- DSGE model with micro-level trade dynamics and labor market frictions to re-examine classic questions on trade integration and international monetary policy.
- Trade-induced productivity gains reduce the need of positive inflation to correct long-run distortions.
- Trade-induced business cycle synchronization dampens the effect of international distortions:
 - Optimal cooperative policy remains inward looking and gains from cooperation are small relative to optimal non-cooperative behavior.
 - Inefficient domestic stabilization, however, results in larger welfare costs when trade linkages are strong.

	Parameter	Source/Target
Risk Aversion	$\gamma_{C} = 1$	Literature
Frisch elasticity	$1/\gamma_{h} = 0.4$	Literature
Discount Factor	eta= 0.99	r = 4%
Elasticity Matching Function	$\epsilon = 0.4$	Literature
Firm Bargaining Power	$\eta = 0.4$	Literature
Home Production	<i>b</i> = 0.54	Literature
Exogenous separation	$\lambda = 0.10$	Literature
Vacancy Cost	$\kappa = 0.16$	s = 60%
Matching Efficiency	$\chi = 0.68$	<i>q</i> = 70%
Elasticity of Substitution	$\theta = 3.8$	Literature
Plant Exit	$\delta = 0.026$	$JD^{EXIT}/JD = 40\%$
Pareto Shape	$k_p = 3.4$	Literature
Pareto Support	$z_{min} = 1$	Literature
Sunk Entry Cost	f _e = 0.69	Literature
Fixed Export Costs	$f_x = 0.005$	$(N_x/N) = 21\%$
Iceberg Trade Costs	au = 1.75	(I + X) / Y = 10%
Rotemberg Wage Adj. Cost	$\vartheta = 60$	$\sigma_I / \sigma_{Y_R} = 0.56$
Rotemberg Price Adj. Cost	$\nu = 80$	Literature
Taylor - Interest Rate Smoothing	$q_i = 0.71$	Literature
Taylor - Inflation Parameter	$q_{\pi} = 1.62$	Literature
Taylor - Output Gap Parameter	$q_{Y} = 0.34$	Literature
Bond Adjustment Cost	$\psi = 0.0025$	Literature

Validation

<□ > < @ > < E > < E > E のQ @

Variable	$\sigma_{X_R^U}$		$\sigma_{X_R^U} / \sigma_{Y_R^U}$		1st Autocorr		$corr(X_{R,t}^U, Y_{R,t}^U)$	
Y _R	1.71	1.50	1	1	0.83	0.79	1	1
C _R	1.11	0.94	0.64	0.63	0.70	0.73	0.67	0.87
I _R	5.48	5.50	3.20	3.68	0.89	0.80	0.87	0.86
1	0.97	0.82	0.56	0.56	0.88	0.72	0.79	0.81
WR	0.91	0.79	0.52	0.53	0.91	0.92	0.56	0.76
X_R	5.46	2.40	3.18	1.66	0.67	0.70	0.18	0.17
I _R	4.35	2.08	2.54	1.39	0.32	0.69	0.70	0.77
TB_R/Y_R	0.25	0.39	0.14	0.26	0.43	0.71	-0.47	-0.48
$corr(C_{R,t},$	$C_{R,t}^*$)	0.44	0.16					
$corr(Y_{R,t},$		0.51	0.36					

Market Economy Distortions

- The Ramsey planner uses i_{t+1} and i^{*}_{t+1} to address the consequences of a set of distortions that exist in the market economy.
- Domestic distortions:
 - Sticky prices: $Y_{\pi_d,t} \equiv \nu \pi_{d,t}^2/2$ and $Y_{\pi_x,t} \equiv \nu \pi_{x,t}^2/2$.
 - Sticky wages: $Y_{\pi_w,t} \equiv \vartheta \pi_{w,t}^2/2$.
 - Firm monopoly power: $Y_{\varphi,t} \equiv 1/\mu_{d,t}$.
 - Positive unemployment benefits: $Y_{b,t} \equiv b$.
- International distortions:
 - Incomplete markets: $Y_{Q,t} \equiv \left(u_{C,t}^*/u_{C,t}\right) Q_t$.
 - Costs of adjusting bond holdings: $Y_{a,t} \equiv \psi a_{t+1} + \psi a_{*,t+1}$.
- We solve for the first-best, optimal planning problem and show that market distortions affect four margins of adjustment and the resource constraint for consumption output.

Inefficiency Wedges

- Product creation margin: Y_{π_d,t} and Y_{π_x,t} result in time variation and lack of synchronization in domestic and export markups:
 Y_{μ_d,t} ≡ (μ_dt₋₁/μ_dt) 1 and Y_{μ_xt} ≡ (μ_dt/μ_xt) 1.
- Job creation margin: $Y_{\varphi,t}$, $Y_{\pi_w,t}$ and $Y_{b,t}$ distort the outside option of firms and workers.
- Labor supply margin: $Y_{\varphi,t}$ and $Y_{a,t}$ induces a misalignment of relative prices between consumption goods and leisure.
- Cross-country risk sharing margin: $Y_{Q,t}$ implies inefficient risk sharing across countries.
- Consumption resource constraint: $Y_{\pi_d,t}$, $Y_{\pi_x,t}$ and $Y_{\pi_w,t}$ divert resources from consumption and creation of new products and vacancies.

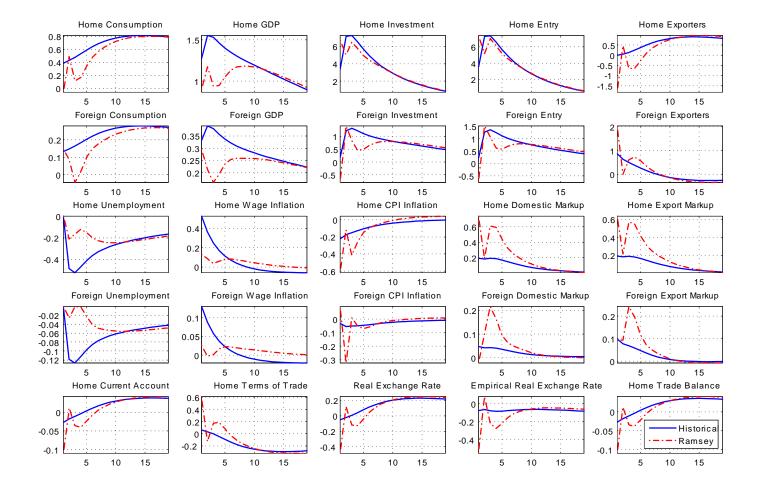


Figure 1: Home Productivity Shock, no trade linkages and producer currency pricing.

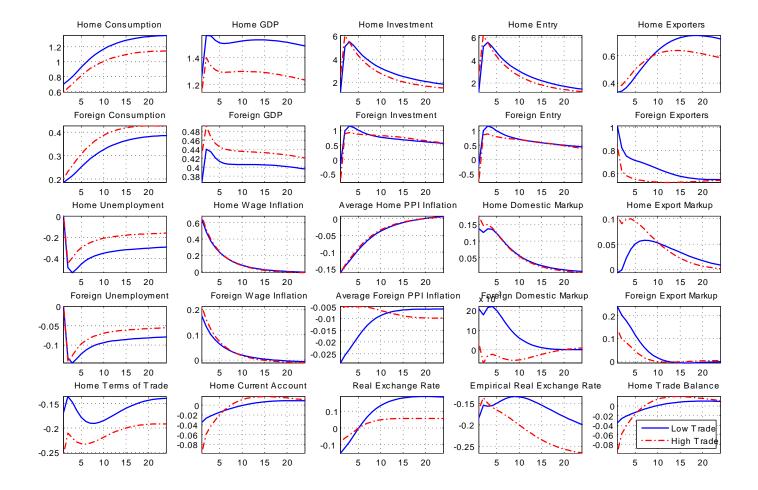


Figure 2: Home Productivity Shock, trade integration and producer currency pricing.

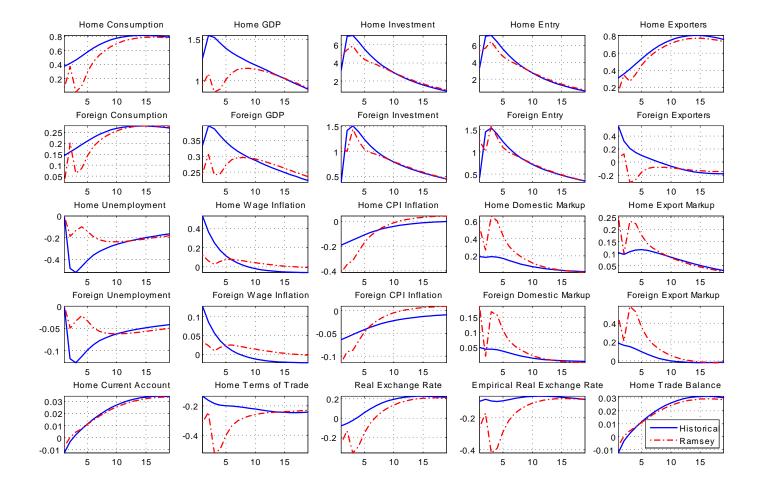


Figure 3: Home Productivity Shock, no trade linkages and local currency pricing.

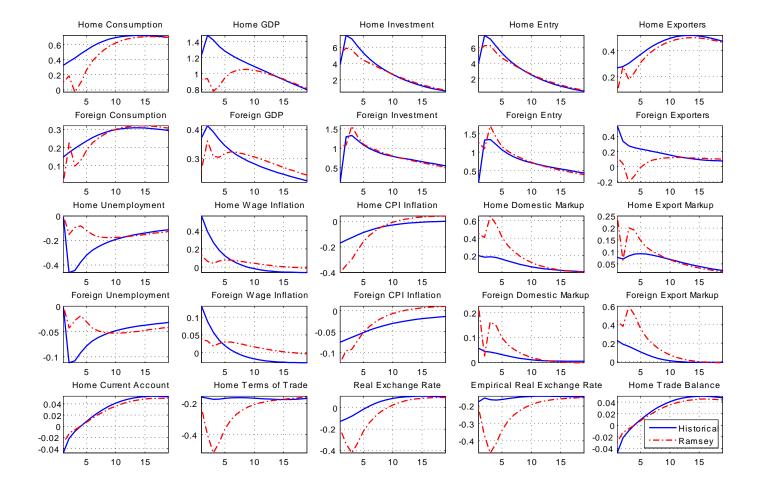


Figure 4: Home Productivity Shock, trade integration and local currency pricing.