Breeding One's Own Subprime Crisis
 Labour Market Effects on Financial System Stability

Tomasz Daras Joanna Tyrowicz
University of Warsaw
National Bank of Poland
June 2009
6th Annual NBP-SNB Joint Seminar

Motivation

(1) Mechanism of propagation - how strong?
(2) Different scenarios of labour market evolutions - projections
(3) A methodological attempt - is it possible at all with the data we have?
(9) Test empirically the effects of a fiscally neutral instrument for fostering the stability of the financial systems.

Basic quesiton

How do negative labour market shocks transmit to the stability of the financial systems via the channel of mortgage.

Outline

(1) Why such a study?
(2) Data

- Ability to service mortgages - status quo
(3) Foundation of the analysis
- Issues to deal with
- Labour market - three scenarios

4 The simulation setup
(5) Results
(6) Conclusions

Data

- Basic data set: households' budgets survey 2007
- the subpopulation of mortgage owners
- separate the revenues of household to particular household members (types of revenue and form of I.m. activity of a member)
- Additional data set: labour force survey 1q1999-4q2007

Data shortcomings

- Only data about monthly installments ("implied" household debt burden)
- No. of households with mortgages only halves what we find in macro data ...
- ... but statistics are the same (size and distribution)
- Underdeclaring revenues in HBS typical, higher income people refuse participation
- No data concerning labour market history of individuals (only current status)

Ability to service mortgages - status quo

- The share of endangered credits according to Financial Sector Regulator - 3.6\%
- RESIDUAL $=$ revenues - mortgage monthly installment - social minimum
- How adequate is social minimum to define the situation of a household?
- Based on these guidelines: 19% households have a negative RESIDUAL ("delinquent" households)

Assumptions

- We take 19% as benchmark
- The implications of imposing the social minimum

Testing the reliability of these data

Table: Delinquency and self-evaluation

	How does your household fare?						
	Very bad	Bad	Struggling	Rather easy	Easy	Very easy	Total
"Liquid"	39	97	372	373	137	41	1,059
"Delinquent"	28	54	142	33	5	0	262
Total	67	151	514	406	142	41	1,321
\% "Liquid"	$58,2 \%$	$64,2 \%$	$72,4 \%$	$91,9 \%$	$96,5 \%$	$100,0 \%$	$80,2 \%$
$\%$ "Delinquent"	$41,8 \%$	$35,8 \%$	$27,6 \%$	$8,1 \%$	$3,5 \%$	$0,0 \%$	$19,8 \%$

Source: HBS 2007, own computations

Ability to service mortgages - status quo

Residual revenue and income judged as "barely sufficient"

Graphs by declared financial situation of the household
Figure: Declared preferred income and current liquidity of the household, HBS 2007

Creditors vs. population: basic differences

- Creditors' households:
- have higher activity rates
- report higher average revenues
- are younger
- comprise less members (\Rightarrow relatively more one-member households)
- live in agglomerations

Key question
What happened at the labour market (unemployment/activity) to people, who are similar to current creditors? \Rightarrow propensity score matching ("statistical twins").

Creditors vs. population: labour market

Labour market for creditors - three scenarios

(1) Basic scenario

- creditors still "different" from the "statistical twins"
- general unemployment rate grows to 12% (October forecast of NBP),
- creditors change proportionately
- unemployment changes from 2% to 2.4%
(2) Individually pessimistic scenario
- creditors become "the same" as their "statistical twins", but no change in general labour market outlooks
- unemployment changes from 2% to 7.2%
(3) Generally pessimistic scenario
- labour market moves to worst levels so far (noted over 2003-2005)
- BUT creditors are still different than "statistical twins" (only proportionate changes)
- unemployment changes from 2% to 4%

How this translates to individual data?
We find "steady state" probabilities and subsequently impose changes in individually observed probabilities (gender \times education) of loosing/finding a job to match the endpoint on aggregate.

Scenarios

Simulation scenarios with reference to observed labour market evolutions

Figure: Simulation scenarios

Simulation setup

Each person, based on probabilities computed from LFS finds/looses/keeps employment or remains unemployed

- if looses job, household looses this revenue (in Scenarios B household obtains an unemployment benefit of 500 zl);
- if stays without job, household has no revenues from this member (in Scenarios B, unemployment benefit is given for four consecutive quarters);
- if finds a job, household obtains income (remuneration is randomly assigned from a distribution centered at last reported revenue, for those unemployed in the beginning of the sample, distribution is centered at national average).

Simulation setup

- Run this for 20 periods (if you take it literally, 5 years)
- At each step labour market status is independently and randomly assigned
- Household revenues are a sum of incomes by each member (for non-working household members these are treated as "autonomous" and not simulated);
- At each point in time we evaluate RESIDUAL, i.e. whatever is left at disposal of the household after monthly mortgage installment
- we excluded any other liabilities for the financial sector (easy to add)
- we include social minimum for each household member (ML\&SA annual announcement, took most recent, 2008)
- Repeat the simulation 500 times to avoid vulnerability (statistical reliability)

Who looses most and when?

Table: Results

Senario	Mean percentile	Standard deviation	Max	75\%	Median	25\%	Minimum
"Steady state"	0.18	-	-	-	-	-	-
A: No instrument							
Individually pessimistic	0.25	0.001	0.28	0.26	0.25	0.24	0.23
Basic	0.21	0.01	0.24	0.21	0.21	0.21	0.19
Generally pessimistic	0.23	0.01	0.25	0.23	0.23	0.22	0.21
B: With instrument							
Individually pessimistic	0.24	0.01	0.27	0.24	0.24	0.23	0.21
Basic	0.20	0.01	0.22	0.21	0.21	0.20	0.18
Generally pessimistic	0.22	0.01	0.24	0.22	0.22	0.21	0.20

Source: Own calculation based on HBS (2007)

Distribution effects

Table: The share of RESIDUAL in household monthly expenses (only "delinquent" households)

Percentile	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%
Initial situation	-0.459	-0.348	-0.290	-0.246	-0.204	-0.155	-0.122	-0.082	-0.039
	With instrument								
Individually pessimistic	-0.851	-0.637	-0.493	-0.386	-0.307	-0.241	-0.178	-0.120	-0.065
Basic	-0.818	-0.578	-0.448	-0.347	-0.277	-0.221	-0.161	-0.110	-0.059
Generally pessimistic	-0.843	-0.607	-0.468	-0.363	-0.289	-0.229	-0.168	-0.114	-0.061
	No instrument								
Individually pessimistic	-0.974	-0.743	-0.546	-0.424	-0.329	-0.260	-0.196	-0.128	-0.068
Basic	-0.909	-0.608	-0.463	-0.362	-0.291	-0.232	-0.172	-0.117	-0.064
Generally pessimistic	-0.938	-0.643	-0.486	-0.381	-0.305	-0.243	-0.181	-0.121	-0.066
	RESIDUAL reduction due to the instrument								
Individually pessimistic	0.122	0.106	0.053	0.038	0.022	0.019	0.018	0.007	0.004
Basic	0.091	0.030	0.015	0.015	0.013	0.011	0.010	0.006	0.005
Generally pessimistic	0.095	0.036	0.019	0.018	0.016	0.014	0.014	0.007	0.005

Source: HBS 2007, own computation

Financial system stability

Table: Simulation results

	With instrument			No instrument		
Sum (PLN bln)	Individually pessimistic	Basic	Generally pessimistic	Individually pessimistic	Basic	Generally pessimistic
Credits	128.7	128.7	128.7	128.7	128.7	128.7
Endangered at $\mathrm{t}=0$	20.0	20.0	20.0	20.0	20.0	20.0
Endangered at $\mathrm{t}=20$	28.1	24.4	25.8	29.6	25.4	27.0
Increase in endangered credits	8.2	4.4	5.9	9.6	5.5	7.0
	Share of endangered credit					
at $\mathrm{t}=0$	21.9\%	19.0\%	20.1\%	23.0\%	19.8\%	21.0\%
at $\mathrm{t}=20$	15.5\%	15.5\%	15.5\%	15.5\%	15.5\%	15.5\%
	The share of RESIDUAL in monthly household expenses (average)					
w t=0	-0,246	-0,246	-0,246	-0,246	-0,246	-0,246
w t=20	-0,392	-0,360	-0,372	-0,424	-0,386	-0,400
Change	-0,146	-0,114	-0,126	-0,178	-0,140	-0,155

[^0]
Conclusions

Bottom line

Risk to the financial system: large.
Fiscally neutral instrument: works.

- What we did not look at:
(1) Currency depreciation (over 70% of loans denominated in CHF, EUR and USD)
(2) Other liabilities of the households vis-a-vis financial system
(3) Possibilities of selling real estate without loss
(9) Changes in household situations for other reasons (e.g. inheritances, becoming handicapped, changes in activity patterns, changes in household composition, etc.)

[^0]: Source: HBS 2007, own computation

