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Abstract

The current financial crisis has led to the emergence of large risk premia in
interbank markets and to a widening spread between risky and riskless interest
rates. This suggests that it matters what rate a central bank chooses for setting
monetary policy. We examine the volatility of macroeconomic variables and of
the yield curve if monetary policy is formulated in terms of the central bank’s
riskless repo rate or in terms of a risky short-term or long-term money market rate.
When financial shocks are large, gearing policy to money market rates yields lower
macroeconomic volatility. If policy is set under commitment, using a longer-term
market rate appears to yield the lowest macroeconomic volatility, while relying
on a short-term market rate for formulating policy seems most attractive under
discretion.
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1 Introduction

Monetary operating procedures have attracted little attention in the literature on mon-

etary policy.1 One reason for this is that different short-term interest rates typically are

closely related, so that it does not matter exactly how a central bank implements policy.

In the current financial crisis, however, the linkages between different short-term rates

have changed fundamentally, raising the issue how alternative approaches to implement

monetary policy impact on the economy.2 In this paper, we examine the effects of various

choices of operating procedure on the volatility of inflation, the output gap and the term

structure of money market rates.

We distinguish between the policy rate and the repo rate. The policy rate is the

interest rate that is used to define the monetary policy stance. This rate is typically

changed in a series of subsequent steps of 25 basis points or multiples thereof. The repo

rate is the instrument employed by the central bank to put its monetary policy decisions

into effect. The policy rate and the repo rate are often one and the same, but they need

not be. As we see below, this potential difference is what motivates this paper.

We focus on three operating procedures that are intended to capture the main features

of those of the Bank of England, the Federal Reserve and the Swiss National Bank. The

Bank of England formulates monetary policy in terms of Bank Rate, which is the repo

rate at which the Bank is willing, against eligible collateral, to lend funds to commercial

banks. The standard maturity of these repo transactions, which are essentially risk free,

is one week. In the case of the Federal Reserve, monetary policy is formulated in terms of

the federal funds rate, which is the rate at which commercial banks lend uncollateralised

overnight funds to one another. Thus, the US monetary policy rate is a market rate at

the very short end of the maturity spectrum that incorporates default risk. The Federal

Reserve influences the level of the federal funds rate in its monetary policy implementation

through repo transactions with mainly overnight and two-week maturity. The Swiss

National Bank, finally, formulates monetary policy in terms of a target range for three-

1Exceptions are Bindseil [5] and Borio [7]. Borio and Nelson [8] discuss monetary operations during

the financial crisis.
2For an analysis of the crisis, see e.g. Buiter [9] and Taylor and Williams [44].

1



month libor, which is a rate for uncollateralised funds on the interbank market.3 The

Swiss National Bank implements its policy using repos of typically one week maturity.4

Figure 1 shows the policy interest rates of the three central banks and one-week and

three-month libor.5 With the onset of the crisis in August 2007, interest rates became

more variable in all three economies. Volatility was highest in the last quarter of 2008,

after which point central banks’ attempts to calm markets were increasingly successful.6

One interesting feature is that after the onset of the crisis, three-month rates in GBP

and USD displayed initially more volatility than one-week rates. For CHF rates, the

opposite is true. It thus appears that the term structure is calmest at the maturity of

the policy interest rate.7 Depending on whether the business cycle responds to a short-

term or a long-term rate, a risk-free or a risky rate, the choice of the policy rate thus

seems important for the transmission of financial market shocks to the real economy.

This suggests that conventional macroeconomic models that use only one interest rate to

describe the economy fail to capture important aspects of the current financial crisis.

This paper studies the volatility of inflation and the output gap as well as of the

yield curve in a setup that distinguishes between the central bank’s repo rate and money

market interest rates. Monetary policy can be formulated with respect to either the central

bank’s repo rate, a short-term or a long-term money market rate. The optimal rule for the

repo rate, which is the only variable the central bank has full control over, differs across

operating procedures since central banks smooth their respective policy rate and thus

3In a similar setup, the Bank of Canada had a target for the three-month Treasury bill rate until

January 1996. See Borio [7].
4On the implementation of monetary policy in Switzerland, see Jordan and Kugler [24] and Jordan,

Ranaldo and Söderlind [25]. Taylor [43] discusses the SNB’s policy during the financial crisis.
5For the SNB the mid-point of the target band, which is typically communicated in the policy decision,

is also shown.
6Bernanke [3] distinguishes between three sets of measures central banks have been using to achieve

this: the traditional provision of liquidity to sound banks; the direct provision of liquidity to key credit

market participants; and the purchase of long-term securities. For a detailed discussion of central bank

measures, see also the report by the Committee on the Global Financial System [10].
7Flemming [19] refers to the phenomenon that the yield curve is most stable around the rate the

central bank is perceived to control as "pivotting."
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Figure 1: Interest rates January 2005 to January 2009
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have slightly different objectives.8 We find that the choice of operating procedure does

not matter much for macroeconomic volatility when markets are tranquil, though yield

curve volatility is smaller for operating procedures relying on a short-term rate. When

financial market are in turmoil, macroeconomic volatility is smallest if the central bank

formulates monetary policy in terms of the long-term money market rate.

Several recent papers also distinguish between different interest rates. Cúrdia and

Woodford [12] model the spread between borrowing and lending rates and consider how

the central bank might want to react to movements in the credit spread. Goodfriend and

McCallum [22] model an interbank policy interest rate, a risk-free rate and collateralised

and uncollateralised market rates in an economy with a banking sector and discuss the

responses of the different rates to shocks. Finally, Martin and Milas [29] consider a spread

between the monetary policy rate and an economically relevant borrowing rate and discuss

how monetary policy in the UK appears to have responded to movements in market rates.

A number of older papers assume that the interest rate controlled by the central bank

does not matter directly in the IS curve. Eijffinger, Schaling and Verhagen [14], Fendel

[18], Lansing and Trehan [27] and Svensson [39] let a longer-term rate, which obeys the

expectations hypothesis, matter for the output gap, and solve for an optimal rule for the

shorter-term rate. Conversely, Kulish [26] and McGough, Rudebusch and Williams [30]

let the shorter-term rate enter the IS curve and analyse different reaction functions for

the longer-term interest rate, which, however, are not derived optimally.

It should be noted that using the short-term rate in the IS curve is compatible with

the New Keynesian literature. By contrast, policymakers often argue that a longer-term

rate, which is given by the expected future path of the short-term rate and a time-varying

risk premium, impacts on economic activity.9 For instance, Federal Reserve Chairman

8The literature has offered a number of explanations for interest rate smoothing, ranging from reducing

financial market volatility (Blinder [6], Cukierman [11] and Goodfriend [21]) and a larger impact on

expectations (Goodhart [23] and Woodford [45]) to uncertainty (Orphanides [32], Rudebusch [33], Sack

[36], Sack and Wieland [37] and Smets [38]), omitted variables (Rudebusch [34], English, Nelson and Sack

[15] and Gerlach-Kristen [20]) and reputation concerns on policymakers’ part (Goodhart [23]).
9Rudebusch, Sack and Swanson [35] present empirical evidence for a link from decreased term premia

to higher economic activity. This could be seen as evidence that longer-term, rather than shortest-term
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Ben Bernanke states that

"[t]he Fed controls very short-term interest rates quite effectively, but the

long-term rates that really matter for the economy depend not on the current

short-term rate but on the whole trajectory of future short-term rates expected

by market participants." (Bernanke [4], p. 6)

In this paper, we use the standard New Keynesian model as baseline case. As a

robustness check, we also consider a model that uses a longer-term rate in the IS curve

and show that the results are essentially unchanged.

The paper is organised as follows. Section 2 introduces the model. In contrast to the

literature, we model the risk premia on market interest rates as dynamic variables rather

than as constants. We present for each of the three operating procedures the optimal

rule under commitment for the repo rate, which is the rate the central bank controls and

which it uses when implementing its monetary policy decisions. In solving the model a

technical difficulty arises if the central bank formulates monetary policy in terms of the

longer-term market rate since this rate depends on the path of expected future repo rates.

Thus, minimising the central bank’s loss function requires knowledge of the future path

of the optimal repo rule which, however, implies knowledge about the solution of the

optimisation problem. We present an algorithm that deals with this problem. Section

3 simulates the model using estimated empirical pre-crisis and crisis dynamics for the

risk premia. We present the optimal repo rules for the different operating procedures,

impulse responses and measures of the macroeconomic and the yield curve volatility.

Section 4 presents robustness tests. We study how the volatilities depend on the assumed

degree of forward-lookingness in the economy, who they change if monetary policy is

discretionary and what happens if a longer-term market rate matters in the IS curve.

Section 5 concludes.

interest rates matter for the output gap.
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2 The model

We study optimal monetary policy implementation in a standard model consisting of a

New Keynesian Phillips curve and a consumption Euler equation. We first describe the

economy and then discuss the monetary policy problem and derive the optimal imple-

mentation rule for the repo rate, which is the interest rate the central bank controls.

2.1 The economy

The hybrid New Keynesian Phillips curve is given by

πt = aπEtπt+1 + (1− aπ)πt−1 + ayyt + uπ,t, (1)

where πt is the inflation rate, yt the output gap, aπ a parameter reflecting the degree of

forward-lookingness in the price setting behaviour of firms and ay a composite parameter

capturing the discount rate and the frequency of price adjustments (see Woodford [46]).

The exogenous inflation shock, uπ,t, is assumed to follow an AR(1) process

uπ,t = ρπuπ,t−1 + σπeπ,t (2)

with 0 < ρπ < 1 and eπ,t ∼ N(0, 1).

The log-linearised consumption Euler equation is given by

yt = byEtyt+1 + (1− by)yt−1 − br(i1,t −Etπt+1 − μ1,r) + uy,t, (3)

where i1,t denotes the nominal money market interest rate with maturity of one period,

μ1,r the equilibrium one-period market rate, which is to be defined below, and uy,t is an

exogenous demand shock which evolves according to

uy,t = ρyuy,t−1 + σyey,t (4)

with 0 < ρy < 1 and ey,t ∼ N(0, 1). We assume that the central bank and the pri-

vate sector have access to the same information about the economy and form rational

expectations.
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The money market interest rate i1,t deviates from the one-period repo interest rate it

used by the central bank for the implementation of monetary policy by a risk premium

θ1,t, so that

i1,t = it + θ1,t. (5)

This risk premium reflects counterparty risk that arises in a market transaction compared

to a transaction with the central bank.10 It is assumed to follow an AR(1) process of the

form

θ1,t = θ1 + ρ1θ1,t−1 + ε1,t, (6)

where ε1,t ∼ N (0, σ21). Two points are worth noting. First, the AR(1) structure imples

that the risk premium can turn negative. While this is unrealistic, it keeps the model

compact.11 Second, the risk premium does not depend on the state of the economy. This

assumption as well is made for tractability.

Finally, longer-term money market interest rates of maturity j are under the expecta-

tions hypothesis given by

ij,t =
1

j
Et

j−1X
k=0

it+k + τ j + θj,t, (7)

where τ j denotes a constant term premium and θj,t the j-period risk premium, which we

assume follows

θj,t = θj + ρjθj,t−1 + εj,t (8)

with εj,t ∼ N
¡
0, σ2j

¢
.12 The risk innovations ε·,t are correlated across maturities. We

define their covariance matrix εtε
0
t as Cete

0
tC

0, where et is a vector of white noise errors

and CC 0 contains the variances and covariances. A detailed exposition of the state space

representation of the model is provided in Appendix A.

10Michaud and Upper [31] offer a detailed discussion of the recent evolution of the risk premium in

a number of economies and analyse what factors drive the premium. They find that liquidity seems to

matter at high frequencies, while default risk appears to have a slower impact.
11Similarly, we do not impose a zero lower bound on interest rates.
12An alternative to assuming the validity of the expectations hypothesis is to derive expressions for

longer-term interest rates in a micro-based model with frictions. See Amisano and Tristani [1] and Atkeson

and Kehoe [2].
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2.2 The monetary policy problem

Monetary policy is conducted under commitment and in a timeless perspective (see Svens-

son and Woodford [42] and Woodford [46]).13 We want to solve the model for the optimal

rule for the repo rate it, which is the only interest rate the central bank has full control

over.

The central bank’s period loss function is given by

Lp,t =
1

2
Y 0
tΛpYt, (9)

and the intertemporal loss function by

$p,0 = E0

∞X
t=0

(1− δ)δtLp,t, (10)

where Yt are the goal variables, δ is the discount factor and Λp the matrix of goal weights,

which differs between operating procedures. Under the first procedure, monetary policy

is formulated with the repo rate it. We refer to this approach as the repo rate operating

procedure (RR procedure). Alternatively, policy can be formulated with the one-period

money market rate i1,t but implemented with it. This we call the short-termmoney market

rate (SMR) procedure. Under the long-term money market rate (LMR) procedure, finally,

policy is formulated with the three-period money market rate i3,t and again implemented

with it.

The central bank minimises variations in inflation and the output gap under all three

operating procedures. Moreover, policymakers smooth the monetary policy rate, i.e. it,

i1,t or i3,t, respectively. The set of all potential goal variables then is

Yt =
h
πt yt ∆it ∆i1,t ∆i3,t

i0
.

The off-diagonal elements of Λp are zero for all operating procedures, while the diagonal

is given by
h
λπ λy λi 0 0

i
under the RR procedure, by

h
λπ λy 0 λi 0

i
under

the SMR procedure and by
h
λπ λy 0 0 λi

i
under the LMR procedure, where λπ is

the weight attached to the goal of stabilising inflation, λy the weight for stabilising the

output gap and λi the weight for interest rate smoothing.

13Section 4.2 discusses as a robustness check policy under discretion.
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Thus, the only difference between the procedures is the policy rate and the fact that

this rate is smoothed. Given the observation that monetary policy in practice tends to be

changed gradually with no obvious attempts being made to smooth movements of interest

rates at other maturities, this assumption is not far-fetched.

To determine the optimal rule for the central bank’s repo rate, we define a dual period

loss function eeLp,t, which depends on Lp,t and the structure of the economy as given

by equations (1) to (8), and rewrite the central bank’s overall loss function as a dual

saddlepoint problem of the form

max
{γt}t≥0

min
{πt,yt,it}t≥0

E0

∞X
t=0

(1− δ)δt
eeLp,t, (11)

where γt = [ γPCt γISt ]0 are the Lagrange multipliers for equations (1) and (3). This

function can be optimised using the standard linear quadratic regulator approach. Ap-

pendix A discusses this in detail.

Before proceeding, a technical difficulty with the LMR procedure should be noted.

Here, policymakers smooth the policy rate i3,t, which depends on the expected path of

the repo rate over the periods t to t + 2. The repo rate, however, is the variable for

which we solve the optimisation problem. Thus, in defining the loss function for the LMR

procedure, we should know the optimal reaction function for it that minimises this very

loss function. We solve this problem by guessing an initial reaction function and then

iterating until convergence is achieved.14

3 Simulations

In this section, we simulate the model to assess how the optimal repo rule and the volatility

of the macroeconomy and the yield curve differ under the three operating procedures. We

also study how the results change if risk premia follow the pattern observed during the

financial crisis before turning to robustness tests in Section 4.

14Alternatively, one could proxy i3,t in a first-difference equation as an infinitely long rate with rapidly

declining weights, which would allow the application of standard solution techniques. We thank Paul

Söderlind for making this point.
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We assume that the parameters describing the macroeconomy and central bank’s pref-

erences are unaffected by the financial crisis. The coefficients in the Phillips curve, the

consumption Euler equation and their respective shock processes are set to aπ = by = 0.8,

ay = 0.2, br = 0.5, ρπ = ρy = 0.8 and σπ = σy = 0.5. Central bank preferences are

specified by the weights in the period loss function put on inflation and output gap stabil-

isation and policy rate smoothing λπ = λy = λi = 1 and by the discount factor δ = 0.99.

Only the parameters capturing the dynamics of market interest rates are allowed to vary

between pre-crisis and crisis simulations. In particular, we use the coefficients presented

in Tables 4 and 5 in Appendix B, which show that the volatility of risk premium shocks

increased and that their comovement across maturities rose. Finally, we think of the time

periods as months.

3.1 Optimal repo rules

Table 1 shows the optimal repo rules for the three operating procedures and the pre-

crisis and the crisis regime. The upper panel shows the reaction functions obtained if the

time-series behaviour of the risk premia is given by the pre-crisis parameters. The RR

procedure calls for a essentially no response to past inflation and a very small reaction

to the past output gap (values of 0.00 and 0.06, respectively), but a stronger reaction to

innovations in the Phillips and IS curves (0.33 and 0.74). There is considerable interest

rate smoothing (0.54) and a negative response to shocks in the risk premium (-0.17),

reflecting that monetary policy accommodates such shocks in part. Past movements in

the one-month risk premium and the level of the three-month rate and changes in the

current three-month risk premium evoke no reaction, and the response to the Lagrange

multipliers for the PC and the IS curves, which capture the importance of future interest

rate setting, is small (-0.01 and 0.09).

The SMR procedure yields identical reaction function coefficients except for the re-

sponse to financial shocks. These are fully absorbed in the current period (reaction

coefficient of -1.00). Since monetary policy is set in terms of i1,t, it is this rate, rather

than the repo rate it, which is smoothed. Consequently, the past risk premium has the

same reaction coefficient as the past repo rate (0.54).
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Table 1: Optimal reaction functions under commitment

Reaction to πt−1 yt−1 it−1 uπ,t uy,t θ1,t θ3,t θ1,t−1 γPCt−1 γISt−1

Pre-crisis simulation

RR procedure 0.00 0.06 0.54 0.33 0.74 -0.17 0.00 0.00 -0.01 0.09

SMR procedure 0.00 0.06 0.54 0.33 0.74 -1.00 0.00 0.54 -0.01 0.09

LMR procedure 0.01 0.32 0.00 1.17 1.96 -0.82 -0.07 0.00 -0.01 0.59

Crisis simulation

RR procedure 0.00 0.06 0.54 0.33 0.74 -0.22 0.00 0.00 -0.01 0.09

SMR procedure 0.00 0.06 0.54 0.33 0.74 -1.00 0.00 0.54 -0.01 0.09

LMR procedure 0.01 0.32 0.00 1.17 1.96 -0.88 -0.10 0.00 -0.01 0.59

Note: Repo rate reaction function coefficients for different operating procedures. RR/SMR/
LMR procedure stands for repo rate/short-term/long-term money market rate procedure.

The LMR procedure yields quite different coefficients in the reaction function. The

intuitive reason for this is that this procedure attaches more weight to future developments

since the three-month market rate depends on the expected future path of the repo rate.

As a consequence, the responses to inflation, the output gap and their innovations are

stronger (reaction coefficients of 0.01, 0.32, 1.17 and 1.96, respectively). Since under the

LMR procedure, the three-month market rate rather than the repo rate is smoothed,

the past repo rate has no impact on today’s it. The one-month risk premium is to a

large extent absorbed (-0.82), and there is a weak negative response to an increase in the

three-month risk premium. Finally, the response coefficients for the Lagrange multipliers

is larger than for the other procedures (0.09 and 0.59), reflecting the fact that the future

course of the economy is more important for interest rate setting if a longer-term rate,

which reflects the expected future path of the repo rate, is smoothed.

The lower panel of Table 1 shows the coefficients of the three optimal repo rules if

the time-series pattern of the risk premia is calibrated on the crisis-period estimates.

Due to certainty equivalence, only the change in the autocorrelation of the risk premia

matters in the computation of the new reaction functions. Correspondingly, most reaction
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coefficients are unchanged. For the RR procedure, the response to the current one-month

risk premium becomes stronger (-0.22 instead of -0.17). The reason for this is that the

risk premium displays more autocorrelation (in Table 4 in Appendix B ρ1 equals in the

crisis sample 0.37, compared with 0.20 in the pre-crisis sample), so that an innovation

in θ1,t has a more protracted impact and a larger effect on inflation and the output gap.

The SMR procedure uses exactly the same reaction function as before the crisis, thus still

fully absorbing risk premium shocks at the one-month horizon, while the coefficient on

θ1,t increases in absolute terms under the LMR procedure (from -0.82 to -0.88).

3.2 Impulse responses

To evaluate how the choice of monetary operating procedure affects the macroeconomic

dynamics, we present in Figure 2 impulse responses for the pre-crisis specification and

in Figure 3 those for the crisis regime. The first two columns show the impact of a one-

standard deviation in the inflation and the output gap shock respectively, and the last

column shows the effect of a shock to the one-month risk premium. The first two plots in

that column show that a financial shock affects inflation and the output gap most under

the RR procedure since the repo rate is not cut enough to absorb this shock completely,

implying that the one-month market rate rises. In contrast, under the SMR and the LMR

procedures, absorption is complete or close to complete and as a result, the one-month

market rate is essentially unaffected. The three-month rate declines on impact under

these two operating procedures, reflecting the reduction in the repo rate.

The impulse responses to inflation and output gap shocks are identical under the RR

and the SMR procedures, as suggested by their reaction functions. An increase in inflation

in t = 0 is undone slowly by tighter monetary policy, which causes the output gap to turn

negative. This leads to a loosening of monetary policy, and the market rates follow the

path of the repo rate. The impulse responses for the LMR procedure shows that inflation

deviates slightly more from target than under the two other procedures, while the output

gap response is smaller. A positive output gap shock triggers a higher repo rate, which

under the RR and SMR procedures causes the output gap and inflation to turn negative

for some time. Under the LMR procedure, the repo rate is increased so strongly that there
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is virtually no response of inflation and the output gap to the shock. Under all operating

procedures the three-month rate increases in response to an output gap shock, mirroring

the one-month market rate.

Under the crisis regime, the risk premium shock is larger. We observe a stronger

response of the repo rate to third shock under the RR procedure. The reactions under the

SMR and the LMR procedures are in relation to the size of the shock essentially the same

as in Figure 2. One striking difference between the two figures is that in the crisis regime,

the stronger correlation between the one-month and the three-month risk shocks lets the

three-month interest rate increase toghether with the one-month risk shock, which it did

not in Figure 3.

3.3 Macroeconomic and interest rate volatility

The comparison of the models thus far does not allow a conclusion as to which operating

procedure is preferable in terms of welfare. As a crude proxy, we therefore next compute

the volatility of the macroeconomy and of the yield curve under the different operating

procedures.15 Figure 4 shows the simulated values of

inflation volatilityp =
1

T

TX
t=1

π2p,t, (12)

and

output gap volatilityp =
1

T

TX
t=1

y2p,t

with T = 10, 000 and πp,t and yp,t denoting the realisations of inflation and the output

gap under operating procedure p. As can be seen in the left plot of Figure 4, the volatility

of the macroeconomic variables is very similar for the two operating procedures using

a one-month rate and slightly lower for the LMR procedure. This result is due to the

more aggressive response to macroeconomic shocks under this procedure, which arises

because policymakers smooth the three-month rate and thus are willing to adjust the

one-month repo rate quickly. The downside of this approach is that the strong reactions

15We present inflation, output gap and yield curve volatility separately rather than the central bank

loss function since the latter differs across procedures with respect to the interest rate smoothing term.
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Figure 2: Impulse responses under commitment, pre-crisis simulation
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Figure 3: Impulse responses under commitment, crisis simulation

0 5 10

0

0.2

0.4

Response of π
 to π shock

 

 

0 5 10

-0.4

-0.2

0

Response of y
 to π shock

0 5 10
-0.2

0

0.2

0.4

Response of repo rate
 to π shock

0 5 10

0.6

0.8

1

Response of 1m market rate
 to π shock

0 5 10

0.5
0.6
0.7
0.8
0.9

Response of 3m market rate
 to π shock

0 5 10

-0.04

-0.02

0

Response of π
 to y shock

0 5 10

0

0.05

0.1

Response of y
 to y shock

0 5 10

0.1

0.2

0.3

0.4

Response of repo rate
 to y shock

0 5 10

0.8

0.9

1

Response of 1m market rate
 to y shock

0 5 10
0.7

0.8

0.9

Response of 3m market rate
 to y shock

0 5 10
0

5

10

15

x 10-3
Response of π

 to 1m risk shock

0 5 10
-0.06
-0.04
-0.02

0
0.02

Response of y
 to 1m risk shock

0 5 10

-0.2

-0.1

0

Response of repo rate
 to 1m risk shock

0 5 10

0.7
0.75
0.8

0.85

Response of 1m market rate
 to 1m risk shock

0 5 10

0.65

0.7

0.75

Response of 3m market rate
 to 1m risk shock

RR procedure
SMR procedure
LMR procedure

Note: RR/SMR/LMR procedure stands for repo rate/short-term/
long-term money market rate procedure.

15



to macroeconomic shocks cause a high volatility at the short end of the term structure.

This is seen in the left plot of Figure 5, which shows the simulated volatility of market

interest rates with maturity j = 1, ..., 11 months

interest rate volatilityj,p =
1

T

TX
t=1

i2j,p,t.

Under the RR and the SMR procedures, the yield curve displays little volatility. This

pattern is due to the fact that movements in longer-term rates depend on it, which evolves

smoothly in times of financial calm if policy is formulated with a short-term rate. The

yield curve is more volatile under the LMR procedure, especially at the short end, which

reflects the more aggressive adjustments of the repo rate to shocks.

Figure 4: Macroeconomic volatility under commitment

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws. RR/SMR/LMR procedure
stands for repo rate/short-term/long-term money market rate procedure.

The right plots of Figures 4 and 5 show the same analysis for the case in which

the crisis parameters for the risk premia are used. The RR procedure yields the highest

macroeconomic volatility since the now larger movements in the risk premium are not

fully absorbed. The LMR procedure again performs best from a macroeconomic perspec-

tive. Interest rate volatility rises for all operating procedures and is lowest for the SMR

16



Figure 5: Volatility of market interest rates under commitment

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws. RR/SMR/LMR procedure
stands for repo rate/short-term/long-term money market rate procedure.

procedure. Under the RR procedure, the impact of risk shocks on the macroeconomy

makes repo rate adjustments necessary and increases the volatility of the yield curve.

Under the LMR procedure, short-term rates are again adjusted most aggressively.

4 Robustness checks

This section studies how important a number of underlying assumptions are for the rank-

ing of the three operating procedures. We argued above that the LMR procedure attaches

more weight to the future since expected future repo rates determine today’s longer-term

money market rates, one natural test to consider is how the results change if we alter

the degree of forward-lookingness in the economy. Another obvious question is how the

conclusions are changed if policy is assumed to be discretionary rather than set under

commitment. Finally, we assume that economic activity depends on a longer-term mar-

ket rate, which is a widely held view in central bank circles.
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4.1 Degree of forward-lookingness

As first robustness check, we study how the degree of forward-lookingness impacts on the

ranking of the different operating procedures under commitment. The extent to which

the economy is forward-looking is given by the coefficients aπ and by in the Phillips and

IS curve. In the baseline simulation, we had set aπ = by = 0.8. We now increase these

coefficients step-wise from 0.1 to 0.9. Figure 6 plots the resulting macroeconomic volatility.

The left plot shows the results with the pre-crisis parameters, the right plot the losses

simulated with the crisis parameters. The findings show that the results reported above

are robust the the choice of forward-lookingness. The LMR procedure again performs

best in terms of macroeconomic volatility in all cases, the RR and SMR procedures are

equivalent in the pre-crisis simulation and the RR procedure yields more volatility in the

crisis simulation.

Figure 6: Macroeconomic volatility as a function of forward-lookingness

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws, aπ = by increasing from 0.1 to 0.9. RR/SMR/LMR
procedure stands for repo rate/short-term/long-term money market rate procedure.

4.2 Discretionary policy

As second robustness check, we assume that monetary policy is set under discretion rather

than under commitment. Appendix C spells out the details of this version of the model.
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It could be argued that discretion, which implies a reoptimisation of monetary policy at

each point in time, is more attractive in times of crisis. To explore how interest rate

setting and the volatility of inflation, the output gap and the yield curve are affected

if policy is discretionary, we present in Table 2 the simulated reaction functions and in

Figures 7 and 8 the macroeconomic and yield curve volatilities.

Table 2: Optimal reaction functions under discretion

Reaction to πt−1 yt−1 it−1 uπ,t uy,t θ1,t θ3,t θ1,t−1

Pre-crisis simulation

RR procedure 0.05 0.10 0.33 2.55 1.16 -0.28 0.00 0.00

SMR procedure 0.05 0.10 0.33 2.55 1.16 -1.00 0.00 0.33

LMR procedure 0.14 0.37 0.00 5.29 2.94 -0.94 0.00 0.00

Crisis simulation

RR procedure 0.05 0.10 0.32 2.55 1.16 -0.37 0.00 0.00

SMR procedure 0.05 0.10 0.32 2.55 1.16 -1.00 0.00 0.33

LMR procedure 0.14 0.37 0.00 5.29 2.94 -0.97 -0.01 0.00

Note: Repo rate reaction function coefficients for different operating procedures. RR/SMR/
LMR procedure stands for repo rate/short-term/long-term money market rate procedure.

Compared with Table 1, policy again responds little to past inflation and the past

output gap. The reaction to the current inflation and output gap shock is larger. Un-

der the SMR procedure, the repo rate again absorbs movements in the one-month risk

premium, and the LMR procedure now does almost the same. The response under the

RR procedures also is stronger than under commitment. Interest rate smoothing, by con-

trast, is less pronounced. This shift in coefficient reflects the stabilisation bias discussed

in Dennis and Söderström [13] and Woodford [45]. In an economy with forward-looking

agents, interest rate smoothing stabilises expectations and thereby reduces overall macro-

economic volatility. If policy is discretionary, policymakers do not follow this optimal

gradual response but stabilise the output gap more and inflation less.

This is clearly visible in Figure 7, which also shows that the overall macroeconomic
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Figure 7: Macroeconomic volatility under discretion

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws. RR/SMR/LMR procedure
stands for repo rate/short-term/long-term money market rate procedure.

Figure 8: Volatility of market interest rates under discretion

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws. RR/SMR/LMR procedure
stands for repo rate/short-term/long-term money market rate procedure.
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volatility is higher than in the commitment case presented in Figure 4. The LMR proce-

dure yields the highest volatility. This result seems due to the fact that under discretion,

policymakers are less well able to impact on the public’s expectations. Since those matter

most for a policy that uses a longer-term interest rate, such an approach is unattractive

in this setup.16 Interest rate volatility, shown in Figure 8, is much higher under discretion

than under commitment, increasing roughly tenfold compared with Figure 5.

4.3 Longer-term rate in IS curve

As third robustness check, we replace the one-period market rate in the IS curve with

the three-period rate. The adjustments necessary in the model to capture this change,

which many policymakers would argue describes the transmission mechanism better, is

discussed in detail in Appendix D.17 Table 3 shows the reaction coefficients and Figure 9

plots the macroeconomic volatility simulated for this version of the model.

Compared with the reaction function of the baseline model, we find that all three

procedures respond to shocks in the three-month risk premium. Shocks in the one-month

risk premium triger a response only under the SMR procedure.18

Macroeconomic volatility is for all procedures higher than if the one-month rate enters

in the IS curve. In the pre-crisis simulation, the LMR procedure yields the lowest volatility,

while the SMR procedure is marginally more successful in the crisis simulation.

16If the economy is very backward looking, so that expectations do not matter much, the LMR

procedure also performs best under discretion.
17We also performed robustness checks using the eleven-month rate in the IS curve and the average

of all rates from one to eleven months maturity. The conclusions are the same, and details are available

upon request.
18We now also observe interest rate smoothing of the repo rate for the LMR procedure. This, however,

is due to the assumption that a small weight is attached also to this goal, an assumption we need to make

to achieve convergence in the simulations and that is discussed in Appendix D
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Table 3: Optimal reaction functions with 3-month rate in IS curve

Reaction to πt−1 yt−1 it−1 uπ,t uy,t θ1,t θ3,t θ1,t−1 γPCt−1 γISt−1

Pre-crisis simulation

RR procedure 0.00 0.05 0.68 0.08 0.82 0.00 -0.33 0.00 0.00 0.07

SMR procedure 0.00 0.05 0.68 0.08 0.82 -0.95 -0.33 0.68 0.00 0.07

LMR procedure 0.00 0.17 0.54 0.23 1.44 0.00 -0.62 0.00 0.00 0.30

Crisis simulation

RR procedure 0.00 0.05 0.68 0.08 0.82 0.00 -0.29 0.00 0.00 0.07

SMR procedure 0.00 0.05 0.68 0.08 0.82 -0.92 -0.29 0.68 0.00 0.07

LMR procedure 0.00 0.17 0.54 0.23 1.44 0.00 -0.55 0.00 0.00 0.30

Note: Repo rate reaction function coefficients for different operating procedures. RR/SMR/
LMR procedure stands for repo rate/short-term/long-term money market rate procedure.

Figure 9: Macroeconomic volatility with 3-month rate in IS curve

Pre-crisis simulation Crisis simulation

Note: Simulations with 10,000 draws assuming commitment. RR/SMR/LMR
procedure stands for repo rate/short-term/long-term money market rate procedure.
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5 Conclusions

This paper studies how the choice of operating procedure influences the volatility of

the macroeconomy and the yield curve during times of financial calm and crisis. We

consider one operating procedure that formulates policy in terms of the central bank’s

repo rate, which is essentially free of default risk, one that uses a short-term money

market rate and one that sets policy with reference to a longer-term money market rate.

The results suggest that the performance of the three operating procedures in terms of

macroeconomic volatility does not differ greatly when financial markets are tranquil, but

that the long-rate approach causes more interest rate volatility at the short end of the

yield curve. Macroeconomic performance differs when financial shocks are large. In that

situation, operating procedures that formulate policy in terms of a market rate yield

better macroeconomic outcomes than a setup that uses the central bank’s repo rate for

policy formulation. If policy is set under commitment, using a longer-term market rate

appears to be the best strategy, while relying on a short-term market rate for formulating

policy seems most attractive under discretion.
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A State space representation

A.1 Setting up the model

To cast the model presented in Section 2 in state space form, we define a vector Xt of

predetermined variables as

Xt = [ 1 πt−1 yt−1 it−1 uπ,t uy,t θ1,t θ3,t θ1,t−1 i3,t−1 ]
0,

where nX = 10.19 Moreover, we define an expanded vector of state variables eXt =

[ Xt Ξt−1 ]
0, where Ξt = [ ΞPC

t ΞIS
t
]0 contains the Lagrange multipliers for the Phillips

and the IS curve. We then write the equation for the predetermined variables as

eXt+1 = eA10 + eA11 eXt + eA12xt + eB1it + Cet+1,

where xt = [ πt yt ]
0 , nX = 12, nx = 2, ni = 1,

et+1 = [ 0 0 0 0 eπ,t+1 ey,t+1 e1,t+1 e3,t+1 0 0 0 0 ]
0,

eA10 = [ 1 0 0 0 0 0 θ1 θ3 0 τ 3 0 0 ]
0,

eA11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ρπ 0 0 0 0 0 0 0

0 0 0 0 0 ρy 0 0 0 0 0 0

0 0 0 0 0 0 ρ1 0 0 0 0 0

0 0 0 0 0 0 0 ρ3 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

f
(3)
i,p

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

19In the simulations, we include θ1,t to θ11,t and i1,t−1 to i11,t−1 in Xt. This allows us to compute the

volatility of the yield curve. To keep the matrices presented here compact, we leave out these additional

variables.
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eA12 =
⎡⎣ 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

⎤⎦0 ,
eB1 = h 0 0 0 1 0 0 0 0 0 0 0 0

i0
and

eC eC 0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 σ2π 0 0 0 0 0 0 0

0 0 0 0 0 σ2y 0 0 0 0 0 0

0 0 0 0 0 0 σ21 σ13 0 0 0 0

0 0 0 0 0 0 σ13 σ23 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The row vector f (3)i,p in eA11 defines the 3-period market rate as a function of eXt. To

compute this vector, it is useful to state that the optimal repo rate is given by

it = fi,p eXt, (13)

where fi,p contains the reaction coefficients of the repo rate to the predetermined variables

under operating procedure p. The expected repo rate three periods ahead is given by

Etit+3 = fi,pEt
eXt+3. (14)

Since expectations regarding eXt+3 are optimally formed as linear projections

Et
eXt+3 =M3

p
eXt,

with Mp a function of fi,p (and defined further below), equation (14) can be written as

Etit+3 = fi,pM
3
p
eXt.
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The three-period interest rate then is given by the expectations hypothesis as

i3,t =
1

3

2X
k=0

fi,pM
k
p
eXt + τ 3 + θ3,t = f

(3)
i,p
eXt + τ 3 + θ3,t.

The dynamics of the forward-looking variables is captured by

EtHxt+1 = eA21 eXt +A22xt +B2it,

where

H =

⎡⎣ aπ 0

br by

⎤⎦ , eA21 =
⎡⎣ 0 −(1− aπ) 0 0 −1 0 0 0 0 0 0 0

−brμ1,r 0 −(1− by) 0 0 −1 br 0 0 0 0 0

⎤⎦ ,
A22 =

⎡⎣ 1 −ay
0 1

⎤⎦ and B2 =

⎡⎣ 0

br

⎤⎦ .
To link the goal variables Yt to the other variables in the model, we define

Yt = eDp

h eXt
eit i0 , (15)

where nY = 5, eit = [ xt γt it ]
0, which is the vector the control variables of the model,

and where γt =
h
γPCt γISt

i0
= Ξt are Lagrange multipliers that account for the dynam-

ics of the forward-looking variables. Matrix eDp is given by

eDp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 −1 0 0 1 0 −1 0 0 0 0 0 0 0 1

τ 3 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎣ 0(nY −1)×nX 0(nY −1)×(2nx+ni)

f
(3)
i,p 01×(2nx+ni)

⎤⎦

.

We thus can rewrite the period loss function

eLp,t =
1

2
Y 0
tΛpYt =

1

2

h eXt
eit i eD0

pΛp
eDp

h eXt
eit i0

=
1

2

h eXt
eit ifWp

h eXt
eit i0 .
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A.2 Optimisation

We solve the model using the dual saddlepoint approach discussed in Marcet and Marimon

[28]. We follow Svensson and Williams [42] and define the dual period loss function as

eeLp,t = eLp,t + Ξ0t(Hxt+1 − eA21 eXt −A22xt −B2it)

= eLp,t + Ξ0t(− eA21 eXt −A22xt −B2it) +
1
δ
Ξ0t−1Hxt

= eLp,t + γ0t(− eA21 eXt −A22xt −B2it) +
1
δ
Ξ0t−1Hxt

(16)

where the second equality comes from the definition Ξ−1 = 0. Using equation (9), equation

(16) can be rewritten as

eeLp,t = eLp,t + γ0t(− eA21 eXt −A22xt −B2it) +
1
δ
Ξ0t−1Hxt

= 1
2

h eXt
eit iffW p

h eXt
eit i0 , (17)

where

ffW p =fWp +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − eA021 0

0 0 1
δ
H 0 0

0 1
δ
H 0 0 −A022 0

− eA21 0 −A22 0 −B2
0 0 0 −B0

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Equation (17) is the quadratic loss function in the optimal regulator problem. The

linear transition equation for the predetermined variables is given by

eXt+1 = eA11 eXt + eBeit + Cet+1, (18)

with

eB =
⎛⎝h eA12 eB1 i+

⎡⎣ 0nX×nx 0nX×nx 0nX×ni

0nx×nx Inx×nx 0nx×ni

⎤⎦⎞⎠
where the identity matrix captures Ξt = γt. The value function Vp( eXt) of the saddlepoint

problem is quadratic,

Vp( eXt) = [(1− δ) eX 0
tVp eXt + δωp],

where ωp is a scalar. The Bellman equation can therefore be written as

(1− δ) eX 0
tVp eXt + δωp = (1− δ) max

{γt}t≥0
min

{xt,it}t≥0

½eeLp,t + δEt

∙ eX 0
t+1Vp eXt+1 +

δ

1− δ
ωp

¸¾
.
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Iterating over the resulting Riccati equation yields the optimal solution

eit = Fp
eXt, (19)

where

Fp = −(Rp + δ eB0Vp eB)−1(N 0
p + δ eB0Vp eA11),

Mp = eA11 + eBFp

and

Vp = Qp + δ eA011Vp eA11 − (N 0
p + δ eB0Vp eA11)0(Rp + δ eB0Vp eB)−1(N 0

p + δ eB0Vp eA11)
where ffW p =

⎡⎣ Qp Np

N 0
p Rp

⎤⎦
is partitioned conformably with eXt and eit.
The optimal rule fi,p for the repo rate is given as the last line in equation (19) and

corresponds to equation (13). Inflation, which is the first element of xt, is given by

πt = fπ,p eXt,

where fπ,p is the first row of Fp. To derive the optimal repo rate rule, we choose starting

values for Fp and iterate until convergence (the exact starting value does not appear to

matter).

B Stylised facts

Since we are interested in analysing the effect of a crisis-induced change in the behaviour

of these premia on the volatility of inflation, the output gap and the yield curve, it is

important to make realistic parameter assumptions in the simulations. This appendix

studies how the time series behaviour of term and risk premia in the US has changed with

the onset of the financial crisis.20

20The changes reported here are similar to those in Switzerland and the UK. Those results are available

from the authors upon request.
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Table 4: Estimates for term and risk premia

Pre-crisis Crisis
j τ j θj ρj σj×10−2 τ j θj ρj σj

1 - 0.05∗∗∗ 0.20 1.52 - 0.43∗ 0.37 0.53
2 0.05 0.03∗∗∗ 0.54∗∗∗ 1.15 -0.03 0.41∗ 0.55∗∗ 0.49
3 0.10 0.03∗∗ 0.67∗∗∗ 0.86 -0.06 0.44∗ 0.59∗∗ 0.49
4 0.14 0.03∗∗ 0.66∗∗∗ 0.96 -0.08 0.39∗ 0.65∗∗∗ 0.45
5 0.18 0.02∗∗ 0.72∗∗∗ 0.91 -0.09 0.36∗ 0.70∗∗∗ 0.42
6 0.21 0.02∗∗ 0.73∗∗∗ 0.82 -0.10 0.33∗ 0.75∗∗∗ 0.38
7 0.24 0.03∗∗ 0.67∗∗∗ 0.79 -0.10 0.31∗ 0.77∗∗∗ 0.37
8 0.26 0.03∗∗ 0.71∗∗∗ 0.81 -0.10 0.29∗ 0.78∗∗∗ 0.36
9 0.27 0.03∗∗ 0.72∗∗∗ 0.81 -0.10 0.27∗ 0.80∗∗∗ 0.35
10 0.29 0.02∗∗ 0.73∗∗∗ 0.89 -0.09 0.26 0.81∗∗∗ 0.34
11 0.30 0.03∗∗ 0.71∗∗∗ 0.93 -0.08 0.25 0.82∗∗∗ 0.33

Note: Average term premium τ j and regression output for equation (8). Term premium
defined as difference between j-month and one-month OIS rate, risk premium as difference

between j-month libor and j-month OIS rate. Pre-crisis data span January 2005 to July 2007,
and crisis data August 2007 to January 2009. ∗/∗∗/∗∗∗ denotes significance at the one/five/ten

percent level.

We consider monthly averages of daily interest rate data spanning January 2005 to

January 2009 and interest rate maturities of up to eleven months. The crisis subsample

begins in August 2007. As a first step, we compute the term premium τ j attached

to different interest rate maturities as the average difference between the OIS rate of

maturity j and the one-month OIS rate. Table 4 shows that the term premia increase

with maturity in the pre-crisis subsample, but turn negative in the crisis subsample.

Table 4 also shows the estimates of an autoregressive process for the risk premium

θj,t, which has been constructed as the difference between j-month libor and the j-month

OIS rate. We fit equation (8) for the two subsamples.21 As can be seen, the risk premium

had a significant constant, displayed mean reversion and was subject to small innovations

in the pre-crisis sample (note that the values for σj have been multiplied by ×10−2 for
this subsample to make the table more easily readable). During the financial crisis, the

constant ceases to be significant and the standard errors are larger by a factor of fifty.

21It should be noted that equation (8) implies that θj,t could turn negative, which is unrealistic. We

ignore this for simplicity.
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Table 5: Pre-crisis correlation matrices for risk premium shocks

Pre-crisis sample
j 1 2 3 4 5 6 7 8 9 10 11
1 1
2 0.31 1
3 0.36 0.69 1
4 0.21 0.71 0.85 1
5 0.11 0.62 0.68 0.88 1
6 0.13 0.71 0.67 0.78 0.86 1
7 0.17 0.60 0.68 0.73 0.78 0.90 1
8 0.10 0.60 0.58 0.66 0.74 0.86 0.95 1
9 0.01 0.56 0.51 0.58 0.69 0.82 0.88 0.97 1
10 0.01 0.51 0.45 0.51 0.64 0.80 0.86 0.96 0.98 1
11 -0.05 0.46 0.36 0.43 0.63 0.75 0.82 0.93 0.95 0.97 1

Crisis sample
j 1 2 3 4 5 6 7 8 9 10 11
1 1
2 0.99 1
3 0.98 1.00 1
4 0.99 0.99 1.00 1
5 0.98 0.99 0.99 1.00 1
6 0.98 0.99 0.99 0.99 1.00 1
7 0.98 0.99 0.98 0.99 1.00 1.00 1
8 0.98 0.99 0.98 0.99 1.00 1.00 1.00 1
9 0.98 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1
10 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1
11 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1

Note: Correlations of risk premium innovations ε·,t. Pre-crisis data span January 2005 to July
2007, crisis data August 2007 to January 2009.
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It thus appears that the risk premia used to be affected by small shocks, but have been

exposed to much larger innovations during the crisis.

Another important change during the financial crisis concerns the correlation of the

shocks that drive the risk premia of different maturities, cor(εj,t, εk,t) for j 6= k. The results

reported in Table 5 indicate that these correlations have increased sharply during the

crisis, suggesting that the innovations in this subsample are mainly driven by a common

component. In fact, the first principal component computed from the covariance matrix

of the risk premia explains 74.9% of all variations in the first subsample and 96.2% in the

second subsample. The parameters reported in Tables 4 and 5 will be are in Section 3.

C Discretionary monetary policy

To derive the optimal repo rules under discretion, we define A10 as the first nX elements

of eA10, A11 as the first nX rows and columns of eA11, A12 as the first nX rows of eA12, A21
as the first nX columns of eA21, B1 as the first nX elements of eB1, CC 0 as the first nX

rows and columns of eC eC 0 and Dp as eDp without the columns referring to Ξt−1 and γt. We

then write the period loss function as

Lp,t =
1

2

⎡⎢⎢⎢⎣
Xt

xt

it

⎤⎥⎥⎥⎦
0

Wp

⎡⎢⎢⎢⎣
Xt

xt

it

⎤⎥⎥⎥⎦ (20)

with

Wp = D0
pΛpDp.

Under discretion, the repo rate it is chosen to minimise equation (20) subject to⎡⎣ Xt+1

EtHxt+1

⎤⎦ =
⎡⎣ A10

0

⎤⎦+
⎡⎣ A11 A12

A21 A22

⎤⎦⎡⎣ Xt

xt

⎤⎦+
⎡⎣ B1

B2

⎤⎦ it +
⎡⎣ C

0

⎤⎦ et+1, (21)

it+1 = Fp,t+1Xt+1 (22)

and

xt+1 = Gp,t+1Xt+1, (23)
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where Fp,t+1 and Gp,t+1 are determined in the optimisation in the next period and are

assumed to be known today. Taking expectations, combining equations (21) to (23) and

solving for xt yields

xt = Ap,tXt +Bp,tit (24)

with

Ap,t = (A22 −HGp,t+1A12)
−1(HGp,t+1A11 −A21)

and

Bp,t = (A22 −HGp,t+1A12)
−1(HGp,t+1B1 −B2).

From this follows that

Xt+1 = bAp,tXt + bBp,tit + Cet+1

with bAp,t = A11 +A12Ap,t

and bBp,t = B1 +A12Bp,t.

Using equation (24) in equation (20) yields

Lp,t =
1

2

⎡⎣ Xt

it

⎤⎦0 ⎡⎣ Qp,t Np,t

N 0
p,t Rp,t

⎤⎦⎡⎣ Xt

it

⎤⎦ ,
where

Qp,t =WXX,p +WXx,pAp,t +A
0
p,tW

0
Xx,p +A

0
p,tWxx,pAp,t,

Np,t = WXx,pBp,t +A
0
tWxx,pBp,t +WXi,p +A

0
p,tWxi,p

and

Rp,t =Wii,p +B
0
p,tWxx,pBp,t +B

0
p,tWxi,p +W 0

xi,pBp,t.

The Bellman equation can be written as

1

2
[(1− δ)X 0

tVp,tXt + δωp,t] = (1− δ)min
it

∙
Lp,t + δEt

1

2

µ
X 0

t+1Vp,t+1Xt+1 +
δ

1− δ
ωp,t

¶¸
.

From the first order condition, we obtain

Fp,t = −(Rp,t + δ bB0
p,tVp,t+1 bBp,t)

−1(Np,t + δ bB0
p,tVp,t+1 bAp,t)
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and

Gp,t = Ap,t +Bp,tFp,t,

and we denote the corresponding equilibrium functions by Fp and Gp. Forecasts of Xt are

based on

Xt+1 =MpXt + Cet+1

with

Mp = bAp + bBpFp,

where bAp and bBp are the fixed points of the mapping from ( bAp,t+1, bBp,t+1) to ( bAp,t, bBp,t).

D Longer-term rate in the IS curve

If the IS curve (3) is changed to

yt = byEtyt+1 + (1− by)yt−1 − br(i3,t −Etπ3,t+1 − μ3,r) + uy,t,

with Etπ3,t+1 =
1
3
Et(πt+1+πt+2+πt+3) and μ3,r = θ3/(1− ρ3)+ τ 3. Matrices H, eA21 and

B2 need to be adjusted to

H =

⎡⎣ aπ 0

1
3
br by

⎤⎦ ,
eA21 =

⎡⎣ 0 −(1− aπ) 0 0 −1 0 0 0 0 0 0 0

−brμ3,r 0 −(1− by) 0 0 −1 0 br 0 0 0 0

⎤⎦
+

⎡⎣ 0

1
3
br(fi,pM + fi,pM

2 − fπ,pM
2 − fπ,pM

3)

⎤⎦ ,
where the last line captures Etit+1, Etit+2, Etπt+2 and Etπt+3, and

B2 =

⎡⎣ 0

1
3
br

⎤⎦ .
When solving this model for the LMR procedure, indeterminacy problems arise. While

under the RR and SMR procedures, the smoothing objective of the policy rate it and i1,t,

respectively, constrains the path of these variables, the repo rate is not pinned down under
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the LMR procedure.22 To overcome this problem in the simplest way, we attach in the

simulations for the LMR procedure a small positive weight of 0.05 to smoothing the repo

rate and reduce the weight attached to the three-month money market rate to 0.95.

22On determinacy conditions for monetary policy rules, see Evans and McGough [16] and [17], Mc-

Gough, Rudebusch and Williams [30] and Woodford [47].
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