Motivation	Model	Calibration	Preliminary Results	Summary

Impact of the Credit Crunch on the Polish Economy (preliminary and incomplete)

Michał Brzoza-Brzezina and Krzysztof Makarski

Economic Institute NBP and Warsaw School of Economics

June 2009

0000	00000000	0000000	00000	0
Plan of the l	Presentation	า		

3 Calibration

Preliminary Results

5 Summary

Motivation	Model	Calibration	Preliminary Results	Summary
0000	ooooooooo	0000000	00000	O
Plan of the	Presentation	า		

- 2 Model
- 3 Calibration
- Preliminary Results

5 Summary

æ

0000				
Motivation	Model	Calibration	Preliminary Results	Summary

Main recent shocks in Poland

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

Main recent shocks in Poland Lending restrictions in Poland. (Source: NBP)

P

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 0000
 0000000
 000000
 00000
 0
 0

Main recent shocks in Poland

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

Main recent shocks in Poland Spreads on loans to households in Poland. (Source: NBP)

17 ▶

Main recent	t shocks in	Poland		
Motivation	Model	Calibration	Preliminary Results	Summary
●○○○	000000000	0000000	00000	O

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 •000
 •0000000
 •000000
 •00000
 •00000
 •0

Main recent shocks in Poland Loans to households in Poland. (*Source: NBP*)

< 4 ₽ > < 3

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 0000
 0000000
 000000
 00000
 0

Main recent shocks in Poland

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

EX_HP

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 0000
 0000000
 000000
 00000
 0

Main recent shocks in Poland

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

REER_HP

≣≯

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 0000
 0000000
 000000
 00000
 0

Main recent shocks in Poland

Credit crunch

- increase in lending restrictions
- increase in spreads between the intebank rates and the credit rates.
- decline in loans to households and firms
- Decline in external demand for Polish goods and services (and decline in export)
- Depreciation of the Polish zloty.
- Capital outflow?

CAP_INFLOW_HP

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••

 Response of GDP (Source: Central Statistical Office)

GDP_HP

≣≯

Motivation	Model	Calibration	Preliminary Results	Summary
○○●○	000000000	0000000	00000	O
Question				

- What is the role of financial frictions in this process?
- How much of GDP decline is generated by financial frictions?

Motivation	Model	Calibration	Preliminary Results	Summary
○○○●	000000000	0000000	00000	O
Methodology	/			

- Dynamic Stochastic General Equilibrium (DSGE) of Polish economy.
- The advantages of DSGE models
 - They take into account the influence of future on today's decisions in a coherent way (rational expectations)
 - Microfoundations
 - Calibration/Estimation of the so called deep parameters (describing e.g. preferences, technologies) - gives rise to the possibility of studies on changes in policies (this approach is immune to the Lucas critique)

Motivation	Model	Calibration	Preliminary Results	Summary
0000	೦೦೦೦೦೦೦೦೦	0000000	00000	O
Plan of the	Presentati	on		

3 Calibration

Preliminary Results

5 Summary

Motivation	Model	Calibration	Preliminary Results	Summary
0000	●○○○○○○○○	0000000	00000	O
Key Feature	es			

- New Keynesian model of business cycle
- Non-neutrality of monetary policy due to:
 - Nominal rigidities prices and wages are set according to a Calvo scheme (Calvo, 1983)
- Monetary Policy
 - Taylor rule (Taylor, 1993)
- Financial frictions we extend lacoviello (2005):
 - stochastic shocks to credit constraints and spreads,
 - small open economy.

Notivation 0000		Calibration 0000000	OOOOO	O Summary	
Basic structure					

- Standard new Keynesian model of business cycle fluctuations.
- Households
- Monetary and fiscal authorities
- Three stages of production: final good producers, intermediate good producers, and wholesale good producers (entrepreneurs)
- Housing and capital producers.
- Prices of intermediate goods and wages are sticky.
- Banking sector, nominal rigidities, spreads plus credit constraints.
- Perfect competition in the other markets

Motivation	Model	Calibration	Preliminary Results	Summary
0000	○○●○○○○○○	0000000	00000	O
Households				

• There are two types of households: patient, P, and impatient, I. The type $i \in \{P, I\}$ maximizes utility

 $E_0 \sum_t (\beta_i)^t u(c_t, \chi_t, n_t, \varepsilon_t)$, subject to

the budget constraint and the borrowing constraint

$$R_{L,t}^{H}L_{t}^{i} \leq m_{t}^{H}E_{t}\left[P_{\chi,t+1}\left(1-\delta_{\chi}\right)\chi_{t}^{i}\right]$$

where $m_t^F \sim AR(1)$. Thus consumers need housing as collateral to get a loan.

• In equilibrium patient HHs save and impatient HHs borrow.

- Do not work, run firms. Sell their product in a competitive market.
- Are impatient $(\beta_E = \beta_I)$.
- Own capital use it as collateral for loans.
- Maximize utility

 $E_0 \sum_t (\beta_E)^t u(c_t, \varepsilon_t)$, subject to

the flow of funds, the production function and the borrowing constraint

$$R_{L,t}^{F}L_{t}^{F} \leq m_{t}^{F}E_{t}\left[P_{k,t+1}\left(1-\delta_{k}\right)k_{t}\right]$$

where $m_t^F \sim AR(1)$. Thus producers need capital as collateral to get a loan.

Motivation	Model	Calibration	Preliminary Results	Summary
0000	○○○○●○○○○	0000000		O
Other produ	cers			

- Other producers are standard.
- Intermediate good producers operate in monopolistic environment. Have sticky prices - Calvo pricing. Do not own capital.
- Final good producers put together domestic and foreign intermediate goods (imperfect substitutability) and sell final goods in a competitive market. Do not own capital.
- Housing and capital good producers are standard (cost of installation).

Motivation	Model	Calibration	Preliminary Results	Summary
0000	○○○○○●○○○	0000000	00000	O
Banking Deposits				

- Policy rate the interbank rate R_t .
- Banks collect deposits from patient households and deposit them in the interbank market. $z_{D,t} \sim AR(1)$ affects the spread between the interbank rate R_t and the HHs deposit rate $R_{D,t}^H$ (follows from $D_{IB,t} = z_{D,t}D_t$).
- There are nominal rigidities (Calvo) that slow down the adjustment of the interest rates. The flexible deposit rate is (in log deviations from the steady state) $\hat{R}_{D,t}^{H} = \hat{z}_{D,t} + \hat{R}_{t}$. With nominal rigidities this relationship becomes more complex.

Motivation	Model	Calibration	Preliminary Results	Summary
0000	○○○○○○●○○	0000000	00000	O
Banking _{Loans}				

- Furthermore, banks take loans in the interbank market and grant loans to impatient HHs and firms. $z_{L,t} \sim AR(1)$ affects the spread between the interbank rate R_t and the lending rate $R_{L,t}$ (follows from $L_t = z_{L,t}L_{IB,t}$).
- There are nominal rigidities (Calvo) that slow down the adjustment of the interest rates. The flexible HHs loan rate is (in log deviations from the steady state) $\hat{R}_{L,t}^{H} = \hat{R}_t \hat{z}_{L,t}^{H}$ and for firms $\hat{R}_{L,t}^{F} = \hat{R}_t \hat{z}_{L,t}^{F}$. With nominal rigidities this relationship becomes more complex.
- Borrowing constraints tied to housing (HHs) and capital (firms).
- Banks have also access to the international nominal interest rate adjusted for risk premium.

Modivation Model Calibration Preliminary Results Summary of Monetary and fiscal authority Summary of the second seco

• Central bank - the Taylor rule; log-linear version of the form:

$$\hat{R}_{t} = \gamma_{R}\hat{R}_{t-1} + (1 - \gamma_{R})[\gamma_{\pi}\hat{\pi}_{t} + \gamma_{GDP}G\hat{D}P_{t}] + \varphi_{t}$$

• The government budget, very simplified (to keep Ricardian equivalence only patient HHs are taxed)

$$G_t = T_t^P$$

where

$$G_{t+1} = \left(1 - \rho_g\right) \mu_g + \rho_g G_t + \epsilon_{g,t+1}, \ \epsilon_{g,t} \sim N\left[0, \sigma_g\right]$$

 Model
 Calibration
 Preliminary Results
 Summary

 0000
 00000000
 0000000
 0
 0

Definition of Decentralized Equilibrium

Definition

An equilibrium is a set of allocations and prices, that:

- solves the decision problems of all agents populating the economy
- satisfies the government budget constraints
- satisfies the Taylor rule
- clears all markets

Plan of the l	Presentation	า		
Motivation 0000	Model 00000000	Calibration	Preliminary Results	Summary O

2 Model

Preliminary Results

5 Summary

Motivation	Model	Calibration	Preliminary Results	Summary
0000	000000000	●○○○○○○	00000	O
Solution				

- The model was solved with 1-st order perturbation (linearization)
- The model parameters were crudely calibrated.
- In future we plan Bayesian estimation and/or proper calibration.

Calibrated	l model para	meters		
0000	000000000		00000	o Summary
N A sector sector sec	NA I.I	Callbard		

- A group of parameters are taken from the literature (parameters that affect business cycle behavior).
- A group of parameters is obtained from the data (parameters that affect the steady state).
- Crude calibration of the shocks affecting financial markets
 - the initial shocks to spreads were calibrated to match the observed change to spreads.
 - the initial shocks to LTVs were calibrated to match (given previous calibration of the shocks to spreads) the observed decline in loans.
 - persistence was not calibrated, it was set at reasonable values.

IRF to a monetary policy shock

æ

- 4 聞 と 4 臣 と 4 臣 と

Motivation Model Calibration Preliminary Results Summary o

IRF to a 10% households LTV shock

- 4 聞 と 4 臣 と 4 臣 と

æ

 Motivation
 Model
 Calibration
 Preliminary Results
 Summary

 0000
 00000000
 0000000
 000000
 0

IRF to a 10% firms LTV shock

æ

《口》《聞》《臣》《臣》

Calibration 0000000

IRF to a spread on loans to HHs shock

æ

Motivation Model Calibration Preliminary Results Summary o

IRF to a spread on loans to firms shock

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Motivation	Model	Calibration	Preliminary Results	Summary
Plan of the	Presentatio	n		

2 Model

3 Calibration

Preliminary Results

5 Summary

Simulation	description			
Motivation	Model	Calibration	Preliminary Results	Summary
0000	00000000	0000000		O

- The goal of the simulation is to find the impact of the credit crunch alone.
- Shocks to spreads set to match values to match observed change in spreads.
- Shocks to LTVs set to match (given the previously calibrated initial shocks to spreads) observed decline in loans.
- Persistence set at reasonable values.
- Two questions:
 - do we need shocks to LTVs?
 - does the credit crunch alone have an important effect?
- Given that the crudeness of the calibration results should be only treated as a documentation of the model's possibilities.

Motivation	Model	Calibration	Preliminary Results	Summary
0000	00000000	000000	0000	

Spreads in the model

æ

Spreads as a source of the credit crunch in the model

 Model
 Calibration
 Preliminary Results
 Summary

 Spreads and LTVs as a source of the credit crunch in the

 model

M. Brzoza-Brzezina and K. Makarski Credit Crunch

Motivation Model Calibration Preliminary Results Summary

Credit crunch and GDP in the model

э

A ►

Motivation	Model	Calibration	Preliminary Results	Summary
0000	000000000	0000000	00000	O
Plan of the	Presentati	on		

- 2 Model
- 3 Calibration
- Preliminary Results

Summary and work for the nearest future

- Model seems to be very promising in terms of its ability to replicate the credit crunch impact.
- A proper calibration or Bayesian estimation needs to be done
- It should result in a proper decomposition of shocks.
- Financial frictions seem to have an important effect on the economy.
- Spreads alone may not be enough to quantitatively replicate the observed behavior of financial variables thus also shocks to LTVs are needed.
- Possibly policy analysis.