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Abstract

We use artificial data generated from variants of a simple real business cycle model to
evaluate the ability of structural VARs to estimate the dynamic response of the economy
to shocks. All the variants of the model economies considered in this paper imply that
VAR-based methods that use short run restrictions are remarkably accurate. We also
consider the performance of standard VAR-based estimators when long-run identifying
restrictions are used. The parameterization of our model that is estimated by maximum
likelihood implies that these methods also work well, in terms of bias and in terms of
standard estimators of the degree of sampling variation. When we consider the models
in Chari, Kehoe and McGrattan (2005), we confirm their finding that estimated impulse
response functions based on long-run restrictions are distorted. We diagnose the reasons for
the distortions, and build on our diagnosis to develop an improved estimator of impulse
response functions based on long-run restrictions. It is not clear, however, whether the
problems identified by CKM are of concern in practice. The CKM models are rejected
overwhelmingly by the data.
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1. Introduction

We argue that structural vector autoregressions (VARs) are useful as a guide to constructing and

evaluating dynamic general equilibrium models. Given a minimal set of identifying assumptions,

structural VARs allow the analyst to estimate the dynamic effects of economic shocks. These

estimated response functions provide a natural way to assess the empirical plausibility of a

structural model.1 To be useful, the response function estimators must have good statistical

properties. To assess these properties, we ask the following three questions. First, what are

the bias properties of VAR-based estimators of response functions? Second, what are the bias

properties of standard estimators of the sampling uncertainty associated with response function

estimators? Third, are there easy to implement variants of standard procedures which improve

the bias properties of response function estimators? We address these questions using data

generated from a series of dynamic general equilibrium models.

We conclude that structural VARs do indeed provide valuable information for building em-

pirically plausible models of aggregate fluctuations. Our analysis indicates that existing critiques

of structural VARs are vastly overstated. Even in the worst case scenarios stressed by authors

like Chari, Kehoe and McGrattan (2005) (CKM), the variants of standard VAR-based proce-

dures that we develop virtually eliminate the small sample bias in estimates of dynamic response

functions. Leaving aside the worst case scenarios, there is little small sample bias to correct.

There are two important traditions for constructing dynamic general equilibrium models.

One tradition focusses on at most a handful of key shocks, and deliberately abstracts from the

smaller shocks.2 A classic example is Kydland and Prescott (1991), who work with a model

driven only by technology shocks, even though they take the position that these shocks only

account for 70 percent of business cycle fluctuations. A conundrum confronted by this modeling

tradition is how to empirically evaluate models which contain only a subset of the shocks, with

the data that are driven by all the shocks.3 Structural VARs have the potential to provide

a resolution to this challenge by allowing the analyst to assess the empirical performance of a

model relative to a particular set of shocks.

1Two important early papers in this line of research are Sims (1980) and Sims (1989). There are many others
papers in this tradition including Eichenbaum and Evans (1995), Rotemberg and Woodford (1997), Gali (1999),
Francis and Ramey (2001), Christiano, Eichenbaum and Evans (2005), and Del Negro, Schorfheide, Smets, and
Wouters (2005).

2The view that aggregate dynamics are dominated by the effects of a few shocks only, appears to receive
confirmation from the literature on factor models. See for example Sargent and Sims (1977), Quah and Sargent
(1993), Uhlig (1992), Forni, Giannone, Lippi and Reichlin (2004) and Giannone, Reichlin, and Sala (2005).

3Aiyagari (1994) and Prescott (1991) draw attention to the challenge by pointing to a difficulty with the
standard RBC strategy for evaluating a model. In this strategy, one compares the second moment properties of
the data with the second moment properties of the model. Prescott famously asserted that if a model matches
the data, then that is bad news for the model. The argument is that since good models leave some things out
of the analysis, good models should not match the data. Of course, lots of models do not match the data. This
raises the question: how can we use the data to differentiate between good models and bad models?
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A second tradition to building macroeconomic models incorporates large numbers of shocks

in order to provide a complete characterization of the stochastic processes generating the data.4

This tradition avoids the Kydland and Prescott conundrum. Still, for diagnostic purposes it is

useful to assess the implications of these models for particular shocks to the economy.

In practice, the literature uses two types of identifying restrictions in structural VARs. Blan-

chard and Quah (1989), Gali (1999) and others have exploited the implications that many models

have for the long-run effects of shocks.5 Other authors have exploited short-run restrictions.6

There is a growing literature that questions the ability of structural VARs to uncover the dy-

namic response of macroeconomic variables to structural shocks. This literature focuses on

identification strategies that exploit long-run restrictions. Perhaps the first critique of these

strategies was provided by Sims (1972). Although this paper was written before the advent of

VARs, it articulates clearly why we should be concerned about the accuracy of identification

based on long-run restrictions. To implement this strategy for identifying the consequences of

shocks the analyst must have a reliable estimate of sums of coefficients in distributed lag regres-

sions. These sums are hard to reliably estimate even if the individual coefficients are reasonably

precisely estimated. Faust and Leeper (1997) and Pagan and Roberston (1998) make an impor-

tant related critique of identification strategies based on long-run restrictions. More recently

Erceg, Guerrieri and Gust (2004) and Chari, Kehoe and McGrattan (2005) (CKM) have also

examined the reliability of VAR-based inference using long-run identifying restrictions. CKM

are particularly critical and argue that structural VARs are very misleading.7

We examine the reliability of inference using structural VARs based on long-run and short-

run identifying assumptions. Throughout, we suppose that the data generating mechanism

corresponds to variants of a standard Real Business Cycle (RBC) model. We focus on the

question, how do hours worked respond to a technology shock?

We find that structural VAR’s perform remarkably well when identification is based on

short-run restrictions. This is comforting for the vast literature that has exploited short-run

identification schemes to identify the dynamic effects of shocks to the economy. Of course, one

can question the particular short-run identifying assumptions used in any given analysis. But

our results strongly support the view that if the relevant short-run assumptions are satisfied in

4See, for example, Smets and Wouters (2003) and Christiano, Motto and Rostagno (2004).
5See, for example, Basu, Fernald, and Kimball (2004), Christiano, Eichenbaum and Vigfusson (2003, 2004),

and Francis and Ramey (2001)
6This list is particularly long and includes at least Blanchard and Watson (1986), Bernanke and Blinder

(1992), Bernanke and Mihov (1995), Christiano and Eichenbaum (1992), Christiano, Eichenbaum and Evans
(2005), Cushman and Zha (1997), Hamilton (1997) and Sims and Zha (1995).

7See also Fernandez-Villaverdez, Rubio-Ramirez and Sargent (2005) who analyze the circumstances under
which the impulse response functions of infinite order VARs resemble impulse response functions associated with
an economic model. They provide model-based conditions for checking whether the mapping from VAR shocks
to economic shocks is invertible.
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the data generating mechanism, then standard structural VAR procedures reliably uncover and

identify the dynamic effects of shocks to the economy.

Regarding identification based on long-run assumptions, we find that if technology shocks

account for a substantial fraction of business cycle fluctuations in output (say, over 50 percent),

then structural VARs perform well. We do find some evidence of bias when the fraction of

output variance accounted for by technology shocks is very small relative to estimates in the

standard RBC literature. We develop and implement an adjustment to the standard VAR

estimation strategy that virtually eliminates small sample bias, even in the worst case scenario

when technology shocks play only a small role in aggregate fluctuations. The standard VAR

strategy for implementing long-run identifying restrictions requires factorizing an estimate of the

frequency-zero spectral density matrix of the data. The standard estimator used for this purpose

is the zero-frequency spectral density implicit in the estimated VAR itself. Distortions arise in

the worst case scenario because the quality of this estimator deteriorates. To deal with the

problem, we adjust the standard VAR estimator by working with a Newey-West non-parametric

estimator of the frequency-zero spectral density. The effect of this adjustment is minor when

we are not in the worst-case scenario. However, in cases when standard VAR procedures entail

some bias, our adjustment substantially reduces the bias.

Our conclusions regarding the value of identified VARs differ sharply from those recently

reached by CKM. There are two primary reasons for why we reach different conclusions. First,

CKM do not consider the case when VARs are identified using short-run restrictions. They only

consider the case of long-run restrictions. Second, CKM’s examples are based on exotic and

empirically uninteresting data generating processes.

The CKM examples are exotic in the sense that they are based on an RBC model which

has very different properties than those stressed in literature. In sharp contrast to Kydland and

Prescott (1991), CKM’s ‘standard business cycle’ model implies that technology shocks play a

very small role in cyclical output fluctuations, roughly 20 percent. The remaining 80 percent of

cyclical output fluctuations arise from shocks to the representative consumer’s marginal utility

of leisure.

This property would fine if it was defensible on empirical grounds. However, we show that

CKM’s parameterization is overwhelmingly rejected by the data. Our estimated version of the

model has the property that technology shocks account for roughly 70% of cyclical fluctuations

in output. In this empirically relevant case, standard VAR procedures lead to reliable inference

about the effects of a technology shock.

It is always possible to identify some data generating process for which any econometric

estimator has poor properties. All applied econometricians understand this. The hope of prac-

titioners is that their estimators have good properties in the empirically relevant cases. The

evidence suggests that CKM’ examples do not satisfy this condition. Of course, a skeptic of
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RBC theory might also question the empirical relevance of our results. Fortunately the good

performance of structural VARs is not limited to the case when the data generating process is

given by an RBC model. Altig, Christiano, Eichenbaum and Linde (2005) examine the relia-

bility of identified VAR’s when the data generating process is given by an estimated general

equilibrium embodying nominal frictions as well as real and monetary shocks. There too we

find that structural VARs perform well. Taken as a whole, our results provide strong support

for the view that structural VARs are a useful guide for formulating and estimating business

cycle models.

The remainder of this draft is organized as follows. Section 2 presents the general equilibrium

model used in our examples. Section 3 discusses our results for standard VAR-based estimators

of impulse response functions. Section 5 introduces and motivates our modified estimator of

impulse response functions. Section 6 displays its operating characteristics. Section 7 evaluates

the difference between our findings and those of CKM. Finally, section 7 contains concluding

comments.

2. A Simple Real Business Cycle Model

In this section, we display the real business cycle model that serves as the data generating process

in our analysis. The model has the property that the only shock that affects labor productivity

in the long-run is a shock to technology. This property lies at the core of the identification

strategy used by Gali (1999) and others to identify the effects of a shock to technology. We

also consider a variant of the model in which we impose additional timing restrictions on agents’

actions. In particular, we assume that agents choose hours worked before the technology shock is

realized. This assumption allows us to identify the effects of a shock to technology using ‘short-

run restrictions’, that is, restrictions on the variance-covariance matrix of the disturbances to

a vector autoregression. We describe the conventional VAR-based strategies for estimating

the dynamic impact on hours worked of a shock to technology. Finally, we discuss several

parameterizations of our model that are used in the experiments we perform.

2.1. The Model

The representative agent maximizes expected utility over per capita consumption, ct, and per

capita employment, lt

E0

∞X
t=0

(β (1 + γ))t
"
log ct + ψ

(1− lt)

1− σ

1−σ
#
,

subject to the budget constraint:

ct + (1 + τx,t) [(1 + γ) kt+1 − (1− δ) kt] ≤ (1− τ lt)wtlt + rtkt + Tt.
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Here, kt denotes the per capita capital stock at the beginning of period t, wt is the wage rate,

rt is the rental rate on capital, τx,t is an investment tax, τ lt is the tax rate on labor, δ ∈ (0, 1)
is the depreciation rate on capital, γ is the net growth rate of the population, and Tt represents

lump-sum taxes. Finally, σ > 0 is a curvature parameter.

The representative competitive firm’s production function is:

yt = kαt (Ztlt)
1−α ,

where Zt is the time t state of technology and α ∈ (0, 1). The stochastic processes for the shocks
are:

log zt = µZ + σzε
z
t

τ lt+1 = (1− ρl) τ̄ l + ρlτ lt + σlε
l
t+1 (2.1)

τxt+1 = (1− ρx) τ̄x + ρxτxt + σxε
x
t+1,

where zt = Zt/Zt−1. In addition, εzt , ε
d
t , and εxt are independent random variables with mean

zero and unit standard deviation. The parameters, σz, σl and σx are non-negative scalars. The

constant, µZ , is the mean growth rate of technology, τ̄ l is the mean labor tax rate, τx is the

mean tax on capital. We restrict the autoregressive coefficients, ρl and ρx, to be less than unity

in absolute value.

Finally, the resource constraint is:

ct + (1 + γ) kt+1 − (1− δ) kt ≤ yt.

We consider two versions of the model, differentiated according to timing assumption. In the

standard version, all time t decisions are taken after the realization of the time t shocks. This

is the conventional assumption in the real business cycle literature. For pedagogical purposes,

we also consider a second version of the model, we call the recursive version of the real business

cycle model. Here, the timing assumptions are as follows. First, τ lt is observed, after which labor

decisions are made. Next, the other shocks are realized. Then, agents make their investment

and consumption decisions. Finally, labor, investment, consumption, and output occur. We

first discuss the standard version of our model.

2.1.1. The Standard Version of the Model

The log-linearized policy rule for capital can be written as follows:

log k̂t+1 = γ0 + γk log k̂t + γz log zt + γlτ lt + γxxt,

where k̂t ≡ kt/Zt−1. The policy rule for hours worked is:

log lt = a0 + ak log k̂t + az log zt + alτ lt + axτxt.
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>From this expression, it is clear that all shocks have only a temporary impact on lt and k̂t.

Since εzt is the only shock that has a permanent effect on Zt, it follows that εzt is the only

shock that has a permanent impact on the level of the capital stock, kt. Similarly, εzt is the only

shock that has a permanent impact on output and labor productivity, at ≡ yt/lt. Formally, this

exclusion restriction is given by:

lim
j→∞

[Etat+j −Et−1at+j] = f (εzt only) , (2.2)

where in our linear approximation to the model solution, f is a linear function. The model

also implies the sign restriction that f is an increasing function. In (2.2), Et is the expecta-

tion operator, conditional on Ωt =
³
log k̂t−s, log zt−s, τ l,t−s, τx,t−s; s ≥ 0

´
. The exclusion and

sign restrictions have been used by Gali (1999) and others to identify the dynamic impact on

macroeconomic variables of a positive shock to technology.

In practice, researchers impose the exclusion and sign restrictions on a vector autoregression

to compute εzt and identify its dynamic effects on macroeconomic variables. To describe this

procedure, denote the variables in the VAR by Yt :

Yt+1 = B (L)Yt + ut+1, Eutu
0
t = V, (2.3)

B(L) ≡ B1 +B2L+ ...+BpL
p−1,

Yt =

⎛⎝ ∆ log at
log lt
xt

⎞⎠ ,

where xt is an additional vector of variables that may be included in the VAR. It is assumed

that the fundamental economic shocks are related to ut in the following way:

ut = Cεt, Eεtε0t = I, CC 0 = V, (2.4)

where the first element in εt is εzt . It is easy to verify that:

lim
j→∞

Ẽt[at+j]− Ẽt−1[at+j] = τ [I −B(1)]−1Cεt, (2.5)

where τ is a row vector with all zeros, except unity in the first location. Here, B(1) is the sum,

B1 + ... + Bq. Also, Ẽt is the expectation operator, conditional on Ω̃t = {Yt, ..., Yt−q+1} . To
compute the dynamic effects of εzt , we require B1, ..., Bq and C1, the first column of C.

The symmetric matrix, V, and the Bi’s can be computed by an ordinary least squares regres-

sion. However, it is well known that the requirement CC 0 = V is not sufficient to determined

a unique value of C1. Adding the exclusion and sign restrictions does uniquely determine C1.

These restrictions are:

exclusion restriction: [I −B(1)]−1C =

"
number 0

1×(N−1)
numbers numbers

#
,
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and

sign restriction: (1, 1) element of [I −B(1)]−1C is positive.

Although there are many matrices, C, that satisfy CC 0 = V as well as the exclusion and sign

restrictions, they all have the same C1. To see this, first let D ≡ [I −B(1)]−1C, so that

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= S0, (2.6)

say. Note that S0 (the spectral density of Yt at frequency zero) can be computed directly from

the VAR coefficients and the variance-covariance matrix of the VAR disturbances. The exclusion

restrictions require that D have the following structure:

D =

⎡⎣ d11
1×1

0
1×(N−1)

D21
(N−1)×1

D22
(N−1)×(N−1)

⎤⎦ .
Then,

DD0 =

∙
d211 d11D

0
21

D21d11 D21D
0
21 +D22D

0
22

¸
=

∙
S110 S2100

S210 S220

¸
,

say. The sign restriction is:

d11 > 0. (2.7)

Then, the first column of D is uniquely determined by:

d11 =
q
S110 , D21 = S210 /d11

Finally, the first column of C is determined from:

C1 = [I −B(1)]D1. (2.8)

2.1.2. The Recursive Version of the Model

In the recursive version of the model, the policy rule for labor involves log zt−1 and xt−1 because

they help forecast log zt and xt :

log lt = a0 + ak log k̂t + ãlτ lt + ã0z log zt−1 + ã0xxt−1.

Because labor is a state variable at the time the investment decision is made, the policy rule for

k̂t+1 takes the following form:

log k̂t+1 = γ0 + γk log k̂t + γ̃z log zt + γ̃lτ lt + γ̃xxt

+γ̃0z log zt−1 + γ̃0xxt−1.

It is easy to verify that these policy rules satisfy the exclusion restriction, (2.2), and the sign

restriction on εzt . So, the long-run identification strategy outlined above can be rationalized in
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this model. An alternative procedure for identifying εzt that does not rely on estimating long-run

responses to shocks can also be rationalized. We refer to this as the ‘short-run’ strategy, because

it involves recovering εzt using just the realized one-step-ahead forecast errors in labor produc-

tivity and hours, as well as the second moment properties of those forecast errors. According to

the model, the error in forecasting at given Ωt−1, denoted by uaΩ,t, is a linear combination of ε
z
t

and εlt. The error in forecasting log lt given Ωt−1, u
l
Ω,t, is proportional to ε

l
t. Specifically,

uaΩ,t = α1ε
z
t + α2ε

l
t, u

l
Ω,t = γεlt,

where α1 > 0, α2 and γ are functions of the model parameters. It follows that α1εzt is the error

from regressing uaΩ,t on ulΩ,t :

uaΩ,t = βulΩ,t + α1ε
z
t , β =

cov(uaΩ,t, u
l
Ω,t)

V
¡
ulΩ,t

¢ ,

where cov(x, y) denotes the covariance between the random variables, x and y, and V (x) denotes

the variance of x. Recall, we normalize the standard deviation of εzt to be unity. Consequently,

the value of α1 can be recovered as the positive square root of the variance of the forecast error

in this regression:

α1 =
q
V
¡
uaΩ,t

¢
− β2V

¡
ulΩ,t

¢
.

In practice, we implement the previous procedure using the one-step-ahead forecast errors

generated from a VAR. It is convenient to work with a version of (2.3) in which the variables in

Yt are ordered as follows:

Yt =

⎛⎝ log lt
∆ log at

xt

⎞⎠ ,

where xt is an additional vector of variables that may be included in the VAR. In addition, we

write the vector of VAR one-step-ahead forecast errors, ut as:

ut =

⎛⎝ ult
uat
uxt

⎞⎠ .

We identify the technology shock with the second element in et in (2.4). To compute the dynamic

response of the variables in Yt to the technology shock, we require B1, ..., Bq in (2.3) and the

second column of the matrix, C, in (2.4). We obtain the elements of the second column of C in

two steps. First, we identify the technology shock using:

εzt =
1

α̂1

³
uat − β̂ult

´
,

where

β̂ =
cov(uat , u

l
t)

V
¡
ult
¢ , α̂1 =

q
V (uat )− β̂

2
V
¡
ult
¢
,
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where the indicated variances and covariances are obtained from V in (2.3). Second, to obtain

C2, the second column of C, we regress ut on εzt :

C2 =

⎛⎜⎝
cov(ul,e2)
var(e2)

cov(ua,e2)
var(e2)

cov(ux,e2)
var(e2)

⎞⎟⎠ =

⎛⎜⎝ 0
α̂1

1
α̂1

³
cov(uxt , u

a
t )− β̂cov

¡
uxt , u

l
t

¢´
⎞⎟⎠ .

This procedure for computing C2 can be implemented by computing CC 0 = V, where C is

the lower triangular Choleski decomposition of V, and taking the second column of that matrix.

This is a convenient strategy because the Choleski decomposition can be computed using widely-

available software.

2.2. Parameterizing the Model

We consider different versions of the RBC model that are distinguished by the nature of the

exogenous shocks. For comparability we assume, as in CKM, that:

β = 0.981/4, θ = 0.33, δ = 1− (1− .06)1/4, ψ = 2.5, γ = 1.011/4 − 1 (2.9)

τ̄x = 0.3, τ̄ l = 0.242, µz = 1.016
1/4 − 1, σ = 1.

We consider various parameterizations for the shocks. These parameterizations were chosen to

illustrate the key factors determining the reliability of inference based on short-run and long-run

identification restrictions.. It is convenient to report, for each parameterization, the variance of

HP-filtered output due to technology shocks.

KP Specification

In the Benchmark KP Model, the technology shock process is the same as the one estimated

by Prescott (1986):8

log zt = µZ + 0.011738× εzt .

Erceg, Guerrieri and Gust (2005) update Prescott’s analysis and estimate σz to be 0.0148. To

be conservative, we use Prescott’s estimate because it attributes relatively less importance to

technology shocks in aggregate fluctuations. Although he concentrates on technology shocks

in his analysis, Prescott (1986) argues that other shocks also affect aggregate fluctuations. To

maintain comparability with CKM, we specify τ lt to be the other shock in this specification.

8Prescott (1986) estimates that the standard deviation of the innovation to technology growth is 0.763 percent.
However, he adopts a different normalization than we do, placing technology in front of the production function,
rather than next to hours worked, as we do. Our standard deviation is 0.01174=0.00763/(1-.35).
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For the benchmark KP specification, we estimate a law of motion for τ l,t as follows. Com-

bining the household and firm first order conditions for labor, and rearranging, we obtain:

τ l,t = 1−
ct
yt

lt
1− lt

ψ

1− θ
.

Given our parameter values, we compute a time series for τ l,t, and estimate the following first

order autoregressive representation:9

τ l,t = (1− 0.993)× 0.242 + 0.993× τ l,t−1 + 0.0066× εlt.

Figure 1 depicts the time series on τ l,t, lt/(1− lt) and ct/yt.10

Let p denote the percent variance in HP-filtered, log output due to technology shocks in a

model. Table 1 reports that p = 71 in the Kydland-Prescott specification.11 This value of p is

consistent with a key claim advanced by Kydland and Prescott, namely that technology shocks

account for roughly 70% of the cyclical volatility of output. The finding that p is 71% is the

reason we refer to this version of our model as the Kydland-Prescott specification. For reference,

Table 1 reports other standard business cycle statistics for the KP specification.

To assess robustness, we also estimated the parameters, ρl, σl, and σz, by maximizing the

Gaussian likelihood function of the vector, Xt = (∆ log yt, log lt)
0 , subject to the parameter

values in (2.9). We do so using the standard, Kalman filter strategy discussed in Hamilton

(1994, section 13.4).12 Our results are given by:

log zt = µZ + 0.00953× εzt

τ l,t = (1− 0.986)× τ̄ l + 0.986× τ l,t−1 + 0.0056× εlt

For this specification, we find p = 67. We infer that our estimate of the benchmark KP specifi-

cation is robust.

We also consider a Three Shock KP Model, obtained by adding the investment tax shock,

τxt. We estimated this version of the model by maximizing the Gaussian likelihood function of

9Consumption, ct, is the sum of nondurables, services and government consumption. We measure the ratio,
ct/yt, as the ratio of dollar quantities. Total hours worked, lt, is nonfarm business hours worked divided by a
measure of the population, aged 16 and older. The data cover the period 1959QIII to 2001QIV. For the purpose
of these calculations, we scaled per capita hours worked so that the sample mean coincides with steady state
hours worked in the model. We obtained our estimates of ρl and σl by regressing τ l,t − τ̄ l on τ l,t−1 − τ̄ l. In this
way, we imposed that the constant term in the regression is consistent with the value of τ̄ l in CKM. When we
estimate the regression without imposing this restriction, we obtain essentially the same results.
10We found some evidence of serial correlation in the fitted disturbances, εlt. We decided to stay with the

AR(1) representation, in order to maintain comparability with CKM.
11The 71 percent figure is a population value, computed using the spectral integration approach described in

Christiano (2002).
12We removed the sample mean from Xt prior to estimation and set the measurement error in the observer

equation to zero.
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the vector, Xt = (∆ log yt, log lt,∆ log it)
0 , subject to the parameter values in (2.9). The results

are:

log zt = µZ + 0.00968× εzt

τ l,t = (1− ρl)× τ̄ l + ρl × τ l,t−1 + 0.00631× εlt, ρl = 0.9994

τx,t = (1− ρx)× τ̄x + ρx × τx,t−1 + 0.00963× εxt , ρx = 0.9923

For this specification, p = 59. Note that the estimated values of ρx and ρl are close to unity. This

is consistent with the experience of other authors who, when they estimate general equilibrium

models, find that shocks exhibit high serial correlation.13

CKM Benchmark Specification

The Benchmark CKM Model has two shocks, zt and τ lt, which have the following time series

representations:

log zt = µZ + log zt = µZ + 0.00568× εzt

τ lt = (1− 0.940) τ̄ l + 0.940× τ l,t−1 + 0.0080× εlt.

In sharp contrast to the Kydland and Prescott specification, the benchmark CKMmodel implies

that p is only 20 (see Table 1). Other business cycle implications of the CKM benchmark

specification are reported in Table 1. Notice that productivity exhibits a counterfactualy, near-

perfect negative correlation between productivity and hours worked. This negative correlation

reflects that non-technology shocks are the primary driver of business cycle fluctuations in the

CKM benchmark specification.

We also consider a Three Shock CKM Model, obtained by adding the investment shocks, τx,t.

We assume that the law of motion for τx,t is the one used by CKM:

τxt = (1− 0.98) τ̄x + 0.98× τx,t−1 + 0.00847× εxt . (2.10)

The law of motion of zt and τ lt in this model is the same as it is in the CKM benchmark model.

Other Specifications

For diagnostic purposes we consider a series of perturbations of the KP and CKM models

where we vary the values of σ and σl. Varying these parameters allows us to change the value of

p, the fraction of business cycle variance in output due to technology shocks. When we perturb

σ, we always adjust ψ so that steady state labor is what it is in the associated benchmark model.

13See, for example, Christiano (1988), Christiano, Motto and Rostagno (2004), Smets and Wouters (2003).
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3. Results Based on Conventional Estimation Strategies

In this section we analyze the properties of conventional VAR-based strategies for identifying

the effects of a technology shock. Our basic strategy is to simulate artificial time series using

variants of the economic model discussed above as the data generating process. By construction

we know the actual response of hours worked to a technology shock. We then consider what an

econometrician using VARs would find, on average over repeated small samples.

In this section we focus on two key questions. First, is there substantial bias associated with

the estimated dynamic response functions of hours to a technology shock? Second, is there

substantial bias in a standard estimator of sampling uncertainty? The first subsection presents

our answers to these questions when we use the recursive version of the model. The second

subsection presents our results when we use the long-run properties of the standard version of

the model to identify technology shocks.

3.1. Recursive Identification

Analysis of the KP Specification

We begin by discussing the results we obtained using variants of the KP specification as

the data generating mechanism. Throughout we proceed as follows. Using the economic model

as the data generating mechanism,we simulate 1000 data sets, each of length 180 observations.

The shocks εzt , ε
l
t and possibly ε

x
t are drawn from i.i.d. standard normal distributions.

On each data set we estimate a four lag VAR. In data generated from the benchmark KP

and CKM models, the variables in the VAR are ∆ log at and log lt. In data generated from the

three-shock KP and CKM models, the variables in the VAR are ∆ log at, log lt and ∆ log it,

where

it = (1 + γ) kt+1 − (1− δ) kt.

Given the estimated VAR, we calculate the dynamic response of hours to a technology shock

based on the short-run identifying restriction and method discussed in section 2.1.2 above.

The solid lines in Figure 2 are the average dynamic response function obtained over the 1000

synthetic data sets in the different specifications. The starred lines are the true dynamic response

function of hours worked implied by the economic model that is being used as the data generating

process. The grey areas in the figure are measures of the sampling uncertainty associated with

the estimated dynamic response functions. We obtain these measures by first calculating the

standard deviation of the points in the estimated impulse response functions across the 1000

synthetic data sets. The grey areas correspond to a two standard deviation band about the

relevant solid black line. The dashed lines corresponds to the top 2.5% and bottom 2.5% of the

estimated coefficients in the dynamic response functions across the 1000 synthetic data sets. To
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the extent that the dashed lines coincide with boundaries of the grey area, there is support for

the notion that the coefficients of estimated impulse response functions are normally distributed.

An important question is whether an econometrician would correctly estimate the true un-

certainty associated with the estimated dynamic response functions. To address this question we

proceed as follows. For each synthetic data set and corresponding estimated impulse response

function, we calculated the bootstrap standard deviation of each point in the impulse response

function. Specifically, for a given synthetic data set, we estimate a VAR and use it as the

data generating process to construct 200 synthetic data sets, each of length 180 observations,

by randomly drawing from the fitted VAR disturbances. For each of these 200 synthetic data

sets, we estimate a new VAR and impulse response function. We then calculate the standard

deviation of the coefficients in the impulse response functions across the 200 data sets. Finally,

we take the average of these standard deviation across the 1000 synthetic data sets that were

generated using the economic model as the data generating process. The lines with 0’s in Figure

2 correspond to a two standard deviation band about the solid black line and are a measure of

the average standard deviations that a econometrician would construct.

The top left graph in Figure 2 exhibits the properties of the VAR estimator of the response

of hours to a technology shock when the data are generated by the benchmark KP specification.

The 2,1 graph in Figure 2 corresponds to the case when the data generating mechanism is the

KP specification with σ = 0. This case is of interest, because utility is roughly linear in leisure,

corresponding to Hansen (1985)’s indivisible labor model. The 3,1 graph in Figure 2 shows

what happens when σ is increased above its benchmark specification, to σ = 6, in which case

the Frisch labor supply elasticity is 0.63. This case is of interest, because this is the same Frisch

elasticity used in the model studied by Erceg, Guerrieri and Gust (1004). The 4,1 graph in

Figure 2 shows what happens in the three shock KP model. In each case, the impact effect on

hours worked and associated sampling variance is also reported, for convenience, in Table 2.

The first column of Figure 2 exhibits two striking features. First, regardless of which variant

of the KP specification we work with, there is no evidence whatsoever of bias in the estimated

impulse response functions. In all cases, the solid lines virtually coincide with the starred

lines. Second, Figure 2 indicates that an econometrician would not be misled in inference using

standard procedures for constructing confidence intervals. This conclusion reflects the fact that

the average value of the econometrician’s confidence interval (the line with the 0’s) coincides

closely to the actual range of variation in the impulse response function (the grey area). Finally,

it is also interesting to note that the estimated coefficients of the impulse response functions

appear normally distributed: in all cases the boundaries of the grey area coincide closely with

the dashed lines.

Analysis of the CKM Specification

14



The right hand column of Figure 2 reports our results when the data generating mechanism is

given by variants of the CKM specification. The top right hand graph in Figure 2 corresponds to

the CKM specification. The 2,2 and 2,3 graphs in Figure 2 correspond versions of the benchmark

CKM model with σ = 0 and σ = 6, respectively. Finally, the 4,1 graph in Figure 2 corresponds

to the three variable CKM model.

Notice that the second column of Figure 2 contains the same striking features as the first

column. First, there is no evidence whatsoever of bias in the estimated impulse response func-

tions. Second, the average value of the econometrician’s confidence interval coincides closely to

the actual range of variation in the impulse response function (the grey area).

In sum, our analysis of the recursive identification scheme reveals that structural VAR’s

perform remarkably well. This is extremely comforting for the vast literature that has exploited

recursive identification schemes to identify the dynamic effects of shocks to the economy. Of

course, one can criticize the particular short-run identifying assumptions used in any given

analysis. But our results strongly support the view that if the relevant recursive assumptions

are satisfied in the data generating mechanism, standard structural VAR procedures will reliably

uncover and identify the dynamic effects of shocks to the economy.

Finally, note that we did not include capital as a variable in the VAR. Despite this omission,

the structural VAR procedure performs very well. This demonstrates that, claims in CKM to

the contrary, omitting the economically relevant state variable capital does not in and of itself

pose a problem for inference using structural VAR’s.

3.2. Long-run Identification

Analysis of the KP Specification

We begin by discussing results associated with variants of the KP specification. As above

we use versions of the KP specification as the data generating mechanism to simulate 1000 data

sets, each of length 180 observations. The shocks εzt , ε
l
t and possibly εxt are drawn from i.i.d.

standard normal distributions. On each data set we estimate a four lag VAR. Two or three

variables are included in the VAR depending on the specification being analyzed. Given the

estimated VAR, we calculate the dynamic response of hours to a technology shock based on the

long-run identifying restriction and method discussed in section 2.1.1 above. The different lines,

as well as the grey areas in the Figure 3 are the analogs of the corresponding objects in Figure

2.

The top left graph in Figure 3 exhibits the properties of the VAR estimator of the response

of hours to a technology shock, when the data are generated by the KP specification. Notice

that there is virtually no bias in the estimate of the response of hours worked to a technology

shock. While there is considerable sampling uncertainty in the estimator, the econometrician
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would not be substantially misled with respect to inference. This is because, while there is

some tendency to understate sampling uncertainty, the average value of the econometrician’s

confidence interval (the line with the 0’s) coincides reasonably closely to the actual range of

variation in the impulse response function (the grey area).

Consider next the 2,1 graph in Figure 3, which corresponds to the version of the benchmark

KP model with σ = 0. Note that there is a slight increase in bias, although the bias is very

small compared with sampling uncertainty. To understand the reason for the appearance of

some (small) bias in this case, it is interesting to note that p = 60, which is somewhat smaller

than the corresponding value of 71 in the benchmark KP specification (recall, p is the percent

of the business cycle variance in output due to technology shocks). Reducing σ increases the

response of hours worked to both technology and labor tax shocks. However, the impact on the

response of hours worked to a labor tax shock is greater than the impact on the response to a

technology shock.

The 3,1 graph in Figure 3 shows what happens when σ is increased above its benchmark

specification, to σ = 6.In this case the bias in the VAR-based estimator of the impulse response

function almost disappears, and the sampling uncertainty shrinks drastically. To understand

the reason for this, simply apply the discussion underlying the 2,1 graph in reverse. In the

parameterization underlying the 3,1 graph, p = 92, so that technology shocks account for the

vast majority of cyclical fluctuations in output.

The 4,1 graph in Figure 3 shows what happens in the three shock KP model. In this case

there is an increase in bias relative to the benchmark case, although the bias is still small relative

to sampling uncertainty. Consistent with the σ = 0 case, the rise in the bias is associated with

a fall in p in the three shock case to p = 59.

Analysis of the CKM Specification

Consider the left column in Figure 4. The top left graph reports results for the benchmark

specification. Consistent with results reported in CKM, there is substantial bias in the estimated

dynamic response function. In the model, the contemporaneous response of hours to a one-

standard-deviation technology shock is 0.14 percent, while the mean estimated response is 0.65

percent. This large bias is due to the fact that, in CKM’s parameterization of the model,

technology shocks play a very small role in output fluctuations, with p = 20 (see Table 1).

The second and third rows of Figure 4 report results with σl = 0.0080/2 and σl = 0.0080/3,

respectively. In these two cases, the percent business cycle variance in output, p, is p = 50 and

p = 70, respectively. Note how the accuracy of the impulse response functions improves as p

increases.

Figure 5 presents the analog results to Figure 2 for the CKMmodel. The first row of Figure 5

reproduces the first row of Figure 4, for convenience. The second row corresponds to indivisible
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labor case, σ = 0. The third row corresponds to the low Frisch elasticity case, σ = 6. The fourth

row corresponds to the case with three shocks. Notice that there is a considerable increase in

the bias in the indivisible labor and three shock cases. In these two cases, p = 11 and p = 18,

respectively. So, large bias is associated with low values of p. The bias is reduced when σ = 6,

in which case p = 60.

In summary, our results for the CKM model show that there exists parameterizations for

which large biases emerge when the conventional long-run estimation strategy is used. Below,

we argue that these parameterizations are empirically uninteresting. In the next section we

develop a variant of the long-run estimation strategy that virtually eliminates the bias, even in

these empirically uninteresting cases.

4. An Improved Long-Run Estimator

In the previous section we have shown that with the short run identification strategy, the con-

ventional estimator of impulse response functions is remarkably accurate. In contrast, we found

that for some parameterizations of the data generating process the conventional estimator based

on long-run identification restrictions leads to substantial bias. In this section we explore why

recursive identication leads to such accurate results, whereas long-run identification may lead

to biases. We build on this analysis to develop an improved long-run estimation strategy.

We begin by considering a simple analytic expression due to Sims (1972), which approx-

imates what an econometrician who fits a misspecified VAR will find. The expression is an

approximation, because it assumes a large sample of data.14 Let B̂1, ..., B̂q and V̂ denote the

parameters of the q − th order VAR fit by the econometrician to the data. Then,

V̂ = V + min
B̂1,...,B̂q

1
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¡
eiω
¢
− B̂

¡
eiω
¢i0

dω, (4.1)

whereB (e−iω) isB(L) with L replaced by e−iω.15 Here, B and V are the parameters of the actual

VAR representation of the data, and SY (ω) is the associated spectral density, at frequency ω.
16 According to (4.1), estimation of a VAR approximately involves choosing VAR lag matrices

14For additional discussion of the Sims formula, see Sargent (1979). One interpretation of (4.1) is that it
provides the probability limit of our estimators: what they would converge to as the sample size increases to
infinity. We do not adopt this interpretation, because in practice an econometrician uses a consistent lag length
selection method. As a result, the probability limit of our estimators corresponds to the true impulse response
functions in all cases considered in this paper. We verified this by solving (4.1) with q = 300.
15The minimization is actually over the trace of the indicated integral.
16The derivation of this formula is straightforward. Suppose that the true VAR representation of the covariance

stationary process, Yt, is:
Yt = B(L)Yt−1 + ut,

where B(L) is a possibly infinite-ordered matrix polynomial in non-negative powers of L and Eutu
0
t = V. Sup-

pose the econometrician contemplates a particular parameterization of B(L), B̂(L). Let the fitted disturbances
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to minimize a quadratic form in the difference between the estimated and true lag matrices.

The quadratic form assigns greatest weight to the frequencies where the spectral density is the

greatest. If the econometrician’s VAR is correctly specified, then B̂ = B and V̂ = V and the

estimator is consistent. If there is specification error, then B̂ 6= B and V > V̂ .17 In our context,

there is specification error because the true VAR implied by our models has q = ∞, but the

econometrician uses a finite value of q. Specifically, we work with q = 4.

We have found that V̂ is an accurate estimate of V, even for low values of q. For example,

in the case of the benchmark CKM model, the value of V̂ that solves (4.1) is the same, to three

significant digits, for q = 4, 8, 16, and greater.18 This result is perhaps not surprising in view of

(4.1), which shows that a principle objective of least squares is to get V̂ as close as possible to V.

We may also infer from the fact that impulse response functions based on recursive identification

are so accurate, that the levels of B̂1, ..., B̂4 are reasonably well estimated.

It may seem that if V̂ and the levels of B̂1, ..., B̂4 are estimated reasonably well, then estima-

tion based on long-run restrictions should have worked well too. But, such an impression would

be incorrect. Estimation based on long run restrictions requires, in addition to V̂ and the levels

of B̂1, ..., B̂4, an accurate estimate of the sum of the VAR coefficients, B(1). As emphasized by

Sims (1972), it is possible for the levels of regression coefficients to be estimated reasonably

accurately, and yet for the estimate of the sum to be way off.19 Expression (4.1) indicates that

B̂ (1) will be a good approximation for B (1) only if SY (ω) happens to be relatively large in a

neighborhood of ω = 0. This is simply not something one can count on.20

The previous reasoning suggests that estimation based on long-run restrictions may be im-

proved if the zero-frequency spectral density in (2.6) is replaced by an estimator that is specif-

ically designed for the task. With this in mind, we replace S0 with a standard Newey-West

associated with this parameterization be denoted ût. Simple substitution implies:

ût =
h
B (L)− B̂(L)

i
Yt−1 + ut.

The two random variables on the right of the equality are orthogonal, so that the variance of ût is just the
variance of the sum of the two:

var (ût) = var
³h
B (L)− B̂(L)

i
Yt−1

´
+ V.

Expression (4.1) in the text follows immediately.
17By V > V̂ , we mean that V − V̂ is a positive definite matrix.
18This explains why lag length selection methods, such as the Akaike criterion, almost never suggest values of

q greater than 4 in artificial data sets of length 180, regardless of which of our data generating methods we used.
These lag length selection methods focus on V̂ .
19See Sims (1972, p. 169) for a simple illustration of this point.
20Consistent with these observations, we found some modest improvement in estimators when we applied a

band pass filter to remove the very highest frequencies of the data, prior to analysis.
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estimator:

S0 =
T−1X

k=−(T−1)

g(k)Ĉ (k) , g(k) =

½
1− |k|

r
|k| ≤ r

0 |k| > r
, (4.2)

and (after removing the sample mean from Yt)

Ĉ(k) =
1

T

TX
t=k+1

YtY
0
t−k.

We use essentially all possible covariances in the data by choosing a large value of r, r = 150.21

In the next section, we show that our modified procedure for implementing long run restric-

tions does a good job at correcting distortions that occur in the estimation of impulse response

functions based on long-run restrictions. In some respects, our modified estimator is equivalent

to running a VAR with longer lags. The crucial difference, however, is that our method does

not require choosing a VAR lag length. This is an important advantage, because standard lag

length selection procedures are notoriously unreliable.

There are various conjectures in the literature, concerning the impact of persistence in non-

technology shocks on long-run identification of technology shocks. For example, there is an

intuition that the more persistence there is in a non-technology shock, the greater will be the

distortions in long-run identification. The idea is that if a non-technology shock is highly per-

sistent, then it will have a long-lived effect on labor productivity, and this will be confounded

with the effects of technology shocks. The formula in (4.1) shows that there is another consid-

eration that works in the other direction. Greater persistence in a non-technology shock shifts

power in the spectrum towards the lower frequencies. But, the more weight there is in the low

frequency component of the data, i.e., the larger is SY (ω) for ω close to zero, the more likely

it is that B̂ (1) is a good approximation to B (1). Other things the same, this implies that

long-run identification is improved. At the same time, a process for which SY (0) is large may

also have the property that V̂ poorly approximates V . As a result, the net effect of persistence

in non-technology shocks is in fact ambiguous. To see this, consider Figure 6. That graphs the

ratio of the econometrician’s estimator of the contemporaneous impact on hours worked of a

technology shock, to its true value, against ρl, for ρl ∈ [−0.5, 0.9999]. We use the benchmark
CKM model as the data generating mechanism. Also, for each value of ρl, σl is adjusted so that

the unconditional variance of output is held fixed at the value implicit in the benchmark CKM

parameterization. The dot-dashed line in the figure corresponds to the solution of (4.1), with

q = 4, using the standard VAR-based estimator.22 The star in the figure indicates the value of ρl
21Setting the bandwidth, r, equal to sample size does not rovide a consistent estimator of the spectral density

at frequency zero. We assume that as sample size is increased beyond T = 180, the bandwidth is increased
sufficiently slowly that consistency obtains.
22Since (4.1) is a quadratic function, we solved the optimization problem by solving the linear first order

19



in the benchmark CKM model. Note how in the neighborhood of this value of ρl, the distortion

falls sharply as ρl increases. Indeed, for ρl = 0.9999, there is essentially no distortion. For values

of ρl in the region, (−0.5, 0.5) , distortion increases with increases in ρl.

The results in Figure 6 also allow us to assess the accuracy of the approximation in (4.1).

The solid line shows the small sample (T = 180) mean of the standard estimator corresponding

to each value of ρl. For each ρl this mean was computed as the mean across 1,000 Monte Carlo

replications. That the curve is not completely smooth reflects the presence of a small amount of

Monte Carlo sampling error in the calculations. Although the solid line is uniformly below the

dot-dashed line, note that the basic patterns in the two curves is the same. We conclude that

(4.1) is a reliable guide to the operating performance of the standard VAR-based estimator of

impulse response functions.

The results in Figure 6 also allow us to assess the value of our proposed modification to

the standard estimator. The distortions in the standard estimator are quite large, particularly

for small degrees of persistence in the non-technology shock. When the standard estimator

works well, i.e., for large values of ρl, then the modified and standard estimators produce similar

results. However, when the standard estimator works poorly, as for ρl near 0.5, then our modified

estimator shrinks bias by more than a factor of two. In the following section we discuss the

performance of our modified estimator in the whole set of data generating mechanisms analyzed

in section 3.

5. Results For The Improved Long-Run Estimator

We now evaluate the performance of our modified estimator, using the examples in section 3.

Consider Figure 3, which presents results when the data generating mechanism corresponds

to versions of the KP model. In that case, the standard estimator (see the left column) has

relatively little bias, and our modified estimator also has little bias (right column). We noted

before that the econometrician’s estimator of standard errors understates somewhat the degree

of sampling uncertainty. Interestingly, the modified estimator represents an improvement in this

dimension. Note how the lines with circles roughly coincide with the boundary of the grey area.

It is also interesting to note that the degree of sampling uncertainty with the modified estimator

is not greater than the sampling uncertainty of the standard estimator. In fact, in some cases

there is a slight reduction in sampling uncertainty. Now consider Figure 4. These are variants

of the CKM model, in which evidence of bias appears in the standard estimator. Note in the

right column how bias is greatly reduced with the modified estimator. Recall that Figure 5

conditions. These are the Yule-Walker equations, which rely on population second moments of the data (solvingt
these equations is the strategy for computing population projections suggested by Fernandez-Villaverde, Rubio-
Ramirez, and Sargent (2005)). We obtained the population second moments by complex integration of the
reduced form of the model used to generate the data, as suggested in Christiano (2002).
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documents what happens when σl is reduced. When it is reduced to the point that technology

shocks account for 70 percent of fluctuations, then the standard estimator performs quite well.

Our modified estimator also does well in this case. The results in the top two graphs on the

left exhibit examples where the standard estimator results in distortions. These distortions are

virtually eliminated with our modified estimator.

In sum, when the standard estimator works well, then the modified estimator also works well.

When there was evidence of distortion in the standard estimator, then the modified estimator

virtually eliminated the distortion.

6. Relation to CKM

In the preceding sections, we showed that conventional VAR-based methods using long run

restrictions work well in data generated by the KP model. However, substantial biases emerge

when we used the CKM model. We showed that the key reason the CKM model has such

different implications for VARs is that it attributes only a small fraction of output fluctuations

to technology shocks. This feature of the CKM model reflects that when they estimate it,

CKM impose a highly unusual assumption. We show that when this assumption is dropped, the

likelihood function jumps by orders of magnitude and the resulting estimated model is similar

to the benchmark KP model in that it attributes a substantial fraction of business fluctuations

to technology shocks. We conclude that the CKM model is empirically uninteresting. The

implications of that model serve as a potentially important warning to users of VARs that they

should consider using the modified VAR approach that we propose. However, the CKM results

do not constitute a basis for their conclusion that VARs are useless in practice.

At the heart of the CKM estimation strategy is the remarkable assumption that technology

growth can be measured with a high degree of accuracy by the growth rate of government

purchases. Specifically, CKM assume that technology growth equals government consumption

plus a measurement error which has a very small, exogenously fixed variance. The consequences

of this modeling assumption are not surprising. It is well known that government purchases are

at best weakly correlated with output. Since CKM’s estimation criterion also includes output

growth, the model must therefore rely on other shocks to account for output fluctuations.

CKM adopt a Kalman filter framework for estimating their model. Let

Yt = (∆ log at, log lt,∆ log it,∆ log gt) ,

where gt denotes government spending. CKM suppose:

Yt = Xt + ut, Eutu
0
t = R, (6.1)

where R is diagonal, ut is a 4 × 1 vector of iid measurement error and Xt is a 4 × 1 vector
containing the model’s implications for the variables in Yt. The model being estimated only has
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two shocks (τ lt and zt). The parameters estimated are the ones listed in Table 3. In CKM,

government spending is modeled as:

gt = gz,t × Zt,

where gz,t is in principal an exogenous stochastic process. However, when estimating the para-

meters of the technology and preferences processes, τ lt and zt, the variance of the government

spending shock is set to zero, so that gzt is a constant. As a result, CKM assume

∆ log gt = log zt.

During estimation, the elements on the diagonal of R are fixed at 0.012. The optimized value of

the likelihood function, as well at the parameter estimates appear in the first column of Table

3. The second column shows what happens when we allow the diagonal elements of R to be

free. Twice the difference of the optimized likelihoods is 427. Under the null hypothesis that

CKM’s setting for R is correct, this is the realization of a chi-square distribution with 4 degrees

of freedom. Few hypotheses have been rejected as overwhelmingly as this one! Interestingly,

the model with the elements of R freely estimated implies that the fraction of output variance

due to technology is 61, three times greater than CKM’s estimate. The third column in Table

3 shows what happens when we simply drop government spending from the analysis, but keep

the measurement error variance fixed at its value in the first column. Note that the resulting

estimated model is like our KP model in that it implies that 70 percent of the cyclical variation

in output is due to technology shocks. Ultimately, CKM also estimate the parameters for

two other stochastic processes, τxt and gzt. However, in this estimation, they always fix the

parameters of the stochastic processes underlying τ lt and zt to the estimates reported in the

first column of Table 2.23

7. Concluding Remarks

In this paper we studied the performance of structural VARs for uncovering the response of

hours worked to a technology shock. For pedagogical reasons, we only considered very simple

data generating processes, based on variants of a prototype RBC model. We find that with

short-run restrictions, structural VARs perform remarkably well. With long-run restrictions we

find that structural VARs work well when technology shocks play an important role in business

cycle fluctuations, as in the tradition of the RBC literature. This is a property of an RBC model

that we fit by maximum likelihood to the data. We confirmed the results in CKM, who display

models which imply that VARs do less well. These models have this property because they imply

that technology shocks play only a minor role in business cycle fluctuations. We developed a

23To ensure comparability of our results with CKM, the calculations underlying Table 2 use their computer
code and data, available on Ellen McGrattan’s web page.
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modification to the usual VAR methods which works well in artificial data generated by the

CKM models (the modification also works well in the cases where standard methods already

work well). However, it is not clear the CKM examples should be taken seriously as evidence

that VARs do not work in practice. We showed that the CKMmodel is rejected overwhelmingly

by the data.
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Table 1: Selected Business Cycle Statistics
US data KP Specification CKM

Two-Shock Three-Shock Two-Shock Three-Shock
σy 1.6 1.5 1.4 1.4 1.5
σc
σy

0.53
(0.051)

0.58 0.66 0.37 .47
σi
σy

3.66
(0.15)

2.69 3.89 3.80 4.63
σl
σy

1.08
(0.056)

0.84 0.98 1.34 1.36

corr(h, y
h
) −0.39

(0.10)
-0.10 -0.30 -0.74 -0.77

% variance due to technology 71 59 20 18
Note: σx - standard deviation of x; corr(x, y) correlation between x and y; Here, x and y have been logged
first, and then HP-filtered; Standard Errors in Parentheses: Computed by GMM, Appropriate Zero-Frequency
Spectral Density Estimated by Newey-West Proceedure Using Three Lag Autocorrelations and
Bartlett Window



Table 2: Percent Contemporaneous Impact on Hours of One Standard Deviation Shock to Technology
Contribution of Impact of Tech Shock On Hours Worked
Tech Shocks to True Value Standard VAR Newey-West

Model Specification Business Cycle (Plim) Mean (Std Dev) Mean (Std Dev)
Kydland-Prescott Parameterization

Benchmark KP 71 0.29 0.34 (0.43) 0.13 (0.31)
σ = 0 (‘indivisible labor’) 60 0.43 0.55 (0.56) 0.22 (0.45)
σ = 6 (Frisch elasticity=0.63) 92 0.11 0.09 (0.19) 0.03 (0.13)
Three Shocks 59 0.24 0.33 (0.44) 0.14 (0.35)

Chari-Kehoe-McGrattan Paramerization
CKM Benchmark 20 0.14 0.65 (0.39) 0.21 (0.43)
σ = 0 (‘indivisible labor’) 11 0.21 1.28 (0.51) 0.38 (0.59)
σ = 6 (Frisch elasticity=0.63) 60 0.05 0.13 (0.17) 0.03 (0.17)
σl/2 50 0.14 0.26 (0.22) 0.12 (0.23)
σl/3 70 0.14 0.18 (0.15) 0.09 (0.15)
Three Shocks 18 0.14 0.56 (0.48) 0.27 (0.48)
Note: Plim is the probability limit of the standard VAR-based estimator, when the econometrician
uses a consistent lag-length estimator. We verified that such a Plim is correct performing the relevant
population projections with a 300-lag VAR. For other details, see the text.



Table 3: Estimation Results for CKM Model
CKM Benchmark Free Measurement Fixed Measurement Free Measurement

Error Variance Error, No Gov’t Spending Error, No Gov’t Spending
L -2590.3 -2803.8 -2034.1 -2188.4
τ̄ l 0.2415 0.2536 0.2511 0.2550
ρl 0.9403 0.9818 0.9745 0.9865
σl 0.0080 0.0057 0.0062 0.0058
µz 0.0032 0.0042 0.0042 0.0042
σz 0.0057 0.0093 0.0122 0.0097
v∆y 0.01 0.00 0.01 0.0
vlog l 0.01 0.0164 0.01 0.0169
v∆i 0.01 0.0037 0.01 0.0032
v∆g 0.01 0.0188 NA NA
p 20 61 70 64
Notes: p - fraction of business cycle variance in output due to technology shocks; vx measurement error in x
L- maximized value of log likelihood function.



Figure 1 - The Labor Tax Wedge and Its Components
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Figure 2: Analysis of Short−Run Identification Assumption
KP Model CKM Model
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Note: hours response, in percent terms, to a 1.2 (KP) or 0.6 (CKM) percent innovation in technology, Z
t
.

Solid line − mean response, Gray area − mean response plus/minus two standard errors,                      
Starred line − true response, Dashed line − 95.5 percent probability interval of responses,                
Circles − average value of econometrician estimated plus/minus two standard errors.                        



Figure 3: Analysis of the Long−Run Identification Assumption with Kydland−Prescott Specification
Standard Estimator Newey−West Spectral Estimator
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Figure 4: Analysis of the Long−Run Identification Assumption with CKM SpecificationFigure 4: Analysis of the Long−Run Identification Assumption with CKM Specification
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Figure 5: Analysis of the Long−Run Identification Assumption with CKM Specification

Standard Estimator Newey−West Spectral Estimator

Benchmark CKM

0 2 4 6 8 10

−0.5

0

0.5

1

0 2 4 6 8 10

−0.5

0

0.5

1

CKM with Half the Volatility in the Labor Tax Shock

0 2 4 6 8 10

−0.5

0

0.5

1

0 2 4 6 8 10

−0.5

0

0.5

1

CKM with One−third the Volatility in the Labor Tax Shock

0 2 4 6 8 10

−0.5

0

0.5

1

0 2 4 6 8 10

−0.5

0

0.5

1

Note: hours response, in percent terms, to a 0.6 percent innovation in technology, Z
t
.  

Solid line − mean response, Gray area − mean response plus/minus two standard errors,      
Starred line − true response, Dashed line − 95.5 percent probability interval of responses,
Circles − average value of econometrician estimated plus/minus two standard errors.        



−0.5 0 0.5 1
0

2

4

6

8

10

12

ra
tio

ρ

Figure 6: Ratio of Estimated to True Contemporaneous Impact of Technology on Hours (Benchmark CKM Model)

ratio, mean of standard estimator, p=4, T=180
ratio, mean of modified estimator, p=4, T=180
ratio, estimator with p=4, T=inf
model value


