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Abstract

This paper examines the extent to which short–run restrictions can be used as a way to

identify the deep parameters of a DSGE model. We propose a simple statistical framework

designed to quantitatively assess this issue. We then consider a fully–fledged RBC model with

habit formation and investment adjustment costs that we take to the data using Minimum

Distance Estimation (MDE). We show that as long as the model possesses weak propagation

mechanisms, MDE effectively treats structural parameters as deep parameters. On the

contrary as soon as propagation mechanisms are rich enough, the ability of MDE to identify

deep parameters is questioned because timing restrictions propagate over time.
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Introduction

The econometrics of Dynamic Stochastic General Equilibrium (DSGE) models has witnessed

substantial advances over the recent years. It is nowadays more and more common to bring

DSGE models to the data using a variety of formal statistical techniques, including Maximum

Likelihood estimation (Altug [1989], Ireland [2004]), Generalized Method of Moments (Chris-

tiano and Eichenbaum [1992], Burnside, Eichenbaum and Rebelo [1993]), Bayesian techniques

(Schorfheide [2000], Smets and Wouters [2003]), and Minimum Distance Estimation (Rotem-

berg and Woodford [1997], Christiano, Eichenbaum and Evans [2005a]). The present paper is

concerned with the principles underlying the latter econometric technique.

The Minimum Distance Estimation (MDE) technique consists in estimating the structural pa-

rameters of DSGE models so as to minimize a weighted distance between theoretical impulse

responses of key macroeconomic variables to structural shocks and those derived from a Struc-

tural Vector Autoregression (SVAR). The attractive feature of this method is that it allows

researchers to bring structural and empirical approaches into closer conformity. Moreover, such

a limited information approach does not impose fully specifying the whole stochastic structure of

the DSGE model as attention is focused only on those shocks that are relevant for the question

under study.

This method requires that an auxiliary SVAR model be estimated prior to estimating the DSGE

parameters. In doing so, a researcher has access to at least two broad types of identifying

restrictions.1 Blanchard and Quah [1989] and Gaĺı [1999] have proposed to identify shocks

based on long-run restrictions. For example, Gaĺı [1999] identifies technology shocks as the only

shocks that have an effect on the long–run level of labor productivity. The attractive feature

of this approach is that this type of restrictions holds in a broad class of competing DSGE

models. However, Erceg, Guerrieri and Gust [2005], and Chari, Kehoe and McGrattan [2005]

have recently questioned the ability of long–run restrictions in SVAR to properly recover the

shocks. An alternative approach consists in imposing short–run restrictions through which some

variables are forbidden to react to some shocks on impact (Sims [1980], Christiano, Eichenbaum

and Evans [1999], Christiano et al. [2005a]). Christiano, Eichenbaum and Vigfusson [2005b]

show that this latter technique performs remarkably well compared to long–run restrictions. In

particular, such restrictions are able to correctly and precisely pin down the shocks. This suggests

that SVAR with short-run restrictions can be a useful assessment device when constructing and

evaluating a DSGE model, even though a broad class of DSGE models do not a priori meet

1Another class of identifying assumptions relies on sign restrictions, which are generally robust. However, using
such restrictions requires that the modeler has a prior knowledge of the expected sign of the responses under study.
This prior knowledge generally stems from a DSGE model. Notice that when some deep parameters, unknown
to the econometrician, vary, the sign of the response of interest might change as well. Our model will exemplify
this case.
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these identifying assumptions (see Canova and Pina [2005]).

It is thus important to stress that applying the MDE approach requires that DSGE and SVAR

share the same restrictions. With short-run restrictions, this implies that some form of recursive-

ness be imposed in the DSGE model to make it compatible with the SVAR. This requires that

information sets in the model be manipulated, i.e. some decisions are taken prior to observing

the current period shocks. To some, imposing this type of constraints in a DSGE model might

seem restrictive.

Yet, restricting the information sets has proved useful in many empirical studies. First, this

has proved a fruitful research strategy, as exemplified by factor hoarding models (Burnside et

al. [1993], Burnside and Eichenbaum [1996]), limited participation models (Christiano [1991],

Christiano, Eichenbaum and Evans [1997]), or preset prices models (Obstfeld and Rogoff [1995],

Gaĺı [1999]). Second, this method has sparked important developments in applied monetary

economics, e.g. Rotemberg and Woodford [1997], Christiano et al. [2005a], Boivin and Giannoni

[2005], Giannoni and Woodford [2004]. This is exemplified in Woodford [2003] who discusses

how monetary DSGE models can be brought into closer conformity with monetary SVARs by

suitably restricting the information set used to base agents decisions. Short–run restrictions are

now used as an identification and estimation device.

In this paper, we investigate the ability of such restrictions to properly identify the deep pa-

rameters of DSGE models. More precisely we ask the question of whether the MDE method

treats structural parameters as deep parameters — i.e. parameters that remain invariant to the

short-run identification scheme used to identify shocks. For example, Christiano et al. [2005a]

show that manipulating the information set has negligible effects on the dynamic properties

of their model, in response to a monetary policy shock identified with short-run restrictions.

Similarly, Christiano et al. [2005b] show that in a standard Real Business Cycle (RBC) model,

the response of hours to a permanent technology shock is not dependent upon the timing of

decisions regarding labor supply – except on impact. We argue that this invariance property

stems from the lack of strong propagation mechanisms with regards to the shock under study.

In contrast, in models with richer propagation properties, the timing of decisions may deeply

affect both the sign, magnitude, and persistence of responses to shocks. This suggests that MDE

with short–run restrictions might not identify truly deep parameters.

We first develop a simple statistical framework designed to quantitatively assess the role of

timing restrictions. The general idea of our procedure is to ask whether it is possible to find

a value of deep parameters in an unrestricted version of the DSGE model under consideration

that allows us to match the responses obtained in its restricted version. If so, both versions are

observationally equivalent in terms of the auxiliary model (SVAR). It is then possible to test
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whether the estimated structural parameters in both versions of the DSGE model are equal.

When the null of equivalence is not rejected, MDE is found to truly estimate deep parameters,

i.e. parameters are invariant to the timing of decisions.

We then consider a fully–fledged RBC model with habit formation and investment adjustment

costs in the line of Christiano et al. [2005a]. A version of this model with predetermined hours

is estimated on US data via MDE using the impulse response functions of output and hours to

a technology shock as implied by a SVAR with short–run restrictions.2 The model is found to

fit satisfactorily the data and estimated structural parameters point to a significant degree of

real frictions (habit, investment adjustment costs).

Finally, we apply our proposed statistical procedure and assess the role of timing restrictions.

We first show that the estimated DSGE models with restricted and unrestricted hours differ

sharply. When hours cannot respond to technology shocks on impact, they increase smoothly

in the subsequent periods, whereas they dramatically drop when they can freely react to the

shock. As a complementary exercise, we investigate a stripped down version of the model where

propagation mechanisms are drastically weakened (habit and adjustment costs parameters set to

zero). In this case, we find that restricting the information sets has no substantial consequences

on the dynamics of hours and other aggregate variables. Note however that this version of the

model is rejected by the data. Second, we investigate how information lags propagate over the

entire economy. We find that output, productivity, consumption and investment are all affected

by the timing of hours decisions. Our testing approach formally confirms the quantitative

importance of restricting hours. In particular, we show that the structural parameters estimated

so that the unconstrained model matches its constrained counterpart statistically differ from the

original estimates. This means that these cannot be treated as deep parameters. Finally, we

show that the model with restricted hours faces important identification problems, except when

investment is taken as the informative variable.

The paper is organized as follows. In section 1, we start by expounding the basic principles

of DSGE models evaluation from SVARs with short-run restrictions. We lay out a number of

statistical tools designed to assess the role of timing decisions. Section 2 considers a fully-fledged

DSGE model with habit formation and investment adjustment costs, which we bring to the data.

In section 3, we use the estimated model and the method outlined in section 1 to illustrate how

information restrictions are not quantitatively innocuous. The last section briefly concludes.

2Note that in the present case, short–run restrictions deliver responses very similar to what would stem from a
SVAR with long–run restrictions. This suggests at first glance that short–run restrictions do not a priori distort
the IRFs as estimated by the SVARs.
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1 Short-Run Restrictions as an Identification Device

This section presents a brief summary of the Minimum Distance Estimation method and our

evaluation procedure.

1.1 Minimum Distance Estimation with Short-Run Restrictions

Let us consider a sequence of data {xt}
T
t=1, where xt is a vector of dimension nx. We assume

that xt can be represented by a canonical VAR of the form

A(L)xt = εt,

where A (L) = (I − A1L − . . . − AℓL
ℓ) and ℓ denotes the number of lags. εt are the canonical

innovations with zero mean and covariance matrix E {εtε
′

t} = Σ.

Economists are mostly interested in uncovering the structural shocks that hit the economy.

These are intimately related to the canonical innovations, as the latter can be viewed as linear

combinations of structural shocks ηt,

εt = Sηt,

which hit the economy in each and every period. S is a non singular matrix that specifies the

mapping between canonical innovations and structural shocks. The data only provide informa-

tion on the canonical innovations, and some additional assumptions have to be placed to identify

the structural shocks. We therefore impose an orthogonality assumption on the structural shocks

and a normalization condition (E {ηtη
′

t} = Inx). Doing so, we set out nx(nx + 1)/2 constraints

out of the n2
x needed to completely identify S. Imposing the remaining nx(nx − 1)/2 identifying

constraints usually requires restrictions borrowed from economic theory.

Many types of of identifying restrictions can be imposed on a system. Blanchard and Quah

[1989] and Gaĺı [1999] have proposed to identify shocks based on long–run restrictions. Uhlig

[2005] and Canova and de Nicolò [2002] propose to identify shocks based on sign restrictions. In

this paper, we follow Sims [1980] and consider short-run restrictions. In such a setting, S can

then be recovered by solving SS′ = Σ. A structural MA(∞) representation of the dynamics of

xt is then given by

xt = C(L)ηt

where C (L) =
∑

∞

i=0 CiL
i = A (L)−1 S.

Imposing short-run identifying assumptions amounts to restrict the impact response of certain

variables to structural shocks, i.e. set to zero some elements of C (0). Notice that since A (0) =

Inx , it must be the case that C (0) = S. The selection of the variables that are allowed to
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contemporaneously react to a shock is undertaken by (i) imposing a particular ordering in xt

and (ii) setting matrix S equal to the Cholesky decomposition of Σ (see Sims [1980]). As an

example, let us consider a VAR modeling the joint dynamics of hours and productivity. One

may then recover a technology shock imposing that this shock has no impact effect on hours,

while productivity may react. This assumption can be imposed by assuming (i) that hours come

first in the vector xt, and (ii) that C(0) has the following structure

C(0) =

(
× 0
× ×

)

Let us define C
(i,j)
h the (i, j) element of matrix Ch, the h–th coefficient of the matrix polynomial

C (L). Thus, the response of variable xi,t to shock j at horizon h is given by

Iij (h) ≡
∂xi,t+h

∂ηj,t

= C
(i,j)
h .

In the MDE approach, these responses constitute the objects to be matched by the DSGE model.

Let ÎT (H) denote the vector collecting the responses of interest from the SVAR for the horizons

H = {1, . . . , h}, obtained from the data {xt}
T
t=1. In the case of short-run restrictions and for

practical reasons, it is important to exclude the impact response of constrained variables, since

the latter is a degenerate random variable.

These empirical impulse responses are then used to identify the structural parameters of a DSGE

model. A generic linear(ized) DSGE model admits the following representation

E
⋆
t





τf∑

i=−τb

Hi (θ1) yt+i +

rf∑

i=−rb

Ri (θ1) st+i



 = 0

where the τ ’s and the r’s are integer, the Hi (θ1)’s and the Ri (θ1)’s are matrices whose elements

are possibly complicated functions of the deep parameters θ1. yt is a vector of ny endogenous

variables, and st is a vector of ns exogenous variables, including current and past values of the

structural shocks. Notice that for the MDE to be well defined, the variables in xt must be a

subset of the variables about which the DSGE model has something to say, i.e. xt is composed

of elements included in yt. Finally, E ⋆
t {·} is a conditional expectation operator satisfying

E
⋆
t (F (yi, sj)} =




E {F1(yi, sj)|I1,t}
E {F2(yi, sj)|I2,t}

...
E {Fny(yi, sj)|In,t}


 with i = −τb . . . , τf , j = −rb . . . rf

where F denotes the set of equations of the model. This makes it explicit that each endogenous

variable is possibly determined on the basis of a specific information set, and can therefore be

prevented from reacting to a particular shock in the current period, as long as the latter is
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excluded from Ii,t. It is important to stress that the model should share the same information

structure as that implied by the recursive identification scheme imposed in the SVAR. In other

words, the information sets Ii,t, i = 1, ..., ny, in the DSGE should incorporate the exact same

short–run exclusion restrictions as in the VAR. As for illustrative purposes, let us go back to

our simple example. Since the technology shock is identified, in the VAR model, assuming that

hours do not react to this shock, we would assume that agents take their labor supply decisions

prior to observing the shocks in the DSGE model.

Note that these information restrictions have critical implications for the interpretations of the

structural shocks and the definition of the relevant innovation. Indeed, without any information

constraint, the shock taking place in the current period constitutes the innovation of any of the

variables of the economy. In contrast, when some variables are decided prior to observing the

structural shocks, the relevant innovations for such variables are those pertaining to the latest

period. As an example, let us consider again the case where hours in period t are decided prior

to observing the technology shock of period t. The relevant innovation to be considered for

hours is the technology shock that occurred in period t − 1.

The vector of exogenous variables st is assumed to evolve according to the law of motion

st = P (θ2) st−1 + Q (θ2) εt,

where θ2 is a vector of parameters governing the dynamics of the forcing variables. A rational

expectations solution to the model then admits the following representation

yt = D1 (θ1) yt−1 + · · · + Dτb (θ1) yt−τb + M (θ1, θ2) st.

Using this solution, it is easy to uncover the mapping I (θ,H) from the structural parameters to

the model counterpart of ÎT (H), where θ ≡ (θ1, θ2). Then, the MDE estimator of θ is defined

as follows

θ̂T = argmin
θ∈Θ

(I(θ,H) − ÎT (H))′WT (I(θ,H) − ÎT (H)), (1)

where Θ is the set of admissible values for θ and WT is a positive semi-definite weighting

matrix. WT denotes the inverse of a consistent estimate of the covariance matrix of ÎT (H). It

is common practice in the literature to use instead a diagonal weighting matrix that involves

the inverse of each impulse response’s variance on the main diagonal (see Christiano et al.

[2005a]). With this choice, the structural parameters θ are selected so that I(θ,H) lies as much

as possible inside the confidence interval of ÎT (H). Efficient MDE would suggest to use the

complete variance-covariance matrix of impulse response functions as a weighting matrix. In

most empirical applications, this may be impossible. Indeed, the nh impulses (n 6 nx and h is

the horizon of each response) that we want to match depend on the vector of VAR parameters,

whose dimension is k = n2
xℓ + nx(nx + 1)/2. In practice, however, it is not uncommon that
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nh > k. For example, Altig, Christiano, Eichenbaum and Linde [2005] study a SVAR with four

lags and 10 variables, implying k = 455. They seek to match the impulse response functions of

these 10 variables to three shocks, for h = 20, implying nh = 592 > k, once short-run exclusion

restrictions have been properly taken into account.

The structural parameters θ are pinned down so as to minimize the discrepancy between SVAR–

based impulse response functions and their DSGE counterparts. The value of the objective

function at convergence can then be used to test the ability of the model to match the impulse

response functions implied by the SVAR. This is undertaken using an overidentification test à la

Hansen [1982] (Hereafter J–stat). The statistics is distributed as a chi–square with nh− dim(θ)

degrees of freedom. θ̂T is normally distributed with covariance matrix

V (θ̂T ) =

(
∂I(θ,H)′

∂θ

∣∣∣∣
θ=bθT

WT

∂I(θ,H)

∂θ′

∣∣∣∣
θ=bθT

)
−1

.

In the sequel, all the quantitative assessments of the role of timing assumptions rely on θ̂T and

V (θ̂T ).

1.2 Assessing the Role of Timing Restrictions

The deep parameters as estimated by the method described in the previous section are obtained

imposing a set of short–run restrictions on the behavior of variables both in the data and in the

model. This section is concerned with the exact quantitative role played by these restrictions.

This assessment is therefore in line with the robustness check conducted by Christiano et al.

[2005a]. They show that, as far as their model is concerned, the timing of decisions does not

have a substantial impact on the dynamic properties of their model economy. Their assessment

essentially stems from comparing impulse response functions where informations lags are kept

and dropped. In this section, we propose to extend the analysis and provide additional tools to

gauge the role of timing restrictions.

As a first check, we propose to follow Christiano et al. [2005a] and consider two alternative models

corresponding to two short–run identification schemes. In the first model, labeled M1(θ), we

assume that all variables can instantaneously and freely react to any unexpected shock on a given

exogenous variable. The second model, labeled M2(θ), shares the same information structure

as the SVAR. It is therefore constrained. Accordingly, it is the model used to estimate the deep

parameters, θ̂T . Then, for a given θ̂T , it is possible to assess the role of the timing restrictions by

comparing the impulse responses generated by model M1(θ̂T ) and M2(θ̂T ). This comparison

should obviously be conducted for the set of variables used to estimate the deep parameters

as well as the other variables the model has something to say about. This reveals the way

the dynamic properties of the models do propagate information lags through the economy.
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The strict comparison of the impulse response functions (sign, amplitude, persistence) may be

supplemented by the computation of the ratio of the two impulse responses for the relevant

innovation. Should this ratio be constant over time, the propagation of this innovation would

be the same in the two models. An alternative way of assessing the problem is to have a look

at the autocorrelation function as computed by restricting the space of shocks to the shock of

interest.

When the impulse responses are the same in both models, short–run restrictions have no impact

on the dynamic properties of the model. A direct consequence of this result is that the estima-

tion method would lead to the same estimates for θ no matter the timing imposed on decisions.

In such a setting the estimation method deals with the structural parameters as deep param-

eters — i.e. invariant to the timing. When, on the contrary, the impulse responses differ, we

have M1(θ̂T ) 6= M2(θ̂T ), meaning that short–run restrictions have a long–lasting effect on the

dynamics of the model. On the one hand, these are good news as this means that information

lags carry a lot of information usable by the estimation method.3 This may actually be used as

a model selection device. On the other hand, this has a direct consequence on the estimation of

the parameters that ought to differ depending on the timing of decisions. Therefore, this raises

the question of the way this econometric approach deals with structural parameters: Are they

deep parameters? Indeed, when M1(θ̂T ) 6= M2(θ̂T ), it is legitimate to ask whether there exists

a set of parameters θ̃T such that M1(θ̃T ) = M2(θ̂T ) — i.e. model M1, when parameterized

with θ̃T is able to mimic the model with timing restrictions. This suggests a second check of the

estimation method.

This second way of evaluating the method amounts to conducting a test in the line of encom-

passing principles. The idea is first to find a vector of parameters θ̃T that minimizes the distance

between the impulse response function of unconstrained variables as computed in model M1(θ)

— the model without timing restrictions — and the impulse response function from model

M2(θ̂T ) — i.e. for the parameter set such that the impulse response of M2 match the data

θ̃T = argmin
θ∈Θ

(
I1(θ,H) − I2(θ̂T ,H)

)
Ω2(θ̂T )

(
I1(θ,H) − I2(θ̂T ,H)

)
′

(2)

where Ij(θ,H) collects all the impulse response functions to the shock we want to consider in

the test, for the set of horizons H = {1, . . . , h}, in model j. The weighting matrix Ω2(θ̂T ) is the

covariance matrix of the impulse response function I2(θ̂T ,H) and is deduced from the covariance

matrix of θ̂T as

Ω2(θ̂T ) =

(
∂I2(θ,H)′

∂θ

∣∣∣∣
θ=bθT

V (θ̂T )
∂I2(θ,H)

∂θ′

∣∣∣∣
θ=bθT

)
−1

. (3)

3This is actually no surprise as a whole strand of the literature has used these delays to reconcile models with
the data (see Burnside et al. [1993], Burnside and Eichenbaum [1996], Christiano et al. [1997] . . . )
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The matrix Ω2(θ̂T ) may not be defined when dim(θ̂T ) < dim(I2(θ,H)). As in the case of the

weighting matrix WT at the estimation stage (see equation (1)) in practice we use instead the

inverse of the diagonal of (∂I2(θ,H)′/∂θ)V (θ̂T )(∂I2(θ,H)/∂θ′). Once again, with this choice,

the structural parameters θ of model M1 are selected so that I1(θ,H) lies as much as possible

inside the confidence interval of I2(θ̂T ,H).

An attractive feature of this procedure is that it allows to test immediately for the equivalence

between the two models. Indeed, one can conduct an over–identification test à la Hansen [1982],

which is distributed as a chi–square with nh−dim(θ) degrees of freedom, where n is the number of

variables for which we want to match the impulse response functions. When the null hypothesis

is rejected, there does not exist a value for θ for which the model without timing restrictions is

observationally equivalent to the constrained model. Information sets matter. However, when

the null hypothesis is rejected, one still cannot conclude that information restrictions have no

consequences on the dynamics of the model. More precisely, one must test whether θ̃T = θ̂T

before concluding that information sets do not matter. This can be formally tested using the

following Wald statistics

W1(θ̃T , θ̂T ) = (θ̃T − θ̂T )′V (θ̂T )−1(θ̃T − θ̂T ) (4)

Under the null of equality, the statistics is distributed as a chi–square with dim(θ) degrees of

freedom. When the null is not rejected, the two models are observationally equivalent. Infor-

mation restrictions do not matter for the estimation of the deep parameters. On the contrary,

when the null is rejected, θ̃T 6= θ̂T , the structural parameters, when plunged into model M1,

have to be distorted in order to match the dynamics implied by the model with information

lags. The information structure then matters. But this questions the ability of the econometric

technique, which uses short–run restrictions, to treat structural parameters as deep parameters

— i.e. parameters invariant to the information structure.

One can go one step further by rebuilding some counterfactual dynamics for the model with

information lags. Indeed, the last value of the set of parameters, θ̃T , (when statistically different

from θ̂T ) can be used to feed model M2. This then allows us to test whether M2 is affected by

this change in θ. This can be formally tested using the Wald test

W2(θ̃T , θ̂T ) =
(
I2(θ̃T ,H) − I2(θ̂T ,H)

)
Ω2(θ̂T )

(
I2(θ̃T ,H) − I2(θ̂T ,H)

)
′

(5)

where Ω2(θ̂T ) is defined in equation (3). Under the null, W2(θ̃T , θ̂T ) is distributed as a chi–

square with nh degrees of freedom. When the null of equality cannot be rejected, a change

in the parameter does not alter the dynamics properties of model M2. This reveals a severe

identification problem of the structural parameters in the model, as highlighted by Canova and

Sala [2005].
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2 A Fully—Fledged DSGE Model

This section develops a fully-fledged business cycle model including a variety of real frictions.

These features reinforce the propagation mechanisms and therefore allow for a formal test of the

model.

2.1 The Model

We consider an extended version of the RBC model in which we allow for habit formation

and investment adjustment costs. Both mechanisms have proven useful in accounting for the

dynamics of macroeconomic variables in particular in terms of their persistence properties (see

e.g. Boldrin, Christiano and Fisher [2001] and Christiano et al. [2005a]).

We assume that intertemporal consumption choices are not time separable and that the flows of

consumption services are a linear function of current and lagged consumption decisions. Labor

is assumed to be indivisible as in Hansen [1985]. More precisely, the intertemporal expected

utility function of the representative household is given by

E

[
∞∑

s=0

βs {log (Ct+s − bCt+s−1) − χNt+s}

∣∣∣∣It

]
, (6)

where β ∈ (0, 1), b ∈ [0, 1) and χ > 0. In what follows, we consider two versions of this

model, differentiated according to the timing decision of hours. E (·|It) denotes the expectation

operator conditional on the information set It.

The representative firm produces the homogeneous final good Yt by means of capital, Kt, and

labor, Nt, using a constant returns–to–scale technology represented by the following Cobb–

Douglas production function

Yt = Kα
t (ZtNt)

1−α ,

where α ∈ (0, 1). Zt is a shock to total factor productivity and is assumed to follow a random

walk process with drift of the form

log(Zt) = γz + log(Zt−1) + σzεz,t,

where σz > 0 and εz,t is iid with zero mean and unit variance. The constant γz is the drift term

and accounts for the deterministic component of the growth process. The homogenous good can

be either used for consumption and investment purposes. Capital accumulation is governed by

the law of motion

Kt+1 = (1 − δ)Kt + F (It, It−1)
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where δ ∈ (0, 1) is the constant depreciation rate. The function F(·, ·) accounts for the presence

of adjustments costs in the capital accumulation. F(·, ·) indeed rewrites as

F (It, It−1) =

[
1 − S

(
It

It−1

)]
It

where S(·) reflects the presence of adjustment costs. We assume that S(·) satisfies (i) S(γz) =

S ′(γz) = 0 and (ii) ξ = S ′′(γz)γ
2
z > 0. It follows that the steady state of the model does not

depend on the parameter ξ while its dynamic properties do. Notice that following Christiano

et al. [2005a], Christiano and Fisher [2003] and Eichenbaum and Fisher [2005], we adopt the

dynamic investment adjustment cost specification. In this environment, it is the growth rate

of investment which is penalized when varied in the neighborhood of its steady state value.

In contrast, the standard specification penalizes the investment-to-capital ratio. The dynamic

specification for adjustment costs is a significant source of internal propagation mechanisms as

it allows for a hump-shaped response of investment to various shocks.

Finally the market clearing condition on the good market writes

Yt = Ct + It.

We consider two versions of this model. In the first version, denoted M1, we follow the standard

approach and assume that all decisions are taken after the realization of the technology shock

at t (It = {Zt−i; i = 0, . . . ,∞}). In the second version, denoted M2, we follow Christiano et

al. [2005b] and assume that labor supply decisions are taken prior to observing the technology

shock (It = {Zt−i; i = 1, . . . ,∞}). Consumption and investment are however chosen after the

shock is observed.

The model is then deflated for the stochastic trend component4 and log–linearized around the

deterministic steady state. The approximated dynamic system is then solved using standard

techniques.

2.2 Benchmark Calibration

In order to provide quantitatively meaningful results, we need to assign values to the deep

parameters. We split the set of structural parameters in two subsets. The first set consists of

parameters held fixed across all experiments. This set consists of {α, β, δ, γz} and the assigned

values are reported in Table 1. The parameter α is set such that the labor share is 0.64. The

depreciation rate, δ, is set such that capital depreciates at the annual rate of 10%. The growth

factor γz is set to 1.005, so as to mimic the average growth rate of US output over the period

1948:I-2002:IV. Finally, the discount factor, β, is set to 0.99.

4Output, consumption and investment are divided by Zt, and the capital stock is divided by Zt−1
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Table 1: Baseline parametrization

γz α δ β

1.005 0.360 0.025 0.990

The second subset, θ, consists of the habit persistence parameter b, the adjustment costs param-

eter, ξ, and the standard deviation of the technology shock, σz. We investigate two cases. In

the first one, we estimate b, ξ, and the volatility of the shock so as to reproduce the response of

hours worked and output to a technology shock in the US economy as obtained from a SVAR.

In the second case, both b and ξ are set to zero implying that the model corresponds to the

canonical frictionless RBC model and is similar to the case considered by Chari et al. [2005] and

Christiano et al. [2005b].

Structural parameters are estimated using the MDE approach. We therefore estimate a SVAR

for the US economy. Following Gaĺı and Rabanal [2004], we use quarterly U.S. data on the

growth rate of labor productivity in the nonfarm business–sector, and hours of all persons5 in

this sector for the period 1948:I–2002:IV. The data are reported in Figure 1. Hours are taken

Figure 1: Data
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in level, as in Christiano, Eichenbaum and Vigfusson [2004]. In practice, the VAR is estimated

with four lags.

Usually, technology shocks are identified in SVARs as the only shocks that exert a long-run

effect on the level of labor productivity, e.g. Gaĺı [1999]. Using such an identifying restriction,

we obtain results reported in Figure 2. The figure graphs the impulse response function of

output and hours worked after a positive technology shock as identified by the long–run (plain

line) identification assumption. The shaded area corresponds to the 95% confidence interval of

the responses obtained relying on numerical integration. As can be seen on the graph, output

5Hours are expressed in per–capita terms using the civilian noninstitutional population aged 16 and over.
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Figure 2: Impulse Response to a Technology Shock (Actual Data)
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permanently and positively increases after a technology improvement, while hours increase in the

short–run and only gradually. Interestingly, the impact response of hours is almost zero. This

suggests the alternative identification restriction of technology shocks that consists in assuming

that these shocks have no contemporaneous effect on hours worked (dashed line in Figure 2).

This actually corresponds to the information structure of model M2. Interestingly, the dynamics

of output and hours obtained using a short–run identification scheme are very similar to those

obtained using long–run restrictions.6 This is illustrated in Figure 2. The figure shows that the

short–run identification statistically delivers the same technology component as the long–run

identification. This is confirmed by Figure 3 which reports the plot of the technology shock as

identified relying on a short–run identification against the technology shock as identified relying

6Extending the VAR to a broader set of variables by including, for example, the consumption–output ratio
does not alter both the impact effect and the shape of the IRF to a technology shock. In particular, the impact
effect is not significantly different from zero. The results are not reported in this version of the paper to save
space but are available from the authors upon request.
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on a long–run identification scheme. A test of the slope of the regression line of the two structural

shocks indicates that a unitary slope cannot be rejected at the 5% conventional significance level

(p–value : 55.14%). The latter result suggests that imposing short-run restrictions in our VAR

model does not distort the estimated impulse responses of output and hours. Moreover, the

confidence intervals are pretty narrow (see Figure 4), suggesting that these responses are very

informative when used as an item to be matched in the MDE procedure.

The responses of output and hours to a technology shock identified through a short–run restric-

tion are the objects to be matched by the DSGE model with information lags (model M2).

More precisely, the vector of structural parameters θ = (b, ξ, σz) is estimated by matching the

11 responses of output and the 10 free responses of hours (the first point is excluded as its

distribution is degenerated). We estimate the parameters using the MDE method (section 1.1).

More precisely, we minimize the loss function defined in equation (1). The results are reported

in Table 2. They first indicate that the full model cannot be rejected by the data at conventional

Table 2: A canonical experiment: Estimation Results

b ξ σz J–stat

Full Model 0.7253 3.3942 0.0126 9.2817
(0.4337) (1.7215) (0.0006) [95.30]

RBC Model – – 0.0102 102.6938
(0.0004) [0.00]

Note: Standard deviation into parenthesis, p–values (%) into
brackets.

significance level (p–value=95.30). This is illustrated in panel (a) of Figure 4 which plots both

the theoretical and the actual impulse responses of hours worked and output. The figure shows

that the theoretical impulse responses lie within the 95% confidence interval of the corresponding

impulse response found in the data, so that the model can be thought of as a good representation

of the dynamics of the data. This result obtains because the model exhibits significant habit

persistence and investment adjustment costs. For instance, the parameters ruling the size of

these two phenomena are significantly estimated. A constrained version of the model — the

standard RBC model — where both b and ξ are restricted to be zero is strongly rejected by

the data, as can be seen from panel (b) of Figure 4. The failure of this model originates mainly

from its inability to reproduce gradual increases in hours and output after a technology shock.

Therefore the quasi likelihood ratio test (see Newey and West [1987]) of the joint significance of

b and ξ strongly rejects the nullity of these two parameters.

It is also worth noting that the estimated value of both parameters are within the range of values

reported in earlier studies (see e.g. Christiano et al. [2005a], Boldrin et al. [2001], Christiano and
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Figure 4: Impulse Response to a Technology Shock
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Fisher [2003]). A direct consequence of this result is that the model possesses strong propagation

mechanisms that enhance its ability to account for the persistence of aggregates. For example,

the second order serial correlation of output growth found in the data is 0.19. The model can

account for 75% of it as it generates a second order autocorrelation of 0.14.

3 Short-Run Restriction as an Identification Device

In this section, we quantitatively assess the ability of short-run restrictions to identify the deep

parameters and closely follow the approach described in Section 1.2.

3.1 Assessing the Role of Timing Restrictions

Figure 5 superimposes the empirical SVAR model, fitted model M2(θ̂T ) and the model M1(θ̂T ).

Let us recall that M2(θ̂T ) corresponds to the model where labor supply is decided prior to

observing the shocks and is therefore compatible with the identifying restriction used in the

SVAR, and M1(θ̂T ) is the model where labor can freely adjust to the technology shock. The

first part of the figure essentially replicates Figure 4 and illustrates that the model is supported

by the data. We then add the impulse response of hours in model M1(θ̂T ). Panel (a) of

the figure indicates that a version of the model where hours are decided after the shocks are

observed is rejected by the data. Not only is the impact effect of a technology shock different

from zero — which should have been expected — but more interestingly the dynamics of hours

worked implied by models M1(θ̂T ) and M2(θ̂T ) significantly differ at medium-run horizons.

This is illustrated by the right part of panel (a) which reports the impulse response ratio (for

the relevant innovation) for hours worked. The graph shows that the effects of information

restrictions propagate over time in the model.

The mechanisms at work are simple. In model M1(θ̂T ), consumption adjusts only gradually and

increasing investment is costly. Therefore, the labor supply drops sharply due to a strong income

effect. However, after a few quarters, the intertemporal substitution effect dominates, and thus

hours increase. In contrast, model M2 delivers a very different picture. In this case, hours

do not respond on impact (by construction) and increase in all subsequent periods. Indeed,

following a positive technology shock, households mildly increase consumption and investment

on impact. Due to habit formation and dynamic investment adjustment costs, agents maintain

high consumption and investment levels in subsequent periods. This leaves no other choice but to

increase labor supply in order to sustain these plans. In equilibrium, hours persistently increase

after a permanent technology shock. This result is confirmed by examining the autocorrelation

function of hours worked, as reported in panel (a) of Figure 6. The persistence of hours worked is
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Figure 5: Hours worked
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Figure 6: Autocorrelation function of Hours worked
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enhanced in model M2 compared to M1, therefore illustrating that, contrary to the simple RBC

model, the observability of shocks has a long–lasting impact on the labor supply decision. This

result fundamentally originates from the existence of strong internal propagation mechanisms

in the model.

In order to get a better understanding of this result, panel (b) of Figure 5 also reports the

impulse responses of hours worked in the standard RBC model (b = ξ = 0), which is known

to possess very weak internal propagation mechanisms (see Cogley and Nason [1995]). The

striking feature that emerges from the graph is that except for the impact effect, the response of

hours to a technology shock displays the same profile in both models. This is confirmed by the

examination of the right panel of the figure that reports the ratio of the impulse response of hours

at the time of the innovation with and without information restriction. The figure indicates that

the dynamics of hours worked are the same in both model once properly lagged. Indeed, the

simple RBC model incorporates no other real friction than the observability restriction. The

latter only matters for one period. In the next period the dynamics of the model is back to that

of the standard model, up to a scale effect. In other words, the observability restriction does

not propagate over time and exerts no effect whatsoever on the dynamic properties of hours

worked once the initial period has passed. This is confirmed by looking at the autocorrelation

function of hours worked, as reported in panel (b) of Figure 6. The autocorrelation function

of hours as obtained from the two versions of the model are the same, therefore illustrating

that the information restriction does not affect the dynamics of hours worked in the model. In

other words, shutting down propagation mechanisms implies that hours worked share the same

dynamic properties in the two versions of the model. Information lags do not play any role for

hours worked as long as propagation mechanisms are weak.7

To see this, we propose to gauge the effect of using the unrestricted model M1 in place of the

restricted model M2 at the estimated value of the structural parameters θ̂T . Figure 7 plots

the evolution of the rates of growth of output, labor productivity, consumption and investment

in model M1(θ̂T ) as a function of the corresponding quantities in model M2(θ̂T ) when both

models are fed with the technology shocks identified from the SVAR model. Table 3 reports the

slope of the relation between the two sets of quantities as well as the p–value associated to the

test of a unitary slope. The results indicate that the differences found in hours worked transmit

to the other variables of the economy. In none of the graph are the two time series aligned on

the 45◦ degrees line — which would be the case if the models were observationally equivalent.

This is confirmed by examining the slope of the relationship between the two quantities. As

indicated in Table 3, the slope is never found to be equal to one — the p–values associated to

7In the appendix, we consider a small DSGE model with habit persistence and no capital accumulation. This
exercise illustrates analytically the role of internal persistence in the propagation of information restrictions over
time.
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the test are all very close to zero.

Figure 7: M1(θ̂T ) versus M2(θ̂T )

−2 −1 0 1 2
−2

−1

0

1

2

M2(θ̂)

M
1
(θ̂

)
Output

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

M2(θ̂)

M
1
(θ̂

)

Productivity

−2 −1 0 1 2
−2

−1

0

1

2

M2(θ̂)

M
1
(θ̂

)

Consumption

−4 −2 0 2 4
−4

−2

0

2

4

M2(θ̂)

M
1
(θ̂

)

Investment

Table 3: Regression line (M1(θ̂T ),M2(θ̂T ))

Output Productivity Consumption Investment

Slope 0.4718 1.3268 0.5295 0.4233
[0.00] [0.00] [0.00] [0.00]

Note: p–values (%) into brackets.

This experiment illustrates that restricting the ability of agents to react to shocks — by assuming

a particular short–run identification scheme — actually puts a lot of structure on the data and

is far from being innocuous as soon as the model possesses internal mechanisms that ought to

propagate information restrictions over time. In other words, beyond putting some identifying

restrictions on the dynamic system, imposing short–run restrictions on the VAR model amounts

to selecting a theoretical model. Beside this obvious observation, the structure of information

may matter for the other variables, and therefore have important consequences on the estimation

of the deep parameters.
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3.2 Counterfactual Experiments

In order to get a better quantitative sense of the role of timing restrictions on the model, we now

run the counterfactual experiments previously described in Section 1.2. We begin by obtaining

a new value, θ̃T , for the vector of structural parameters that makes the unrestricted version

of the model (M1) observationally equivalent to M2(θ̂T ). This is achieved by minimizing the

loss function defined in equation (2). An important aspect of this exercise is that it offers a

quantitative assessment of the innocuousness of short run identifying restrictions. Indeed, were

the estimation method efficient and immune to identification problems, it should be able to

deliver the same estimation for the deep parameters, especially so if the objects to be matched

are the responses of variables which are not constrained in the short–run (i.e. C, I, Y , Y/N).

We investigate this issue on output, labor productivity, consumption and investment, and run the

experiment for the parameters pertaining to habit persistence, b, investment adjustment costs,

ξ and the size of the shock σz. Note that only the first two parameters are deep parameters

and should be left unaffected by the timing of the decisions. The last parameter is estimated

in order to maximize the ability of the model to mimic the impulse response of each variable

without affecting the deep parameters. Results are reported in Table 4. First of all, the results

Table 4: Counterfactual Estimates

ξ b σz J–stat W1(θ̃T , θ̂T )

Benchmark 3.3942 0.7253 0.0126

Output 0.9750 -0.0404 0.0124 0.1479 6.8710
(0.3996) (0.0929) (3.4541e-4) [100.00] [7.60]

Productivity 1.0566 -0.1101 0.0130 0.2373 8.0250
(0.6757) (0.1778) (3.6125e-4) [99.99] [4.50]

Consumption 1.3330 0.4950 0.0128 0.04392 2.9478
(3.5999) (0.5748) (9.0620e-4) [100.00] [39.90]

Investment 0.2875 0.9855 0.0225 0.0677 616.5846
(0.9353) (0.0540) (0.0422) [100.00] [0.00]

All 1.4061 -0.0414 0.0127 5.73815 5.7266
(0.2972) (0.0770) (1.4832e-4) [100.00] [12.60]

Note: Standard deviation into parenthesis, p–values (%) into brackets.

indicate that no matter the macroeconomic variable under consideration, there always exists

a parameterization of M1 that is statistically equivalent to M2(θ̂T ), as the J–stat test never

leads to reject model M1(θ̃T ). At first glance, this may be considered as good news since

imposing short–run restrictions to identify shocks does not preclude the use and relevance of

alternative theories, i.e. with or without information lags. This however also highlights that

imposing short–run restrictions in a SVAR does not necessarily give enough information to
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guarantee full identification of the model. The results indicate that model M1(θ̃T ) contains

relevant information to account for model M2(θ̂T ).

Figure 8: Counterfactual IRFs (Growth rates)
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Note: This graph depicts the dynamics of the growth rate of output, productivity, consumption and
investment following a 1% postive technology shock. M1(bθ) denotes the unrestricted model fed with

θ as estimated from the data using M2. M2(bθ) denotes the restricted model fed with θ as estimated

from the data using M2. M1(eθ) denotes the unrestricted model fed with θ as estimated so as to match

M2(eθ). Finally, M2(eθ) denotes the restricted model fed with eθ.
Let us first investigate the case where the variable used to perform the experiment is output. The

first striking feature that emerges from Table 4 is that, as indicated by the p–value associated

to the W1(θ̃T , θ̂T ) test, the vector of parameter needed to match the output dynamics implied

by M2(θ̃T ) using M1(θ̃T ) is significantly different from the initial parameter vector (see column

5 of the table). In particular, much lower adjustment costs are needed, and more importantly

the model requires weak durability rather than habit persistence to match the dynamics. This

triggers a drastic theoretical change in the model. Information sets therefore matter a lot.

Regarding the dynamics of output, M1 is more informative than M2. Indeed, M1 is able to

generate a variety of impact response of hours, depending on ξ. For example, when ξ = 0,

the response is positive, while for very large ξ, the response becomes negative. Thus, there

exists an intermediate value for ξ such that the impact response of hours is almost zero. As a

consequence, under such a parameterization, the dynamics of output in M1 is similar to that

generated by M2. Thus, a conclusion that can be drawn from this test is that a model with
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information lags on hours can be interpreted as a model with modest investment adjustment

costs with unrestricted hours.

Table 5: Identification test (W2(θ̃T , θ̂T ))

Output Productivity Consumption Investment

1.5570 1.6873 0.1736 56.9746
[99.67] [99.55] [99.99] [0.00]

Note: p–values (%) into brackets.

More worrying is that, once plugged back into M2, the new vector of parameters delivers the

same output dynamics as with the initial vector of parameters. The p–value associated to the

W2(θ̃T , θ̂T ) test is 99.70%, reported in Table 5, indicating that one cannot reject that the two

parameterization of model M2 generate the same output dynamics. This is first illustrated in

Figure 8 which reports the impulse response of output growth in each version of each model. As

can be seen from the figure, M2(θ̃T ) and M2(θ̂T ) share the same dynamic properties. This is

confirmed by examining the upper left panel of Figure 9 which plots the time series of output

growth as implied by model M2(θ̃T ) (in ordinate) against that in M2(θ̂T ) (in abscissae) when

the models M2(θ̂T ) and M2(θ̃T ) are fed with the technology shocks obtained from the VAR.

As can be seen from the graph all points are aligned along the 45◦ line.

Table 6: Regression line (M2(θ̂T ),M2(θ̃T ))

Output Productivity Consumption Investment

Slope 1.0014 1.0033 1.1417 1.8134
[34.50] [4.50] [0.00] [0.00]

Note: p–values (%) into brackets.

Table 6 then reports the slope of the regression line corresponding to the graph as well as the

p–value associated to the test for a unitary slope. The test does not reject the unitary slope

hypothesis, implying that the two time series are observationally equivalent. This actually points

to a severe identification problem of DSGE models already highlighted in a simple framework

by Canova and Sala [2005]. Although fundamentally different — one suggesting the existence

of large investment adjustment costs and habit persistence, the other mitigating the former and

suggesting (non significant) durability in consumption decisions — the two parameterization,

once used in the same model, deliver statistically the same output dynamics.

This problem also arises when labor productivity is used as once again the p–value associated to

W2(θ̃T , θ̂T ) in Table 5 is 99.60%. A first glance at the response of consumption apparently
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Figure 9: M2(θ̂T ) versus M2(θ̃T )
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suggests that consumption might deliver some useful information as the impact effect of a

technology shock differs across models. However, a look at the standard errors associated to each

coefficient in Table 4 reveals a strong identification problem as the standard deviations are very

large. Furthermore, varying the initial conditions for the algorithm always leads to a situation

were optimization delivers different outcome close the what the algorithm is fed with. This

occurs because consumption, in the benchmark model, is so smooth that it does not provide

enough variability to identify parameters. Therefore using consumption the econometrician

would face severe identification problems. Investment dynamics, on the contrary, carry a lot

of information as plugging the new parameters back into model M2 generates a fundamentally

different dynamics. This is confirmed both by looking at the impulse responses reported in Figure

8 or the comparison plot in Figure 9. For instance, the test of a unit slope in the regression

line associated to model comparison leads to strong rejection with a p–value close to zero. In

addition, Table 5 shows that the p-value associated to W2(θ̃T , θ̂T ) is zero. This indicates that

M2(θ̂T ) and M2(θ̃T ) fundamentally differ from each other and reveals another critical problem:

the method does not really treat the structural parameters as deep parameters. Indeed, should

the method be able to estimate deep parameters, these parameters should be statistically the

same (deliver the same investment dynamics) in both model. What the lower right panel of the

figure reveals is that it is definitely not the case and that great caution should be used when

applying the method.

4 Concluding remarks

This paper investigates the quantitative implications of restricting the information sets condi-

tional on which decisions are taken in DSGE models. To do so, we propose a variety of simple

statistical tools designed to assess the role of timing restrictions on aggregate dynamics. We

then consider an example of a fully-fledged DSGE model which we formally take to US data

using the MDE approach based on short-run exclusion restrictions.

Our results indicate that restricting the information set is of no substantial consequences if one

is dealing with a version of our DSGE model with weak internal propagation mechanisms, such

as the basic Real Business Cycle model. However, in a DSGE model supported by the data and

featuring a large number of real frictions that enhance its persistence properties, we obtain a

very different picture. More precisely, we show by way of example that the Impulse Response

Functions of certain variables can be modified in a marked way, i.e. in terms of sign, amplitude

and persistence properties. More important, we obtain that the structural parameters estimated

via the MDE approach are very sensitive to the timing of decisions, questioning the “depth” of

such estimation techniques.
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A The Role of Propagation Mechanisms: A Simple Model

This appendix shows, using a simple example, how internal propagation mechanisms are critical to propagate
information lags. Notations and information assumptions on model M1 and M2 are the same as is in the main
text. Let us consider a simple DSGE model with habit formation in consumption and a permanent technology
shock. Preferences are represented by the following lifetime utility function

E

"
∞X

s=0

βs {log(Ct+s − bCt+s−1) − χNt}

����It

#
(7)

The parameter β ∈ (0, 1) is the subjective discount factor and b ∈ [0, 1) governs the evolution of consumption

habits. Finally, χ > 0 is the marginal disutility of labor. E denotes the expectation operator conditional on the

information set It. The household is subject to the simple budget constraint Ct ≤ WtNt where Wt is the real

wage.

The representative firm produces a homogenous good with a constant returns to scale technology represented by
the simple production function Yt = ZtNt. Zt denotes the level of aggregate technology, and is assumed to follow
an exogenous stochastic process modeled as a random walk. The rate of growth of technology,γz,t ≡ log(Zt/Zt−1)
is assumed to evolve according to

γz,t = ργz,t−1 + (1 − ρ)γ + σεz,t |ρ| < 1 , σ > 0

where εz,t is iid with zero mean and unit variance.

In equilibrium, we have Yt = Ct = ZtNt. Deflating for the stochastic growth component and log–linearizing the
economy around its deterministic steady state, it is simple to obtain the decision rule for labor decisions in both
model

M1 : bnt =
b

γ
bnt−1 −

bµ

γ
bγz,t and M2 : bnt =

b

γ
bnt−1 − ρ

bµ

γ
bγz,t−1

where µ ≡ γ(1−βρ)
γ−βρb

> 0.

The dynamics of output growth is then simply given by

M1 : (1 − ρL)

�
1 −

b

γ
L

�
∆ŷt =

�
1 −

bµ

γ

��
1 −

b(1 − µ)

γ − bµ
L

�
εz,t, (8)

M2 : (1 − ρL)

�
1 −

b

γ
L

�
∆ŷt =

�
1 −

b

γ
(1 + µρ)L +

bµρ

γ
L2

�
εz,t. (9)

It is important to note that the solution for output growth is fundamental in both model. Therefore εz,t is indeed
the innovation of output growth. In the first model, output only partially reacts to the shock because of the initial
decline in hours. In contrast, in the second model, because the firm cannot adjust hours in the first period, the
output responds one for one to a technology shock. As is clear from equations (8) and (9), models M1 and M2

share the same AR structure. But their MA components are fundamentally different. Model M1 possesses an
MA(1) component while model M2 exhibits a MA(2) component. This therefore affects the dynamic behavior of
output growth and therefore shows up in both its impulse response and autocorrelation function. On the contrary,
when the latter are shut down — i.e. when b = 0 — both models deliver the exact same output dynamics for any
ρ ∈ (−1, 1). Indeed in such a case, output dynamics reduces to

(1 − ρL) ∆ŷt = εz,t

in both model, and information lags do not matter anymore. This reflects the fact that when the models do not

have any internal propagation mechanisms, information sets do not matter.


