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Ultra Short Tenor Yield Curve
For Blockchain Trading and Settlement

Abstract

Blockchain trading platform provides atomic settlement of transactions of digital

assets. In such a short trading horizon and immediate settlement environment, it

is crucial to have an ultra short tenor interest rate curve that is real time updated.

Our paper is the first to study interest rate tenor that is shorter than one day.

Many market-quoted rates are still accrued at the end of the trading day, typically

with one day as the shortest tenor available. The shortest tenor is also one day in

all previous studies of interest rate parity. This paper develops a practical money

market model for the intraday equilibrium interest rates that has ultra short tenor

that are re-estimated in real time, which can be vital for central banks’ efforts

in stabilizing the currencies during flash crashes. We show that on 15 January

2015 when the Swiss National Bank dropped the floor of CHF 1.2 per EUR, the

implied CHF deposit rate should have been highly negative to discourage trading

positions that aggravated the crash.

JEL-Classification: G01, G12, G14, G23, C01, C15, C41, C58

Keywords: Blockchain, Intraday Yield Curve, Flash Crash, Duration and Time De-

formation
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1 Introduction

Trading today occurs at high speed with traders opening and closing positions in

rapid succession and it is estimated that more than 90% of currency positions are held

for less than 24 hours, and typically only for minutes or a few hours (Golub et al.

(2013)). If only the overnight positions attract interest rate charges, this means that in

practice only a small portion of FX transactions actually triggers interest payments.

In the event of a large intraday selling pressure of a particular currency, the central

bank is helpless against this type of ’flash crash’ (see description in Kirilenko et al.

(2017)), which can potentially lead to permanent economic losses. Without the ultra

short tenor rates, the central bank can only change the overnight 1-day rate or the base

rate. Using the 1-day rate to manage ultra high frequency trading and to counteract

flash crashes can cause disruptions to the financial system and the real economy. In

another instance, in 2000 the Turkish Central Bank had to raise daily interest rates

to 300% at the height of the crisis to prevent the currency from collapsing, driving

many banks and corporations into bankruptcy and resulting in over 1 million people

losing their jobs (Özatay (2002)). Today, Brexit and the instability of world political

situations are the type of market conditions that germinate currency volatility, often

in the ultra-high frequency space.

In conventional money market, using a six-month rate if reference period is three

months is unacceptable. Similarly, if the trading and borrowing/lending period is

a few hours or minutes, it is not appropriate to use the daily rate as reference rate.

Current central bank interest rate tool is ineffective in delivering monetary policies

or stabilizing financial markets in the high frequency space as long as the shortest

end of the yield curve is one day. Our proposed ultra-short tenor yield curve allows

central banks to quickly bring liquidity dislocations into equilibrium by (i) encourag-

ing liquidity provision during market stress, (ii) discouraging traders from behaviors

that amplify the market stress or dislocations by skewing the yield curve against the

trend, (iii) has automatic-adjustment based on latest high frequency prices, and will

re-adjust back during the re-estimation when the dislocation or stress is resolved.
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Blockchain, a distributed ledger technology, allows for immediate settlement.1

Chiu and Koeppl (2018) investigate optimal features for trading on the Blockchain and

find, despite mining costs, gains in moving to Blockchain settlement; and Benos et al.

(2017) discusses potential issues should distributed ledger technologies be adopted

on a large scale. In a related paper, Malinova and Park (2017) uses a theoretical model

to argue that a higher degree of transparency on the Blockchain would increase in-

vestors’ welfare. An important effect of fast clearing and settlement is the reduction

in costs, counterparty and liquidity risks (see Khapko and Zoican (2018) which dis-

cusses the implications of faster settlement). Traditional ways of clearing and settling

trades based on batch-based serial processes that often result in multi-day settlement

times, along with high costs and operational risks. Since blockchain allows for imme-

diate settlement of transaction,2 it will pave the way for the development of the ultra

short tenor interest rate market.

The key concerns of policy makers are that systemic financial institutions are not

undermined, market is resilient, and that flash events should ideally not happen nor

produce systemic contagion across markets. In this context, Foreign Exchange Work-

ing Group (FXWG) developed the FX Global Codes to enhance coordinations in an

orderly market. Among other things, the codes relate to market participants’ obliga-

tion to avoid the disruptive consequences of their trading activities (see for example,

the execution requirements during periods of poor liquidity); governance around al-

gorithmic trades execution, and measures to boost resilience against the loss of data

from public venues; and, in collaboration with several industry bodies, how market

participants should determine the minimum (or maximum) point of pricing in a flash

event.

Following the spirit of FXWG’s code, this paper proposes an intraday model for

the very short tenor interest rates based on the exchange rate dynamics, UIP and the

condition of no-arbitrage. Our intraday (or hourly) updated yield curve is designed

for trades settlement on blockchain where transactions are settled in milliseconds.

Our findings show that the intraday yield curve update is vital especially during liq-

1See Peters and Panayi (2016) for a detailed description of how the technology works.
2Currently it needs about 10 minutes to update all the ledgers, but the technology is currently being

developed such that settlement would be achieved in milliseconds (see for example McKinsey (2015)).
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uidity blackouts and flash events. We argue that the yield curve used for settling mil-

lisecond transactions on blockchain should have a convincing and well considered

adjustment for flash events. Our time-deformed model is well suited for capturing

real time price discovery in ultra-high-frequency data and information flow.

The outline of the remaining paper is as follows: Section 2 describes how the

blockchain functions in financial trading created the demand for ultra-short tenor

yield curves in practice. Section 3 develops the methodology for estimating an ultra-

short tenor yield curve based on the theory of no arbitrage and absence of abnormal

returns in efficient markets. The estimation is implemented using UIP (Uncovered

Interest Rate Parity) and a log-ACD (Autoregressive Conditional Duration) model for

exchange rate returns. Section 4 examines the empirical application of the model us-

ing a case-study of the Swiss-Franc event on 15 January 2015, while Section 5 applies

the model on an extreme price movement (EPM) identified using the methodology of

Brogaard et al. (2018). Finally, Section 6 concludes.

2 The demand for ultra-short tenor yield curve

2.1 Blockchain trading and settlement

Removing the need of a central trusted party, blockchain and the distributed ledger

technology have unleashed the wave of decentralised tradings. As blockchain ledger

is immutable and updated in real time for all “node” members, even with only the

support of a mobile phone application, buy and sell orders are matched resulting in

atomic swap of assets. Trading can be executed as fast as the network connection

between the traders permits, normally in the range of 10ms to 100ms. The limit or-

ders system is price-spread-time dependent so that high-frequency traders will not be

able to extract an unfair advantage from the pending limit orders as in the case of a

standard price-time queuing system.

Blockchange based FX exchanges such as Lykke, HSBC, Santander One Pay etc.

operating 24/7, and the currencies traded include USD, EUR, CHF, JPY, GBP, AUD,

CAD and a whole range of crypto currencies. The maintenance of margin account

and margin calls procedures are the same as the traditional leverage trading but with
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a much faster clock cycle. Interest rate payments are accounted for second by sec-

ond, thus improving liquidity provision on the blockchain. Each broker has his own

rollover/interbank swap rates connected to an ECN (Electronic Communication Net-

work) with credit facility, e.g. IC Markets. Since blockchain trading reduces settle-

ment period from a few days to a few minutes, it is served by a, yet developing,

ultra-short tenor interest rate market. While this ultra short tenor interest rate mar-

ket moves according to demand and supply in real time, it must satisfy the theory of

no arbitrage and absence of abnormal returns in efficient markets. Since the equiva-

lent intra day ultra short tenor forward contracts for interest and exchange rates do

not yet exist, the only relevant parity exists empirically is the uncovered interest rate

parity (UIP). The mechanism for linking the UIP with ultra-short tenor interest rates,

explained in the Section 3, is the main contribution of this paper.

2.2 Uncovered Interest Rate Parity

The uncovered interest rate parity (UIP) relation postulates that the interest rate

differential between two currencies should equal the expected exchange rate change

as follow:

Et(st+1 − st) = (it − i∗t ), (1)

where st is the log of the spot exchange rate (in terms of home currency price of a unit

of foreign currency). If t represents a daily frequency, then it and i∗t are, respectively,

the one-day domestic and foreign continuously compounded interest rates,3 and Et is

the conditional expectations operator.4 In practice and without the expectation oper-

ator, eq. (1) becomes

rt+1 = st+1 − st = π + (it − i∗t ) + εt, (2)

where rt is the daily (not annualised) exchange rate return at time t, π is a risk pre-

mium for the estimation period and εt is a zero-mean random error.

3Here, we see that the interest rate reference period is ex ante and not ex post.
4Over longer horizons, the differentials of inflation should be subtracted from the UIP, and the rela-

tionship is known as real exchange rate-real interest rate (RERI) (see for example Hoffmann and Mac-

Donald (2009)). Since our focus is on high frequency intervals (daily or intraday), we do not consider

the effects of inflation.
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The UIP thus implies that a regression of exchange rate returns on the interest dif-

ferential should give a slope coefficient of unity. This hypothesis has been consistently

and decisively rejected by the data. Very often, the estimated slope coefficient is neg-

ative, meaning that the currency with the higher interest rate tends to appreciate. A

carry trade (in which the investor borrows in the currency with the low interest rate

and invests in the currency with a high interest rate) is profitable on average. Further-

more, Equation (2) suggests that π > 0 for a depreciating currency where rt+1 > 0 (i.e.

st+1 > st). The foreign currency becomes more expensive at time t + 1 than at time t,

hence a risk premium is needed for holding the weaker currency for the amount not

compensated by the interest rate differential.5

Based on pre-blockchain convention, investor received the interest rate differential

only at the point when a position was rolled over from one day to the next with the

rollover time determined by market convention. A position that was not held open

overnight received no interest rate differential because intra-daily interest rates were

often assumed to be zero. Today, transactions completed on blockchain will attract

interest rate for the duration when the asset is held, which is a fraction of the daily

rate (for example OIS-swap rate). However, the problem at hand is that the intraday

rate for duration shorter than a day (say 10 minutes) may not be proportional to the

1-day rate, but is dictated by the supply and demand during the 10-minutes window

at the time the currency exchange is executed, especially during exchange rate flash

crashes. Hence, the demand for an ultra-short tenor interest rate curve is a direct

outcome of the blockchain development. At the time of writing, 1-hour interest rates

have become available for some currencies, but the data is too thin for research. Until

2019, the shortest tenor market interest rate quotes were for 1-day borrowing and

lending. Our paper is the first to study interest rate tenor that is shorter than one

day. In the next section, we present previous students that test UIP. The shortest tenor

studied in the literature is the 1-day ON rate, which itself is updated in real time.

5Risk premium tends to vary slowly over time. Here, we assume a time-varying π estimated using

a rolling window of 500 days.
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2.3 Previous studies of interest rate parities

While the UIP regression is usually run over horizons from a month to a year,

Lyons and Rose (1995) examine the relationship between interest differentials and

exchange rates at high frequency. They considered pairs of currencies in the now-

defunct European Monetary System (EMS), and found that currencies which were

under attack but in fact stayed within the band actually appreciated intraday. Lyons

and Rose argue that this intraday appreciation is a compensation for the risk of de-

valuation that might have occurred, but did not. Investors can be compensated for

the risk of devaluation only by intraday appreciation, not by interest differentials, as

there are effectively no interest rate differentials intraday at that time.

Chaboud and Wright (2005) examine UIP over extremely short horizons.6 An in-

traday UIP regression, over a short period spans 17:00 New York time when interest

rate is paid, yielded results in favor of the UIP hypothesis. The full overnight interest

differential that accrues in such a window is offset by a jump in the exchange rate.

Positive results are obtained for relatively large discrete interest payments accrue on

positions held between Wednesday and Thursday, and especially on the multi-day

interest rate differential days in the weekend.

Baglioni and Monticini (2010) show during liquidity crises, the intraday pattern

of the overnight rate (ON) jumped by more than ten times (from 0.2 bp to 2.2 bp) in

the reserve maintenance period from August 8th 2007. This is matched by an increase

of the liquidity premium and the cost of collateral. The overnight interbank market

actually operates round the clock where all loans must be repaid at the same time

next day.7 According to Baglioni and Monticini (2010), a bank short of liquidity say

at 9 am has two alternatives: (i) borrow immediately in the interbank ON market, or

6Chaboud and Wright (2005) use bilateral Japanese yen, German mark/euro, Swiss franc and pound

sterling 5-min average bid and ask spot exchange rates viz-a-viz the US dollar provided by Olsen and

Associates over the 15-year period 1988-2002 and discarding weekends from 23:00 GMT on Friday to

22:55 GMT on Sunday.
7The difference between the rate charged on an overnight loan delivered at 9 a.m. and a loan with

the same maturity delivered at 10 a.m. implicitly defines the price [difference] of an hourly loan.

Baglioni and Monticini (2010) use tick-by-tick data for the e-MID interbank market, which was the

most liquid market in the euro area for the exchange of interbank deposits at that time.
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(ii) obtain intraday credit from the European Central Bank (ECB) and borrow later

(say at 4 pm) in the ON market. During the period of high uncertainty, a risk averse

bank might have a strict preference for borrowing early in the ON market, rather than

borrowing later, in order to make sure that it has enough funds to achieve its end-of-

day targeted liquidity position. This explains why a borrowing bank might be ready

to pay an implicit interest rate higher than the cost of central bank daylight credit.

This is then the "liquidity premium" on an ON loan delivered early in the day.

The second explanation for the jump in intraday interest rate is an increase in in-

traday credit from ECB due to a higher cost of collateral. Since ECB does not charge

any fee on intraday credit, the only cost comes from the collateral requirement. A way

to measure the cost of collateral is provided by the Euribor-Eurepo spread: this is the

cost of borrowing eligible securities through a buy and sell back transaction, earning

the Eurepo rate, and funding the deal by borrowing in the interbank market at the

Euribor rate. The average three-month spread goes from 7.6 bp before the liquidity

crisis to 51.6 bp during the crisis due to a higher credit risk perceived by market par-

ticipants. This finding highlights that the ability of the central bank to curb the market

price of intraday liquidity during a liquidity crisis is limited, despite the provision of

free (collateralized) daylight overdrafts.

3 Estimating Ultra Short Tenor Yield Curve

Previous studies reviewed in section 2.3 above suggest that UIP works in short

period when interest rate is charged for borrowing or compensated for lending. Here,

we develop a methodology for estimating the the ultra short tenor yield curve based

on UIP in a two-stage process. In the first stage, we model the irregularly spaced intra-

day exchange rate returns dynamics using the log-ACD (Autoregressive Conditional

Duration) model with stochastic volatility to filter out the noise and volatility for tick-

by-tick FX data in irregular time span. Since the real data typically does not cover a

continuum of tenors, we simulate in the second stage sufficient data for constructing

the required yield curve based on the principle of no arbitrage and the absence of ab-

normal return. We assume that the foreign rate is known or remain constant (within
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the hour).8

Let the ultra short term local and foreign interest rate be itk(δ) and itk(δ)
∗ respec-

tively. This is the interest rate term structure that the trader faces at the time that the

kth trade is executed, i.e. at time tk. δ is the fraction of a business day that the asset

is held and restricted to be less than D, the entire business day. For δ > D, the con-

ventional interest rate term structure should be used. For day t with N transactions,

the time-grid of transactions tk ∈ {t1, . . . , tN} is irregularly spaced. Finally, the du-

ration, d, is the time difference at the kth transaction to the last executed transaction:

dtk = tk − tk−1.

For convenience, we shorten the subscript tk to k, and write the intraday interest

rates at the time of the kth transaction as ik(δ) and ik(δ)
∗ respectively and write the

duration at the kth transaction as dk. These intraday interest rates may or may not be

observable. If they are unobservable, they can be derived from the intraday (logged)

spot exchange rates, sk, and the estimated risk premium, π.

3.1 Log ACD with stochastic volatility

To apply the UIP regression in Equation (2) to produce a yield curve for i(d), for a

continuum of tenors d, requires a projection of expected returns, r(d). To fully exploit

all the information contained in the tick-by-tick data, we follow Engle and Russell

(1998) and Engle (2000) using transaction arrival times as stochastic events in the form

of joint marked point processes. More recently, Feng et al. (2015) also estimated a time-

deformed model for IBM stock returns with stochastic volatility using the method of

8While the assumption that the foreign interest rate is known or remain constant may sound con-

tradictory, our focus here is to demonstrate that our methodology can be used to adjust short tenor

interest rates for the local rate in real time and in response to flash cashes. If we allow all interest rates

to be unknown, then we will need a more complex multi-variate setting to simultaneous estimate all

parity relationships at the same time. This is beyond the scope of this paper and will be left for future

research.
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simulated moments.9 Here, the FX returns are modeled as two simultaneous random

processes- durations dk and returns rk, where the joint density is the product of the

marginal density of duration and the conditional density of returns given duration:

f(dk, rk|d̃k−1, r̃k−1; θk) = g(dk|d̃k−1, r̃k−1; θ1k)q(rk|dk, d̃k−1, r̃k−1; θ2k) (3)

where x̃k = {xk, xk−1, . . . , x1} denotes the past of x and θs are parameters of the con-

ditional densities.

To model the durations process, we use the log-ACD model of Bauwens and Giot

(2000), which is the logarithmic version of the ACD model of Engle and Russell (1998).

The duration between two quotes or transactions is expressed as

dk = eφkεk (4)

where εk are IID and Weibull(1, γ) distributed. φk is proportional to the logarithm of

the conditional expectation of dk, i.e. φk = lnE(dk|Ik−1), and Ik−1 denotes the infor-

mation set available at tk−1 which contains at least d̃k−1 and φ̃k−1. Furthermore, φk

follows an autoregressive model

φi = ω1 + α1 ln εk−1 + β1φk−1 (5)

which means it depends on its lagged past and the lagged "excess durations". The

density of dk is specified using the Weibull density

g(dk) =
γ

dk
mγ
ke
−mγk (6)

where mk = dkΓ(1+1/γ)

eφk
and Γ(·) is the gamma function. The log likelihood function for

observations k = 1, . . . , N can then be written as

ln g(dk) =
N∑
k=1

ln γ − ln dk + γ ln(dkΓ(1 + 1/γ))− γφk −
(
dkΓ(1 + 1/γ)

eφk

)γ
(7)

where φk follows the process described in Equation (5).

9Feng et al. (2015)’s choice of MSM (Method of Simulated Moments) is motivated by the analytically

intractable likelihood function. We decided against this estimation method after having difficulty with

optimizing globally over all parameters when the sample includes an extremely large amount of data.

The estimated model is very sensitive to the starting values used.
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Next, we model the ultra-high frequency returns using the UHF-GARCH model

described in Engle (2000). Here we approximate the conditional mean of FX returns

per square root of time with an ARMA(1,1) and include as in Engle (2000) observed

durations as an additional regressor:

rk/
√
dk = ρ2rk−1/

√
dk−1 + ek + φ2ek−1 + κ2dk. (8)

The conditional variance rk is expressed as

hk = dkσ
2
k (9)

where σ2
k is the conditional volatility per unit of time which can be modelled as a

GARCHX(1,1) process

σ2
k = ω2 + α2e

2
k−1 + β2σ

2
k−1 + γ2d

−1
k (10)

in which the conditional variance depends on the reciprocal of dk and γ2.10

Since the UHF-GARCH model can also be estimated using maximum likelihood,

the overall time-deformed log ACD UHF-GARCH process can be estimated jointly

using the log likelihood:

LL =
N∑
k=1

[ln g(dk|d̃k−1, r̃k−1; θ1) + ln q(rk|dk, d̃k−1, r̃k−1; θ2)], (11)

where θ1 = {ω1, α1, β1, γ} and θ2 = {ρ2, φ2, ω2, α2, β2, γ2}

While our log-ACD model with stochastic volatility does not explicitly include

a jump parameter or volatility regime, as we re-estimate the model very frequently

after every 1000 trades, the model is applied in a dynamic sense to capture jump

and volatility regime change through changing parameter estimates. In particular,

equations (5), (8) and (10) capture the dynamics of duration, returns and volatility. If

there is a jump in exchange rate, it will first appear as the residual term, ek, in (8), and

10Easley and O’Hara (1992) argue that news arrival generates very frequent transactions with very

short durations. In contrast, large duration should have lower volatility. Manganelli (2005) finds em-

pirically that, for heavily traded stocks, volatility has a significant and negative impact on duration;

low durations follow large volatilities. However, in an order-driven (instead of pricing-driven) market,

a higher volatility should lead to a higher duration as traders are discouraged to trade immediately due

to higher cost of liquidity consumption and higher benefit of liquidity provision.
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affect the future returns via the autoregressive term, φ2, in (8) and the future volatility

via α2 and β2 in equation (10). When the crash effect ceases, φ2 becomes insignificant,

and (α2 + β2) return to their normal values.

3.2 Constructing the ultra short tenor yield curve

To construct the market implied ultra short tenor yield curve, we estimate the log-

ACD UHF-GARCH model at time tk using parameters estimated from the last 1000

quote observations to simulate the next 5000 time-deformed observations. We repeat

the simulations 1000 times, i.e. we construct 1000 projected yield curves, and take the

average.11

Using UIP, the ultra short tenor yield curve an investor faces at time t = tk to hold

an asset till time t = tk + tq is

q∑
j=1

r̂k+j = (ik+q − i∗k+q) +

(
q∑
j=1

δ̂k+j

)
π + εk, q = 1, . . . , N (12)

where δ̂k = d̂k
D

is the duration dk expressed as a fraction of a business day, D, both

measured in the same time units (assuming that a business day is 24 hours), and

N is the number of irregularly spaced quotes/observations. π is the daily exchange

rate risk premium for a particular day, which arguably is a function of the volatility

and can potentially be negative or zero depending on the relative strength of the two

currencies. We assume π to be (slowly) time-varying over a particular interest rate

regime and estimate it using Equation (2) using a rolling window of 500 days. We

assume that it is ’constant’ intraday, scaled by intraday duration when the asset is

held.

The intraday interest rates, ik+q and i∗k+q, are the unscaled (i.e. not converted to

daily or annual) local and foreign interest rates in basis points for the
∑q

j=1 dk+j du-

ration at time tk. If intraday interest rates are constant for day t, then the net interest

11The choice of using 1000 in-sample observations for estimations is arbitrary and constitutes for

our dataset of the last 2-3 hours observations. Shortly after the crash on 15 Jan at 10a.m., the last

1000 observations consists of the last 1.5 hours of observations. One could also use for example all

observations in the last hour, etc. Further fine-tuning for optimal in- and out-of-sample sizes could be

made but is out-of-scope of this paper.
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differential is simply (ik+q− i∗k+q) =
∑q

j=1 δk+j(it− i∗t ), where it and i∗t are the local and

foreign daily overnight rates respectively for day t. In the case where i∗k+q is known,

Equation (12) can be used to infer ik+q, and vice versa.

Given q = 1, . . . , N estimated values of îk+q and d̂k+q, we fit the Nelson-Siegel

model to the time-deformed model-simulated yield curve to produce the fitted intra-

day yield curve for unscaled interest rate as follows:

îk+q = b0 + b1
[1− exp(−d/τ)]

d/τ
+ b2

(
[1− exp(−d/τ)]

d/τ
− exp(−d/τ)

)
(13)

where b0, b1, b2 and τ are the fitted parameters.

According to Nelson and Siegel (1987), b0 is interpreted as the long run levels of

interest rates (the loading is 1, it is a constant that does not decay), b1 is the short-

term component (it starts at 1, and decays monotonically and quickly to 0), b2 is the

medium-term component (it starts at 0, increases, then decays to zero), and τ is the

decay factor: small values produce slow decay and can better fit the curve at long

maturities, while large values produce fast decay and can better fit the curve at short

maturities, τ also governs where b2 achieves its maximum. In order to constrain ĩk+q to

the overnight rate it when
∑q

j=1 dk+j equals one day, we do not estimate b0 but simply

use b0 = it, the 1-day unscaled rate, i.e. the intraday yield curve should converge to

the daily ’long run’ yield, except during flash crashes when the ON rates may be stale.

4 Case Study: Swiss Franc Event, 15 January 2015

On 15 January 2015, SNB announced at 09:30 (UTC, local time +1 hour) the dis-

continuation of the minimum exchange rate of CHF 1.20 per euro. At the same time,

it lowered the interest rate on sight deposit account balances by 0.5 percentage points

to -0.75%, and the target range for the three-month Libor was to change from between

-0.75% and 0.25% to between -1.25% and -0.25%. Prior to the SNB’s intervention, the

euro has depreciated considerably against the US dollar and this, in turn, has caused

the Swiss franc to weaken against the US dollar. Hence, the SNB concluded that en-

forcing and maintaining the minimum exchange rate for the Swiss franc against the

euro is no longer justified.
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The SNB announcement caused a 41% rise in the Swiss franc in 20 minutes. It

retracted over 60% of this move within a further 20 minutes. Automated trading al-

gorithms withdrew from two-sided market-making and suspended streaming prices

on public and bilateral platforms. Chicago Mercantile Exchange activated a trading

halt in CHF currency futures which further amplified the flash crash. Later, the SNB

stabilised markets by providing liquidity in a price range, giving market participants

the confidence to re-enter the market. Market users initially reverted to more tradi-

tional transaction methods such as voice trading but resumed the use of all trading

mechanisms once they had made the appropriate adjustments to their e-trading tools.

4.1 Data

We use intraday EURCHF quote data from OlsenData12 for the period from 8th

to 16th of January 2015. The data contains tick-by-tick bid and ask prices, and bid

and ask volumes with time stamps in milliseconds. FX trading is 24 hours, hence

we include the overnight period but exclude all weekend quotes (because of too few

observations) which leaves us with seven days of data. For quotes within the same

second, we keep only the last entry of the second (with the largest millisecond) as a

representative observation.13 To compute FX returns, we use the log returns of the

midprice, i.e.

Rk = ln(
Askk +Bidk

2
)− ln(

Askk−1 +Bidk−1

2
)

where k denotes kth quote.

Table 1 shows the number of observations for EURCHF, each day before and af-

ter ’filtering’ the data (from multiple quotes within the same second) as well as the

descriptive statistics of the quote returns and durations.

[Table 1 about here.]

The descriptive statistics in Table 1 highlight the acute stressed market condition

on 15th and 16th of January 2015. The mean return on these two days are, in absolute
12http://www.olsendata.com/
13Feng et al. (2015) also use this method to deal with multiple observations within a second. An-

other method is to use volume weighted averages within the same second (see for example, Engle and

Russell (1998)).
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term, about 3500-5000 times that of the previous day. The mean duration, on the other

hand, is about halved. The number of filtered (unfiltered) quotes on January 15 is two

times (four times) larger than that before the crash. These statistics show the dramatic

change in market dynamics when the EURCHF floor was lifted.

Figure 1 presents the EURCHF exchange rate information on January 15, 2015. Fig-

ures 1a and 1b show vividly the sharp fall in EURCHF exchange rate in the first hour

of trading and the huge volatility that follows. This is accompanied by a widening

of the bid-ask spread in Figure 1c, which improved during the day but deteriorated

until the Asian markets opened the next morning. Figure 1d presents the bid and ask

prices from 9:24 to 10:24 hours. Interestingly, it shows the rate reaction took place a

couple of minutes before the SNB announcement at 9:30 suggesting the possibility of

insider trading. The rate recovered half of the lost ground by 10am. Figure 1e shows

huge volume of trades and quotes concentrated around the announcement. Liquid-

ity dried out when European and US markets closed, and before the Asian markets

reopened the next morning. The shortage of liquidity is also reflected in the rise in

trade duration around the same time as shown in Figure 1f.

[Figure 1 about here.]

The majority of the trades were executed very quickly within a few seconds. There

is a significant rise in trading intensity and a drastic drop in duration during and

shortly after the crash.

4.2 Estimation Results

Since intraday prices and durations have seasonal patterns over a trading day, we

need to adjust for these diurnal effects before estimating the econometric model. The

intraday diurnal effects in duration is adjusted using a cubic spline as described in

Engle and Russell (1998) and Bauwens and Giot (2000). The diurnal effect φ(·) is es-

timated by taking the average duration conditional on the time of the day separated

into 30-minute intervals. These average durations are used as mid-points in the re-

spective intervals and a cubic spline smoothing is used to obtain the diurnal factor

φ(·). While there are differences in φ(·) for each day of the week (see Bauwens and
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Giot (2000)), we follow Feng et al. (2015) and Tse and Dong (2014) in disregarding this

effect due to the limited number of days in our data.14 Similarly, returns are adjusted

for the diurnal effect in its volatility, where volatility per unit time, σ2, is estimated

using absolute values of returns divided by square root of duration (r/
√
d), and a

smoothing spline is fitted over the average volatilities to obtain the diurnal factor.

The absolute r/
√
d is then divided by the estimated diurnal factor.

Our estimated diurnal factor for durations and volatility is shown in Figure 2,

where the time of day is given in UTC which is one hour earlier than the Central

Eastern Time. Durations are short when European and U.S. markets are open, but are

longer during U.S. late afternoon trading period and when both markets are closed.

For volatility, the diurnal factor is the highest during the European trading hours

and tapers downwards in the late afternoon. A U-shape curve is observed during US

market opening hours (14:00-22:00). Descriptive statistics of the durations and returns

adjusted for diurnality are given in Table 2.

[Figure 2 about here.]

[Table 2 about here.]

Comparing the mean returns reported in Tables 1 and 2, the diurnal adjusted mean

returns are much closer between non-crash days and crash days. The absolute values

of mean returns on 15th and 16th January 2015 are now 28 and 42 times that before

the crash, compare to 3500-5000 times before the adjustments. After the diurnal ad-

justment, the average durations are slightly less than half of that before the crash.

Using the diurnally adjusted returns and duration, we estimate the log-ACD-

UHF-GARCH model before and after the SNB announcement, i.e. for the 9th and

13th January at 9 a.m., 10 a.m. and 11 a.m. (calm period) as well as for 15th January

9 a.m., 10 a.m., 11 a.m., 12 p.m., 1 pm, and 16th January 8 a.m., using the last 1000

observations at these specific times. The estimated parameters of the log-ACD UHF-

GARCH model are given in Table 3. The estimated log-ACD parameters are mostly

14We also omit data from 15th and 16th of January when estimating the diurnal factor due to the

flash event on 15th January 2015.
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significant at 5% or better, with very large β1 indicating strong persistence (see Equa-

tions (4) to (7) for the log-ACD specifications). The persistence drops sharply shortly

after the crash at 11 a.m. on 15 January and the next day at 8 a.m.. Ljung Box statistics

of the residuals are small and mostly insignificant, which indicates that the model has

captured most of the autocorrelations in durations.

For the UHF-GARCH in Equations (8), (9) and (10), the estimated ARMA param-

eters in the conditional mean are mostly insignificant, except after the crash where

returns take a downward trend with large negative AR (ρ2) and negative MA (φ2)

parameters (as observed in Figure 1). Duration of quotes is added as an additional

regressor to the conditional mean to capture the "bad news effect" of long durations

following Diamond and Verrecchia (1987). The coefficients, κ2, are mainly negative

(as found in Engle (2000)) but they are mostly statistically insignificant.

In the variance equation, the α2 and β2 (ARCH and GARCH parameters) sum to

a low number before the crash and tend to be insignificant. The coefficient, γ2, on

the reciprocal of duration is large and significantly positive for estimations before the

crash. This was also observed in Engle (2000) and supports Easley and O’Hara (1992)

hypothesis that long duration is interpreted as lack of news and decreases volatility.

After the crash, however, the ARMA (ρ2 and φ2) and GARCH (α2 and β2) parameters

become very large (with α2 and β2 summing to more than one) and statistically sig-

nificant, while the coefficients on inverse durations (γ2) becomes insignificant. The

estimated high persistence is due to the extreme observations during the crash; the

volatility persistence (β2) over took the duration effect (γ2)15. While the estimated

UHF-GARCH process is nonstationary, Jensen and Rahbek (2004) show that inference

of the process using maximum likelihood is consistent and parameters are asymptot-

ically normal. The low Ljung-Box statistics in the residuals indicates that the UHF-

GARCH model has captured much of the autocorrelation in intraday return.

[Table 3 about here.]

15We tried adding an indicator variable Ik to Equation (8) or (10) during the flash crash that takes a

value of 1 for a structural break during or after a flash event and zero otherwise. This however did not

alleviate the problem of explosive GARCH estimates.
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Using only the estimated parameters that are significant, we simulate a horizon of

5000 time-deformed quote observations starting with the last observation in the sam-

ple. The simulations are repeated 1000 times and then the mean durations (dk) and

returns (rk) are used. The diurnal factors are re-introduced into the mean simulated

durations and returns. We then use the simulated returns, rk, in the UIP equation (12)

with π estimated using Equation (2) to extract the CHF rate, i, assuming that the EUR

rate, i∗, remain stable during the day. To estimate the time-varying daily exchange rate

risk premium π in Equation (2), we use rolling windows of previous 500 observations

of daily EURCHF exchange rate, and EUR and CHF overnight daily interest rates16 to

obtain daily risk premium π. Figure 3 plots the time varying risk premium estimates

(black line) and show EURCHF risk premiums have started to decrease since 2013. It

drops sharply on 15 Jan 2015 and steadily increases thereafter. We remove the effect

of the crash (using average of EURCHF exchange rate just before and just after the

crash) to obtain a ’smoothed’ time-varying risk premium (red dotted line).17

[Figure 3 about here.]

Both the EUR and CHF overnnight rates were negative during our sample period

with the EUR rate being more negative than the CHF rate. Since pi (π) in Figure 3 is

positive, it represents the reward for holding the EUR to compensate for the peso effect

of a possible EUR devaluation. It is interesting to see in Figure 3 how this risk pre-

mium reached the minimum on the crash (re-valuation) date hinting a very efficient

FX market that could anticipate the currency re-alignment. The premium remains

positive after the crash and increases steadily after the crash suggesting that carry

trade (with long position in EUR and short position in CHF) might still be viable due

to the slow adjustment of the EURCHF FX rate and the two interest rates.

Assuming that the intraday EUR interest rate is fixed, the raw intraday CHF yield

curves are extracted and plotted in Figure 4. The interest rate ik (and ik+q) is unscaled,

i.e. it is the total amount of interest for dk (and dk+q) seconds. When ik is negative, it

16OIS rates used are obtained from Bloomberg.
17Effects of the crash are removed from the risk premium estimates because this effect should be

captured in the interest rates. In our framework here, interest rates of different tenors are the tools for

combating the swings in exchange rate.
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represents deposit rate only as lending rate would be zero bound for no arbitrage. We

smooth the simulated estimated yield curves using the Nelson-Siegel model, where

we constrain the first parameter b0, which represents the level of the yield curve, to

the daily CHF rate, except during the flash event when the ON rate might be stale.

The estimated parameters are given in Table 4, where the parameters are mostly sig-

nificant except for the crash period on 15 Jan at 10:00, 11:00 and 12:00. The smoothed

curves are plotted in Figure 4. The Nelson-Siegel interest rate model was however un-

stable during the crash period on 15 Jan at 10:00, 11:00 and 12:00; the model failed to

converge in these three cases. We also plot the fitted cubic splines in the same graph;

cubic spline is more flexible than Nelson Siegel, but the resulting curve is also less

intuitive.

[Table 4 about here.]

[Figure 4 about here.]

The CHF yield curves in Figure 4 tend to be downward sloping, and sometimes

have a hump around the 10,000 secs mark, which is equivalent to about 3 hours. Since

the interest rates are unscaled, it means for example in Figure 4(e) that an investor

holding CHF for 5000 seconds (approximately 1 hr 20 mins) will have to pay an inter-

est of about -2.0 bps in total for that 5000 secs. Holding CHF longer till 15000 seconds

(approximately 4 hours 10 minutes) incurs an interest of about -2.2 bps for the time. In

the very high frequency FX trading environment, (deposit) interest rate of very short

tenor can fluctuate between positive and negative depending on the movements of

the exchange rate. Hence, the high frequency short tenor CHF yield curve can be-

come non-monotonic. Future research could investigate the one-sided quotes that

will prevent a round trip arbitrage.

Shortly after the crash, the UHF-GARCH is nonstationary due to extreme observa-

tions and the graphs 4(h), (i) and (k) show very large volatility. We replot the graphs

for these three periods for the first 500 seconds (approximately 8 minutes) in Figure

5 and also provide the graph at 9:00 just before the crash for comparison. At 9:00,

the rates show no unusual activity. It is higher at the first few minutes, then drops
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to -1.92 bps and follows an upward trend there after. At 10:00, the rates in the first

300 seconds are only slightly negative. Thereafter it becomes extremely negative to

-20 000 bps, which means to deposit CHF for 500 seconds (or 8.33 minutes) straight

after the crash would cost 200%. The deposit rate has to be so negative at that point

in time in order to deter further speculative attacks on the Euro (typically executed

by shorting Euro and going long in CHF). At 11:00, the rates are stable at the first 300

seconds, and then displays a lot of volatility with unclear direction. At 12:00, the rates

are stable only for the first 200 seconds, has several positive hump at around the 350

seconds and then dives down to -50 basis points for a 500 seconds deposit. Hence

we can conclude that during the high turbulent period when SNB lifted the floor on

EURCHF, the deposit rates for the very short horizon trading on blockchain have to

be extremely negative, several hundred times more negative than the official -0.75%

annualised rate, in order to stop the speculative trading and currency attack in these

new platforms.

[Figure 5 about here.]

5 Robustness test using another ’flash’ crash

We also apply our methodology on another crash period as a robustness test.18

Here, we consider again EURCHF from 21st February to 11th July 2017 (121 days), a

total of 2,924,840 observations after filtering out observations within the same second

(as described in earlier section). We use the methodology of Brogaard et al. (2018) and

identify 29 March 2017 as a day with the maximum number of EPMs.

Diurnal adjustments to durations and returns are made using diurnal factors esti-

mated from the sample period prior to 29 March 2017 and the log-ACD UHF-GARCH

model was estimated for the times 11:00, 14:00, 17:00, 20:00, 21:00, 22:00 and 23:00. The

parameters indicate high volatility at 14:00 (when New York Stock Exchange opens)

and from 17:00 to 23:00. During the flash crash at 22:00, we see that the ARMA param-

eters for the conditional mean become significant with a highly negative autoregres-

sive parameter, which indicates downward pressure on the exchange rate. Volatility
18We thank a referee for this suggestion.
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was also very high, indicated by the non-stationary GARCH parameters. These effects

were no longer observed at 23:00, despite the volatility remaining high.

We estimate the simulated intraday yield curves at the same times using the last

1000 observations at each time considered using the time-varying exchange rate risk

premium. Figure 6 plots the simulated yield curve (black solid line), a smoothing

spline (red solid line) and a fitted Nielsen Siegel curve (dotted blue lines). We see that

at 11:00, the intraday yield curve is upward sloping. The intraday CHF yield curves

are then become downward sloping at 14:00, 17:00. 20:00 and 21:00. At 22:00 as the

EURCHF rates plunged, the yield curve becomes highly negative except for the first

few minutes. At 23:00, the yield curve returns to the gentle downward sloping curves

observed at 17:00, 20:00 and 21:00. The highly negative curve observed at 22:00 arise

from the explosive GARCH parameters which renders forecasting untenable at the

longer end of the yield curve. Hence we plot the curves for the first eight minutes in

Figure 7 for 22:00 (left) and 23:00 (right). Here we can observe the negative rates at

22:00 as compared to 23:00. This flash crash is naturally not as severe as the event on

15 January, but it does illustrate the mechanism that will disincentivize investors from

panic buying of CHF and selling of EUR. The yield curve then re-adjusts at 23:00 as

the liquidity dislocation resolves to the yield curve before the EPM.

[Figure 6 about here.]

[Figure 7 about here.]

6 Conclusion

In this paper, we propose an intraday model for deriving the implied equilibrium

ultra short tenor CHF yield curve based on the exchange rate dynamics, uncovered

interest rate parity and the condition of no-arbitrage. The necessity of an intraday ul-

tra short tenor yield curve has been long overdue, with the rapid development of high

frequency trading and the development of newer settlement platforms, for example

the blockchain. Our ultra short tenor yield curve can be updated intraday (hour-by-

hour, by a certain quote or trade volume or by other suitable criteria) and used, for
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example, for trades settlement on the blockchain where transactions are completed in

milliseconds.

In order to capture all information in the ultra high frequency data, we adopt a

time-deformed log-ACD UHF GARCH model to capture the dynamics of intraday

durations and returns, and the real time price discovery across currency markets. Us-

ing the estimated model, we simulate time-deformed observations for a full range

of ultra short tenor interest rates and construct a yield curve based on UIP. We then

estimate a smoothed Nelson-Siegel yield curve using nonlinear least squares. We

find that the log-ACD models intraday durations effectively, but the fit of the UHF-

GARCH model for tick-by-tick quote returns are non-stationary during crash periods.

We also find that the Nelson-Siegel curve to be unstable during flash crashes, and fu-

ture work should consider developing other more robust models for such purpose.

Our findings show that during the crash triggered by the SNB announcement, the

intraday yield curve dives sharply to -20000 basis points (for a 500 seconds deposit) in

the first hour after the announcement. This very negative rates, discourages investors

from the panic buying of CHF and selling EUR, and should automatically stabilize

the currency in the short term before the effect of the daily interest rate adjustment

kicks in at the end of the day. The next day after the crash, we notice large interest

rates at the very short end of the intraday yield curve.

This paper is a first novel attempt at introducing an intraday ultra short tenor

yield curve following the FXWG’s code. It addresses the concerns that regulators

have about the lack of incentives for liquidity provision during periods of market

stress (Commission-Securities and Commission (2011), Kirilenko et al. (2017), Bro-

gaard et al. (2018)) and at the same disincentivize investors from behavior that would

aggravate flash crashes. We derive the intraday yield curves that would discourage

ultra short term speculation which increases crash risks. During periods of shocks,

the stabilizing mechanism of intraday interest rates become even more critical and

lend central banks a useful tool in managing the stability of their currencies. The

flash crash on January 15 saw the EURCHF fall by 40% in seconds. While FX trad-

ing venues could trigger circuit breakers to prevent extreme pricing, the execution

system could not function properly because liquidity providers ceased to provide liq-
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uidity during the event. We strongly argue that had such ultra short tenor interest

rates adjustments been implemented, many large swings in currency trades would

have been prevented.
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Figure 1: Euro-Swiss Franc Exchange Rate

There are 93728 quotes from 08:14:57 15.01.2015 to 08:14:55 16.05.2015. The
announcement to drop the minimum EURCHF rate at 1.2 was made by the
Swiss National Bank at 9:30. The log quote returns, mid FX rates, bid-ask
spreads, quote volumes and quote durations are plotted here, whereby ∆t
used are quote durations.
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Figure 2: Diurnal effects in durations and volatility for the period from 8th to 14th January
2015: Black dotted lines show the average time-of-day effect of durations. Red solid lines
show the smoothed diurnal factor using cubic splines. Time of day is given in UTC; add 1
hour for Central European Time.
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Figure 3: Exchange rate risk premium, pi, estimated using rolling windows of 500 observa-
tions. Red dotted lines are ’smoothed’ estimates obtained by removing the effect of the crash
on 15th January 2015.
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Figure 4: CHF Simulated Yield Curves: Simulated yield curves are plotted in black lines, with
smoothed cubic splines given in red, and fitted Nelson Siegel curves in blue (dotted), for the
respective days and times.
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Figure 5: CHF simulated deposit rates just before and after SNB announcement on 15 January
2015 for tenors 500 seconds and shorter.
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Figure 6: Estimated Intraday Yield Curves for 29 March 2017 at indicated times. Black solid
lines indicated the simulated yield curves, red solid lines are fitted smoothing splines while
blue dashed lines plot the fitted Nielsen Siegel curves.
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Figure 7: CHF simulated yield curves at the ultra short tenor on 29 March 2017 at 10 p.m
(identified as period of EPM, Extreme Price Movements) and at 11 p.m.
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Table 1: Descriptive statistics of returns and durations of intraday EURCHF FX data during
the period from 8th to 16th of January 2015. Nraw is the total number of quotes without
any filtering process. Nfilter is the number of quotes after filtering out quotes within the
same second. 15 January 2015 is the crash date when the Swiss National Bank removed the
CHF/EUR floor.

Dates Jan 8 Jan 9 Jan 12 Jan 13 Jan 14 Jan 15 Jan 16

Number of EURCHF quotes
Nraw 10887 17604 15045 12909 17390 78333 14752
Nfilter 8900 13414 11790 10541 13523 30361 6962

Returns (×105)
mean -.007 .0003 -.0071 -.0008 .0012 -6.228 4.141

std.dev 6.566 7.785 7.211 6.508 7.611 1517 111.6
median 0 0 0 0 0 0 0

min -62.45 -62.45 -45.80 -45.80 -49.96 -123429 -1541
max 41.63 54.12 49.96 49.96 49.96 125843 1198
skew -.1649 .0758 .1364 .1450 .0192 -6.060 -.4165

kurtosis 10.57 9.048 8.963 9.315 9.038 3579 27.04
LB(10) 344.4 1880 1455 1010 2011 3977 60.9
LB(25) 352.4 1909 1468 1057 2020 8913 155

Durations (seconds)
mean 6.633 5.904 7.326 8.195 6.389 2.845 3.927

std.dev 11.80 10.94 19.02 15.27 12.75 7.614 6.524
median 3 2 2 3 2 1 1

min 0 0 0 0 0 0 0
max 335 166 816 461 611 473 136
skew 6.715 4.900 17.25 9.061 15.44 18.58 5.338

kurtosis 104.3 37.55 546.0 175.3 548.9 765.7 53.96
LB(10) 630.2 2548 4410 2812 3304 20237 906.2
LB(25) 904 4552 7046 4339 4295 42984 1218
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Table 2: Descriptive statistics of diurnally-adjusted returns and durations of EURCHF FX data
during the period from 8th to 16th of January 2015.

Dates Jan 8 Jan 9 Jan 12 Jan 13 Jan 14 Jan 15 Jan 16

Adjusted returns
mean .0146 .0083 .0166 .0193 .0344 -.9852 1.446

std.dev 1.991 2.272 1.975 1.887 2.272 228.6 37.21
median 0 0 0 0 0 0 0

min -31.64 -21.82 -15.02 -19.74 -28.12 -8317 -744.0
max 22.38 30.32 19.06 21.82 28.16 15221 436.5
skew -.4004 .0850 .4561 .4215 .2354 25.76 -.4105

kurtosis 29.45 14.94 14.86 18.17 16.85 2092 46.19
LB(10) 184.3 1559 1177 650.9 1533 6242 40.73
LB(25) 198.7 1580 1185 701.2 1552 11057 109.8

Adjusted durations (seconds)
mean .9609 .7843 .9457 1.058 .8246 .3672 .3578

std.dev 1.628 1.306 1.807 1.709 1.382 .8400 .5545
median .3799 .3101 .3486 .4315 .3281 .1812 .1544

min 0 0 0 0 0 0 0
max 19.72 21.74 47.77 65.12 28.09 46.17 8.915
skew 4.119 4.438 7.248 8.028 5.086 15.53 4.654

kurtosis 25.99 32.43 109.6 206.9 48.08 498.6 37.17
LB(10) 672.9 1270 2067 978.4 2909 19481 726.2
LB(25) 1038 2060 3572 1797 4205 35828 936.7
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